JPH01289915A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH01289915A
JPH01289915A JP12093088A JP12093088A JPH01289915A JP H01289915 A JPH01289915 A JP H01289915A JP 12093088 A JP12093088 A JP 12093088A JP 12093088 A JP12093088 A JP 12093088A JP H01289915 A JPH01289915 A JP H01289915A
Authority
JP
Japan
Prior art keywords
spacers
spacer
intra
plane
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12093088A
Other languages
Japanese (ja)
Inventor
Katsuya Otani
大谷 勝也
Shiro Miyake
史郎 三宅
Toshiaki Yamaguchi
敏明 山口
Katsuhiko Tarui
樽井 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12093088A priority Critical patent/JPH01289915A/en
Publication of JPH01289915A publication Critical patent/JPH01289915A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable easily visible display by using hard inorg. spacers consisting of glass fibers or alumina in the sealing material at the periphery between substrates, using intra-surface spacers consisting of plastic between the substrates and holding these spacers by varying the intra-surface distribution densities of the spacers. CONSTITUTION:The sizes of the spacer 10 in the sealing material 9 and the intra-surface spacers 11 are optimized according to the thicknesses of TFTs, light shielding films and color filters. The hard spacer consisting of the glass fiber, etc., which have high sealing reliability and allow strict control of the sealing thickness spacing is used for the spacer 10 in the seal and plastic beads having a low modulus of elasticity is used for the intra-surface spacers 11. These spacers are effectual in preventing the fault of the TFTs or the degradation in the characteristics thereof as well as to prevent exposing of the oriented films on picture element electrodes. The uniformization of the intra-surface cell spacing and the spraying of the spacers at the min. required amt. are enabled by changing the spraying density of the spacers 11 between the intra-surface central part and peripheral part. The problem of a degradation in display quality such as haze is obviated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、薄膜トランジスタ(以下TPTという)を
スイッチ素子として、表示電極アレイを構成したアクテ
ィブマトリックス型の液晶表示装置(TPT−LCD)
に関し、特に、TPTの故障を防止し、基板間の間隙を
制御して表示品質を向上させるようにしたものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an active matrix liquid crystal display device (TPT-LCD) in which a display electrode array is constructed using thin film transistors (hereinafter referred to as TPT) as switching elements.
In particular, the present invention is designed to prevent TPT failure and control the gap between substrates to improve display quality.

〔従来の技術〕[Conventional technology]

従来、液晶表示装置の基板間の間隙制御の方法は基板間
の貼り合わせに用いるシール材中にM2O3粉末やガラ
スピーズ、ガラスファイバなどの間隙制御材を混入した
ものを用いて、間隙を制御すると共に、表示面内にガラ
スファイバなどの間隙制御材を散布する方法が採られて
いる。
Conventionally, the method of controlling the gap between the substrates of a liquid crystal display device is to control the gap by using a sealing material used for bonding the substrates mixed with a gap control material such as M2O3 powder, glass beads, or glass fiber. Additionally, a method has been adopted in which a gap control material such as glass fiber is dispersed within the display surface.

第5図は例えば特開昭55−57821号公報に開示さ
れている従来の液晶表示装置の断面図を示し、図におい
て、17と19は対向し合う上基板と下基板、18と2
0はそれぞれの基板17゜19に設けられて対向する上
電極と下電極、9は側基板17.19間の周辺に設けた
シール材、10はシール材9内のスペーサ、11は基板
間の面内スペーサ、13は側基板17.19の外表面に
設けた偏光板、21は液晶である。
FIG. 5 shows a cross-sectional view of a conventional liquid crystal display device disclosed in, for example, Japanese Patent Application Laid-Open No. 55-57821.
0 is an upper electrode and a lower electrode provided on each of the substrates 17 and 19 and faces each other, 9 is a sealing material provided around the side substrates 17 and 19, 10 is a spacer in the sealing material 9, and 11 is a spacer between the substrates. In-plane spacers, 13 are polarizing plates provided on the outer surfaces of side substrates 17 and 19, and 21 is a liquid crystal.

第6図はTFTアレイを有するTFTアレイ基板と対向
電極を有する対向電極基板とからなるアクティブマトリ
ックス型の液晶表示装置のTFTアレイ基板の一画素の
平面図、第7図は対向基板とのシール部を声む第6図の
■−■線の断面図である。
FIG. 6 is a plan view of one pixel of a TFT array substrate of an active matrix liquid crystal display device consisting of a TFT array substrate having a TFT array and a counter electrode substrate having a counter electrode, and FIG. 7 is a seal portion with the counter substrate. 6 is a sectional view taken along the line ■-■ in FIG. 6.

第6図″、第7図において、1はTFTアレイ基板、2
はアレイ基板1上のTFT、3はアレイ基板1表面に形
成した表示電極、4はアレイ基板1と対向配置した対向
電極基板、5は遮光膜、6はカラーフィルタ、7はこの
基板4に形成した対向電極、8は配向膜、9はTFTア
レイ基板1と対向電極基板4間の周辺シール材、10は
シール材9内のスペーサ、11は両基板間の面内スペー
サ、21は液晶である。一方、22はゲート電極線、2
3はソース電極線、24はドレイン電極線、25はゲー
ト電極1.26.27はアモルファスシリコン、28は
ゲート絶縁膜である。
6″ and 7, 1 is a TFT array substrate, 2
1 is a TFT on the array substrate 1, 3 is a display electrode formed on the surface of the array substrate 1, 4 is a counter electrode substrate placed opposite the array substrate 1, 5 is a light shielding film, 6 is a color filter, and 7 is formed on this substrate 4. 8 is an alignment film, 9 is a peripheral sealing material between the TFT array substrate 1 and the counter electrode substrate 4, 10 is a spacer in the sealing material 9, 11 is an in-plane spacer between both substrates, and 21 is a liquid crystal. . On the other hand, 22 is a gate electrode line, 2
3 is a source electrode line, 24 is a drain electrode line, 25 is a gate electrode 1, 26, 27 is amorphous silicon, and 28 is a gate insulating film.

次に第5図に示すような通常の白黒LCDのギャンプ制
御方法について説明する。
Next, a method of controlling the gap of a normal monochrome LCD as shown in FIG. 5 will be explained.

例え′ば゛直径10μmのガラスファイバを約50μm
の長さに切断し、イソプロピルアルゾールやフレオンを
媒体にして混合液を作成する。そして、−方の基板側に
ガラスファイバの混合液を霧状にスプレー分散し、面内
スペーサ11を形成する。そしてシール材9中に同じ<
1011mのシール内スペーサ10を混合したものを印
刷した基板と圧着貼り合わせることにより、ガラスファ
イバの直径10μに面内間隙の制御ができる。
For example, a glass fiber with a diameter of 10 μm has a diameter of approximately 50 μm.
Cut it into lengths and create a mixture using isopropylarzole or Freon as a medium. Then, a glass fiber mixture is sprayed and dispersed in the form of a mist on the − side of the substrate to form in-plane spacers 11 . And the same <
By press-bonding a mixture of 1011 m of in-seal spacers 10 to a printed substrate, the in-plane gap can be controlled to a glass fiber diameter of 10 μm.

一方、第6図及び第7図のような構造のTFTアレイ2
を有するTPT基板1とカラーフィルタを有する対向基
板4を貼り合わせたTFT−力ラ−L、CDの場合の表
示電極間の間隙(液晶層の厚さ)は、TFTアレイ2と
遮光膜5、カラーフィ、ルタ6の凹凸のみならず面内ス
ペーサとシール内スペーサのサイズのバランスと散布密
度及び弾性率などのスペーサ材の機械的性質に影響され
これらの要因を全てコントロールしないと均一な間隙の
制御ができない。
On the other hand, the TFT array 2 having the structure as shown in FIGS. 6 and 7
The gap between the display electrodes (thickness of the liquid crystal layer) in the case of a TFT-L, CD, in which a TPT substrate 1 having a TPT substrate 1 and a counter substrate 4 having a color filter are bonded together is the gap between the TFT array 2 and the light-shielding film 5, It is affected not only by the unevenness of the color filler and filter 6, but also by the size balance of the in-plane spacer and in-seal spacer, and by the mechanical properties of the spacer material such as the dispersion density and modulus of elasticity, and it is difficult to control a uniform gap unless all of these factors are controlled. I can't.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の液晶表示装置は以上のように構成されているので
、TPT−カラーLCDにおいてセル間隙が不均一な場
合、背景、着色の不均一や電気光学特性のばらつきを生
じ、表示品質上問題となる。
Conventional liquid crystal display devices are configured as described above, so if the cell spacing in a TPT-color LCD is non-uniform, it will cause non-uniform background, non-uniform coloring, and variations in electro-optical characteristics, which will cause display quality problems. .

また第6図、第7図のように面内スペーサ11にガラス
ファイバを用いた場合、ガラスファイバは、1)直径に
比べ長さが長いことやシャープなエツジを持つ、2)硬
度及び弾性率が高いために、TPTの上のガラスファイ
バは圧着時にT’FTに圧力を加えトランジスタ特性の
変動や破壊を起こし、画素電極上にある場合は、圧着時
に画素電極上の配向膜を傷つけて画素電極を露出させ表
示欠陥を発生させるなどの問題点がある。
In addition, when glass fiber is used for the in-plane spacer 11 as shown in FIGS. 6 and 7, the glass fiber has 1) long length and sharp edges compared to its diameter, and 2) hardness and elastic modulus. Because of the high resistance, the glass fiber on top of the TPT applies pressure to the T'FT during crimping, causing fluctuations in transistor characteristics and destruction.If the glass fiber is on the pixel electrode, it may damage the alignment film on the pixel electrode during crimping, causing damage to the pixel. There are problems such as exposing the electrodes and causing display defects.

なお画素電極上の配向膜は液晶層のDCカット膜の役割
を持つために画素電極の露出は耐DC信頼性にも問題が
出る。
Note that since the alignment film on the pixel electrode has the role of a DC cut film for the liquid crystal layer, exposing the pixel electrode also poses a problem in DC resistance reliability.

このような問題点の解決手段として、特開昭61−15
179号、特開昭62−148927号公報などではT
FT部や画素電極を除く部分に選択的にスペーサを形成
する方法が提案されている。
As a means of solving these problems,
No. 179, Japanese Unexamined Patent Publication No. 62-148927, etc.
A method has been proposed in which spacers are selectively formed in parts other than the FT part and the pixel electrode.

また、特にTPT−LCDについて説明してないが、特
開昭60−257427号、特開昭60−260022
号公報などに提案されているプラスチックビーズのスペ
ーサの採用が考えられる。
Also, although it does not specifically explain TPT-LCD, Japanese Patent Application Laid-open Nos. 60-257427 and 60-260022
It is conceivable to use a spacer made of plastic beads as proposed in the above publication.

しかし前者の例では選択的スペーサ材の形成がコストア
ップになる問題点があり、後者の例では以下に説明する
問題点がある。
However, in the former example, there is a problem that forming the selective spacer material increases the cost, and in the latter example, there is a problem as described below.

第8図は面内スペーサにプラスチックビーズを用いた場
合の液晶セルの断面モデル図である。
FIG. 8 is a cross-sectional model diagram of a liquid crystal cell when plastic beads are used as in-plane spacers.

図において、1はT’ F Tアレイ基板、4は対向基
板、9は周辺シール材、11は面内スペーサのプラスチ
ックビーズである。第7図、第8図の例において、特に
画面サイズの大きな液晶表示素子を形成する場合面内の
セル間隙の均一制御が難しい。シール材9によるTFT
基板1と対向基板4のシール幅を2mとしたとき、画面
サイズに対するシール部の面積は5インチサイズで約7
%、10インチサイズで約5%である。シール部のシー
ル内スペーサのみあるいは面内スペーサの散布量が不足
する場合は、側基板の熱圧着貼り合わせ時に全面均一に
加圧されるのでシール部のみではパネル全面の剛性を維
持できずに、画面中央部のセル間隙は小さくなる傾向を
持つ。
In the figure, 1 is a T'FT array substrate, 4 is a counter substrate, 9 is a peripheral sealing material, and 11 is a plastic bead as an in-plane spacer. In the examples shown in FIGS. 7 and 8, it is difficult to uniformly control the in-plane cell gaps, especially when forming a liquid crystal display element with a large screen size. TFT with seal material 9
When the seal width between the substrate 1 and the counter substrate 4 is 2 m, the area of the seal part relative to the screen size is approximately 7 in 5 inch size.
%, about 5% for 10 inch size. If only the in-seal spacer or in-plane spacer is not distributed enough in the seal part, the entire surface is evenly pressurized when the side substrates are bonded together by thermocompression, so the seal part alone cannot maintain the rigidity of the entire panel. The cell gap at the center of the screen tends to become smaller.

スペーサ材としてこれ迄使用実績の高いガラスファイバ
は弾性率が7000 kg/mm2 と高く且つ熱安定
性が高く、少量でセル間隙の制御性が良い、特にシール
内スペーサに用いる場合はセル間隙の制御性が高くシー
ル信頼性も高い。
Glass fiber, which has been used as a spacer material so far, has a high elastic modulus of 7000 kg/mm2 and high thermal stability, and it has good controllability of the cell gap even in small quantities, especially when used as a spacer inside a seal. High performance and seal reliability.

面内スペーサにプラスチックビーズを用いたときはガラ
スのファイバの弾性率より低い為にこのような例のとき
には第8図のモデル断面図のように面内中央部のスペー
サの変形量が面内周辺部の変形量に比べて大きくなり面
内中央部のセル間隙が小さくなる。従って面内スペーサ
としてプラスチックビーズを用いるためにはガラスファ
イバの場合より弾性率が低いので多量の散布量が必要に
なる。
When plastic beads are used as the in-plane spacer, the elastic modulus is lower than that of glass fibers, so in such an example, the amount of deformation of the spacer at the center of the plane is smaller than that of the in-plane periphery, as shown in the cross-sectional view of the model in Figure 8. The amount of deformation is larger than the amount of deformation in the area, and the cell gap at the center of the plane becomes smaller. Therefore, in order to use plastic beads as an in-plane spacer, a large amount of spraying is required since the elastic modulus is lower than that of glass fibers.

表示画面内に多量のスペーサがある場合はヘイズと呼ば
れる画面の曇りを生じ表示品質を低下させる。
If there are a large amount of spacers within the display screen, clouding of the screen called haze occurs, degrading the display quality.

この発明は、かかる課題を解決するためになされたもの
で、TPTの故障や特性の低下を防止しセル間隙をパネ
ル面内を全面均一にして背景着色を均一にし、電気光学
特性を均一にして見やすい表示を得ることができるアク
ティブマトリックス型の液晶表示装置を得ることを目的
とする。
This invention was made to solve these problems, and it prevents TPT failure and deterioration of characteristics, makes cell gaps uniform throughout the panel surface, makes background coloring uniform, and makes electro-optic characteristics uniform. An object of the present invention is to obtain an active matrix type liquid crystal display device that can provide an easy-to-see display.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る液晶表示装置はシール材内スペーサと面
内スペーサのサイズを最適化すると共に、シール材内ス
ペーサにガラスファイバなどの硬質スペーサを用い、面
内スペーサに弾性率の低いプラスチックスペーサを用い
て且つ、面内スペーサの散布密度を面内中央部と周辺部
で変えて有効表示面のセル間隙を均一にしたものである
The liquid crystal display device according to the present invention optimizes the size of the spacer in the sealing material and the in-plane spacer, and uses a hard spacer such as a glass fiber as the spacer in the sealing material, and uses a plastic spacer with a low elastic modulus as the in-plane spacer. In addition, the density of dispersion of the in-plane spacers is changed between the in-plane central part and the peripheral part to make the cell gaps on the effective display surface uniform.

〔作 用〕[For production]

この発明においては、シール材内スペーサと面内スペー
サのサイズをTPTと遮光膜およびカラーフィルタの厚
さにより最適化した上で、シール内のスペーサをシール
信頼性が高くてシール厚み間隙を厳密に制御できるガラ
スファイバなどの硬質スペーサを用い、面内スペーサに
弾性率の低いプラスチックビーズを用いたのでTPTの
故障や特性低下の防止や画素電極上の配向膜の露出防止
に効果がある。
In this invention, the size of the spacer in the seal material and the spacer in the plane are optimized by the thickness of the TPT, the light-shielding film, and the color filter, and the spacer in the seal is set to have a high sealing reliability and a strict seal thickness gap. Since a hard spacer such as a glass fiber that can be controlled is used and a plastic bead with a low elastic modulus is used as an in-plane spacer, it is effective in preventing TPT failure and characteristic deterioration and in preventing exposure of the alignment film on the pixel electrode.

また面内スペーサの散布密度を面内中央部と周辺部で変
えることにより、面内セル間隙の均一化とスペーサ散布
量の必要最小量の散布が可能となりヘイズ等の表示品質
の低下の問題がない。
In addition, by changing the distribution density of in-plane spacers between the central and peripheral parts of the plane, it is possible to make the in-plane cell gaps uniform and to spray the minimum amount of spacers required, which eliminates the problem of deterioration of display quality such as haze. do not have.

〔実施例〕 以下、この発明の液晶表示装置の実施例を図について説
明する。
[Example] Hereinafter, an example of the liquid crystal display device of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例におけるTFTアレイ基板
と対向基板を貼り合わせた画面サイズが10インチのT
PT−力ラーLCDの平面図、第2図は第1図の■−■
線断面図、第3図はシール部及び一画素近傍の拡大断面
図、第4図はTFTアレイ基板上への面内スペーサの散
布方法の概念図である。
Figure 1 shows a TFT with a screen size of 10 inches in which a TFT array substrate and a counter substrate are bonded together in one embodiment of the present invention.
A plan view of the PT-LCD, Figure 2 is the same as ■-■ in Figure 1.
3 is an enlarged sectional view of the seal portion and the vicinity of one pixel, and FIG. 4 is a conceptual diagram of a method of dispersing in-plane spacers on a TFT array substrate.

各図において、1はTFTアレイ基板、2はこのアレイ
基板1上のTFTアレイ、3はアレイ基板1表面に形成
した表示画素電極、4はアレイ基板1に視向配置した対
向電極基板、5は対向電極基板4表面(下面)に設けた
遮光膜(ブラックマスク)、6はカラーフィルタ、7は
対向電極である。8は側基板1,4の表面に形成した配
向膜、9は両基板間の周辺シール材、10はシール材9
内スペーサ、11は面内スペーサ、12は封止材、13
は側基板1.4の外表面に設けた偏光板、14は基板間
のセル間隙である。また第4図において、15はスプレ
ーノズル、16は中央部間ロバターンマスクである。
In each figure, 1 is a TFT array substrate, 2 is a TFT array on this array substrate 1, 3 is a display pixel electrode formed on the surface of the array substrate 1, 4 is a counter electrode substrate arranged to face the array substrate 1, and 5 is a A light shielding film (black mask) provided on the surface (lower surface) of the counter electrode substrate 4, 6 a color filter, and 7 a counter electrode. 8 is an alignment film formed on the surfaces of the side substrates 1 and 4; 9 is a peripheral sealing material between both substrates; 10 is a sealing material 9
Inner spacer, 11 is an in-plane spacer, 12 is a sealing material, 13
is a polarizing plate provided on the outer surface of the side substrate 1.4, and 14 is a cell gap between the substrates. Further, in FIG. 4, 15 is a spray nozzle, and 16 is a center-to-center robot pattern mask.

まず第1図ないし第3図において加熱硬化型エポキシシ
ール材中に9.5mの直径のガラスファイバスペーサを
混入して攪拌混合後、対向電極基板4のカラーフィルタ
面側にシール材を圧着後のシール幅が約2薗になるよう
にスクリーン印刷した。
First, as shown in Figures 1 to 3, a glass fiber spacer with a diameter of 9.5 m is mixed into the heat-curable epoxy sealant, stirred and mixed, and the sealant is pressed onto the color filter surface side of the counter electrode substrate 4. Screen printing was performed so that the sticker width was approximately 2 lins.

次に第4図に示すように常温の弾性率が約500kg 
/ mm ”で直径6.5μmのプラスチックビーズ[
商品名ミクロパール(積木ファインケミカル)]を散散
布度が300個/llll112の濃度になるようにイ
ソプロピルアルコール溶液に混入分散させた液を画面サ
イズの中央部に選択的に散布できるマスク16を介して
エアー圧でスプレーノズル15よりTFTアレイ基板1
上にスプレィ散布した。
Next, as shown in Figure 4, the elastic modulus at room temperature is approximately 500 kg.
/ mm” with a diameter of 6.5 μm plastic beads [
Micropearls (trade name: Building Blocks Fine Chemicals)] were mixed and dispersed in an isopropyl alcohol solution at a dispersion rate of 300 pieces/lllll112, and then the liquid was mixed and dispersed in the center of the screen size through a mask 16 that could be selectively sprayed. The TFT array substrate 1 is sprayed from the spray nozzle 15 using air pressure.
Sprayed on top.

なお画面中央部の開ロバターンマスクの開口面積は10
インチの画面サイズのときは、約10%〜15%程度で
良い。
The opening area of the open pattern mask in the center of the screen is 10
When the screen size is inches, it may be about 10% to 15%.

次に同じプラスチックビーズが100個/ mm 2の
散布密度になる濃度の同様な分散液を画面サイズの周辺
部のみ選択的に散布できるマスクを介してスプレィ散布
した。
Next, a similar dispersion solution having a concentration of the same plastic beads at a dispersion density of 100 pieces/mm 2 was sprayed through a mask that could selectively spray only the peripheral area of the screen size.

なおシール材内スペーサ10と面内スペーサ11のサイ
ズはセル間隙14を8μmとするとき、TFTアレイの
最大高さが1.5μIで、対向基板の遮光部5と画素の
カラーフィルタ6の厚さが1.5μm一定のとき、次の
計算による。
Note that the size of the spacer 10 in the sealant and the spacer 11 in the plane is such that when the cell gap 14 is 8 μm, the maximum height of the TFT array is 1.5 μI, and the thickness of the light shielding part 5 of the opposing substrate and the color filter 6 of the pixel. is constant at 1.5 μm, according to the following calculation.

シール材内スペーサ径(9,5μm)=TFTの最大高
さ(1,5μm)十面内スペーサ径(6,5μm)+カ
ラーフィルタの厚さ(1,5μm) 次に、シール材を印刷した対向電極基板4と面内スペー
サを散布したTFTアレイ基板1を適当な光学系を持っ
た重ね合わせ装置で重ね合わせる。
Spacer diameter in sealing material (9.5 μm) = Maximum height of TFT (1.5 μm) Spacer diameter in ten planes (6.5 μm) + thickness of color filter (1.5 μm) Next, the sealing material was printed. A counter electrode substrate 4 and a TFT array substrate 1 on which in-plane spacers are scattered are stacked together using a stacking device having an appropriate optical system.

次に重ね合わせたTFTアレイ基板1と対向電極基板4
を熱圧着プレスにセットし180°CIO分間熱圧着し
た。熱圧着した側基板のシール開口部より液晶を真空注
入した後に開口部を封止材12で封止した。
Next, the TFT array substrate 1 and the counter electrode substrate 4 are stacked on top of each other.
was set in a thermocompression press and thermocompression bonded for 180° CIO minutes. After liquid crystal was injected under vacuum through the seal opening of the thermocompression-bonded side substrate, the opening was sealed with a sealant 12.

このパネルの面内セル間隙は8.0±0.1μmと面内
均一性が高く背景着色の均一なものが得られ、ヘイズが
なく表示外観の良いセルが得られた。また面内スペーサ
に弾性率の低いプラスチックスペーサを用いたのでTP
Tの特性劣化や故障率が減少した。
The in-plane cell gap of this panel was 8.0±0.1 μm, which was highly uniform in the plane, and a uniform background coloring was obtained, and a cell with no haze and a good display appearance was obtained. In addition, since a plastic spacer with a low elastic modulus was used as the in-plane spacer, the TP
T characteristic deterioration and failure rate have decreased.

比較例として、上記例と同じ面内スペーサを全面均一に
300個以上/胴2散布したセルの面内セル間隙は8.
0±0.1pと面内均一性が高いがスペーサ量が多いた
めに全面にヘイズが目立ち表示外観が悪い。
As a comparative example, the in-plane cell gap of a cell in which 300 or more of the same in-plane spacers as in the above example were uniformly distributed over the entire surface per 2 cylinders was 8.
Although the in-plane uniformity is high at 0±0.1p, haze is noticeable over the entire surface due to the large amount of spacers, and the display appearance is poor.

また同じ面内スペーサを全面均一に100個/mm 2
散布したセルは散布量が少ないために面内セル間隙は8
.0±0.6 IImと面内均一性が悪く背景着色が不
均一で色むらが目立ち表示外観が悪い。
In addition, the same in-plane spacers are uniformly distributed over the entire surface at a rate of 100 pieces/mm2.
The in-plane cell gap is 8 because the amount of sprayed cells is small.
.. The in-plane uniformity was poor at 0±0.6 IIm, and the background coloring was uneven, color unevenness was noticeable, and the display appearance was poor.

なお、上記実施例において、プラスチックビーズとして
常温弾性率が約500kg/mm2のミクロパール(積
木ファインケミカル製)を用いたが常温弾性率約110
0 kg/ mm”のエポスター(日本触媒化学製)を
用いても同様な結果が得られる。
In the above example, Micropearl (manufactured by Building Blocks Fine Chemicals) with a room temperature elastic modulus of about 500 kg/mm2 was used as the plastic beads, but the room temperature elastic modulus was about 110.
Similar results can be obtained using Epostor (manufactured by Nippon Shokubai Chemical Co., Ltd.) of 0 kg/mm''.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、シール材内スペーサと
面内スペーサのサイズをTPTと遮光膜およびカラーフ
ィルタの厚さにより最適化した上で、シール柱内のスペ
ーサをシール信顧性が高くてシール厚み間隙を厳密に制
御できるガラスファイバなどの硬質スペーサを用い、面
内スペーサに弾性率の低いプラスチックビーズを用いた
のでTPTの故障や特性低下の防止や画素電極上の配向
膜の露出防止に効果がある。
As explained above, this invention optimizes the size of the spacer in the sealing material and the in-plane spacer by the thickness of the TPT, the light-shielding film, and the color filter, and then the spacer in the sealing column with high seal reliability. We use a hard spacer such as glass fiber that can strictly control the seal thickness gap, and we use plastic beads with a low elastic modulus for the in-plane spacer to prevent TPT failure and characteristic deterioration and to prevent exposure of the alignment film on the pixel electrode. effective.

また面内スペーサの散布密度を面内中央部と周辺部で変
えることにより、面内セル間隙の均一化とスペーサ散布
量の必要最小量の散布が可能となりヘイズ等の表示品質
の低下の問題がなく低コストで表示品質の高いTPT−
カラー液晶表示装置が製造できる効果がある。
In addition, by changing the distribution density of in-plane spacers between the central and peripheral parts of the plane, it is possible to make the in-plane cell gaps uniform and to spray the minimum amount of spacers required, which eliminates the problem of deterioration of display quality such as haze. TPT- with low cost and high display quality.
This has the advantage that color liquid crystal display devices can be manufactured.

また、上記実施例において、パネル面中央部と周辺部へ
の選択なスペーサの散布方法として、マスクパターンに
よる選択散布方法について説明したがスプレーパターン
の自動制御などの方法も可能であり本発明の効果と同様
な効果が更に低コストで期待出来る。
In addition, in the above embodiment, a method of selectively dispersing spacers using a mask pattern was explained as a method of selectively dispersing spacers in the central part and peripheral part of the panel surface, but methods such as automatic control of the spray pattern are also possible, and the effects of the present invention can be achieved. Similar effects can be expected at a lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の液晶表示装置の一実施例におけるT
FTカラーLCDの平面図、第2図は第1図の■−■線
断面図、第3図は第2図の拡大断面図、第4図はTFT
アレイ基板上への面内スペーサの散布方法の概念図、第
5図は従来のスペーサ散布法を用いた液晶表示装置の断
面図、第6図は従来のガラスファイバスペーサを用いた
時のTPT−カラーLCDのTFT基板一画素の平面図
、第7図は対向基板とのシール部を含む第6図の■−■
線の断面図、第8図は面内スペーサにプラスチックビー
ズを用いた場合従来のスペーサ散布法を用いた液晶セル
の断面モデル図である。 1・・・TFTアレイ基板、2・・・TFTアレイ、3
・・・表示画素電極、4・・・対向電極基板、5・・・
遮光膜(ブラックマスク)、6・・・カラーフィルタ、
7・・・対向電極、8・・・配向膜、9・・・シール材
、10・・・シール材内スペーサ、11・・・面内スペ
ーサ、12・・・封止材、13・・・偏光板、14・・
・セル間隙、15・・・スプレィノズル、16・・・中
央部間ロバターンマスク。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1 shows T in an embodiment of the liquid crystal display device of the present invention.
FT color LCD plan view, Figure 2 is a sectional view taken along the line ■-■ in Figure 1, Figure 3 is an enlarged sectional view of Figure 2, and Figure 4 is a TFT.
A conceptual diagram of the method of dispersing in-plane spacers onto an array substrate, Fig. 5 is a cross-sectional view of a liquid crystal display device using the conventional spacer dispersing method, and Fig. 6 is a TPT-1 when using the conventional glass fiber spacer. A plan view of one pixel on the TFT substrate of a color LCD, FIG. 7 is a diagram showing ■-■ in FIG.
8 is a cross-sectional model diagram of a liquid crystal cell using the conventional spacer dispersion method when plastic beads are used as in-plane spacers. 1... TFT array substrate, 2... TFT array, 3
... Display pixel electrode, 4... Counter electrode substrate, 5...
Light shielding film (black mask), 6... color filter,
7... Counter electrode, 8... Alignment film, 9... Sealing material, 10... Spacer in sealing material, 11... In-plane spacer, 12... Sealing material, 13... Polarizing plate, 14...
-Cell gap, 15...Spray nozzle, 16...Robot pattern mask between central parts. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 表面上に薄膜トランジスタアレイを有する薄膜トランジ
スタアレイ基板と対向電極基板と、上記両基板間に介在
された液晶とからなる液晶表示装置において、上記両基
板間の周辺のシール材中にガラスファイバ若しくはアル
ミナの硬質無機スペーサを用い、上記両基板間にプラス
チックの面内スペーサを用い、かつスペーサの面内分布
密度を変えて保持したことを特徴とする液晶表示装置。
In a liquid crystal display device comprising a thin film transistor array substrate having a thin film transistor array on its surface, a counter electrode substrate, and a liquid crystal interposed between the two substrates, a hard material such as glass fiber or alumina is included in the sealing material around the two substrates. A liquid crystal display device characterized in that an inorganic spacer is used, a plastic in-plane spacer is used between the two substrates, and the in-plane distribution density of the spacer is varied.
JP12093088A 1988-05-17 1988-05-17 Liquid crystal display device Pending JPH01289915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12093088A JPH01289915A (en) 1988-05-17 1988-05-17 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12093088A JPH01289915A (en) 1988-05-17 1988-05-17 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH01289915A true JPH01289915A (en) 1989-11-21

Family

ID=14798492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12093088A Pending JPH01289915A (en) 1988-05-17 1988-05-17 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH01289915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356021A (en) * 1990-08-30 1992-12-09 Canon Inc Ferroelectric liquid crystal color panel
JPH1115005A (en) * 1997-06-27 1999-01-22 Hitachi Ltd Liquid crystal display element and production therefor
US6441879B2 (en) 1995-09-27 2002-08-27 Sharp Kabushiki Kaisha Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356021A (en) * 1990-08-30 1992-12-09 Canon Inc Ferroelectric liquid crystal color panel
US6441879B2 (en) 1995-09-27 2002-08-27 Sharp Kabushiki Kaisha Liquid crystal display device
JPH1115005A (en) * 1997-06-27 1999-01-22 Hitachi Ltd Liquid crystal display element and production therefor

Similar Documents

Publication Publication Date Title
JP2547523B2 (en) Liquid crystal display device and manufacturing method thereof
JP2001117105A (en) Method of manufacturing for liquid crystal display device
JP2004093760A (en) Method of manufacturing liquid crystal display
JP3930284B2 (en) Method for manufacturing flat display element
JPS63128315A (en) Liquid crystal display element
JP2001117109A (en) Method of manufacturing for liquid crystal display device
JP2008123003A (en) Liquid crystal display element and method of manufacturing the same
JPH09105946A (en) Liquid crystal display element and its production
KR100963496B1 (en) Method for cutting liquid crystal panel and method for manufacturing liquid crystal panel using the same
WO2007046170A1 (en) Color filter substrate and display device using the same
JPH11183915A (en) Active matrix type liquid crystal display device
JP2002214622A (en) Liquid crystal display and image display application equipment
JPH08146422A (en) Liquid crystal display device and production
US7817238B2 (en) Liquid crystal display device and method of manufacturing the same
JP4209146B2 (en) Liquid crystal display element and manufacturing method thereof
JPH01289915A (en) Liquid crystal display device
KR100874646B1 (en) LCD and its manufacturing method
WO2020186567A1 (en) Method for manufacturing liquid crystal display panel, and liquid crystal display panel
JP3998775B2 (en) Liquid crystal display device
JP2002131759A (en) Liquid crystal display device
KR20040011671A (en) Liquid Crystal Display Device
JPH10339883A (en) Thin film transistor type liquid crystal display device and manufacture therefor
KR100687343B1 (en) Liquid crystal display device and method for manufacturing the same
JPH063675A (en) Liquid crystal display element and its manufacture
JP2000187225A (en) Manufacture of liquid crystal display device