JPH01289842A - Molding agent - Google Patents

Molding agent

Info

Publication number
JPH01289842A
JPH01289842A JP12014688A JP12014688A JPH01289842A JP H01289842 A JPH01289842 A JP H01289842A JP 12014688 A JP12014688 A JP 12014688A JP 12014688 A JP12014688 A JP 12014688A JP H01289842 A JPH01289842 A JP H01289842A
Authority
JP
Japan
Prior art keywords
resin
molding agent
prepared
ultramicroparticles
micelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12014688A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takahashi
裕幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12014688A priority Critical patent/JPH01289842A/en
Publication of JPH01289842A publication Critical patent/JPH01289842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain easily at low cost a molding agent having excellent thixotropy and weathering resistance and being useful in the step of sealing in the production of IC by dispersing SiO2 ultramicroparticles of a specified particle diameter prepared by the micelle process in a resin. CONSTITUTION:This molding agent is prepared by dispersing ultramicroparticles of a mean particle diameter <0.1mum, prepared by the micelle process, in a resin. Said micelle process is one for obtaining ultramicroparticles of a desired substance and comprises performing its chemical reaction in the internal spaces of micelles which are associations formed when a surfactant is added to a solvent in a concentration higher than the critical micelle concentration. When the mean particle diameter of the SiO2 ultramicroparticle is above 0.1mum, the specific surface area of the particle is excessively small and the thixotropy and weathering resistance, which are important properties, of the molding agent cannot be improved. Examples of the resin include an epoxy resin and a silicone resin. The amount of the SiO2 ultramicroparticles used is 1-15pts.wt. per 100pts. wt. resin.

Description

【発明の詳細な説明】 岐監九夏 本発明は特にIC等の電子部品の封止用として好適なモ
ールディング剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molding agent particularly suitable for sealing electronic components such as ICs.

丈来伎生 工Cの製造においてはチップをリードフレームに固定し
、ボンディングワイヤーで接続した後。
In the production of Jakuryuki C, the chip is fixed to a lead frame and connected with bonding wire.

セラミックスや樹脂等のパッケージに封入する工程が行
なわれている。この封入工程では絶縁性、耐熱性、耐薬
品性、耐湿性等の点から主としてエポキシ系又はシリコ
ン系のモールディング剤が使用されている。近年これら
のモールディング剤には主として揺変性や耐候性の向上
、コスト低減等の目的でSiO2微粒子がフィラーとし
て添加使用されるようになった。このSin、x微粒子
は粒径が小ざく、且つ粒度分布がせまい程。
The process is to encapsulate it in a package of ceramics, resin, etc. In this encapsulation process, epoxy-based or silicon-based molding agents are mainly used from the viewpoint of insulation, heat resistance, chemical resistance, moisture resistance, etc. In recent years, SiO2 fine particles have been added to these molding agents as fillers mainly for the purpose of improving thixotropy, weather resistance, and reducing costs. These Sin,x fine particles have a small particle size and a narrow particle size distribution.

効果的であることが判っているが、従来は製造コストや
技術的な問題から平均粒径0.1〜14mで、且つ粒度
分布の広いものが使われて来た。
Although it is known to be effective, particles with an average particle size of 0.1 to 14 m and a wide particle size distribution have conventionally been used due to manufacturing costs and technical problems.

l−一枚 本発明の目的は特にIC製造の封入工程に有用な揺変性
及び耐候性に優れたモールディング剤を簡単、且つ低コ
ストで提供することである。
An object of the present invention is to provide a molding agent having excellent thixotropy and weather resistance, which is particularly useful in the encapsulation process of IC manufacturing, simply and at low cost.

盪−一双 本発明のモールディング剤は樹脂中にSiO□微粒子を
分散してなるモールディング剤において、前記Sin2
微粒子がミセル法によって調製された平均粒径0.1μ
園未満、好ましくは0.01μm以下の超微粒子である
ことを特徴とするものである。
(2) The molding agent of the present invention is a molding agent formed by dispersing SiO□ fine particles in a resin.
Fine particles were prepared by the micelle method and had an average particle size of 0.1μ.
The particles are characterized by being ultrafine particles with a diameter of less than 0.0 μm, preferably 0.01 μm or less.

以下、本発明で使用されるミセル法によるSin2微粒
子の調製法について説明する。
The method for preparing Sin2 fine particles by the micelle method used in the present invention will be described below.

ミセル法とは、溶媒に界面活性剤を臨界ミセル濃度以上
になるように加えた時に形成される会合体であるミセル
の内部空間で化学反応を起こさせて、目的物質の超微粒
子を得る方法である。ここで使用される界面活性剤(陽
イオン系、陰イオン系、非イオン系のいずれでもよい)
はC8〜C□、程度の疎水性の炭化水素基と親水基とが
適当にバランスして結合した分子構造を有している。こ
のような界面活性剤は使用される溶媒によって会合方向
が異なり、溶媒中で第1図(a)に示すようなミセルを
形成するか、或いは第1図(b)に示すような逆ミセル
を形成する。
The micelle method is a method to obtain ultrafine particles of the target substance by causing a chemical reaction in the internal space of micelles, which are aggregates that are formed when a surfactant is added to a solvent at a concentration higher than the critical micelle concentration. be. Surfactant used here (can be cationic, anionic, or nonionic)
has a molecular structure in which hydrophobic hydrocarbon groups of C8 to C□ and hydrophilic groups are bonded in an appropriate balance. Such surfactants have different association directions depending on the solvent used, and either form micelles in the solvent as shown in Figure 1(a) or reverse micelles as shown in Figure 1(b). Form.

図中1は疎水基、2は親木基、3は界面活性剤の分子モ
デルである。ミセル法を利用しである物質を調製する場
合、ミセルを選択するか或いは逆ミセルを選択するかは
目的物質を生成する反応系に対し水相(極性が大きい)
が適するか、或いは油相(極性が小さい)が適するかに
よって決定されるが、Sin、のような酸化物の場合、
その生成反応は沈殿法や加水分解法などのような水相で
の反応系が一般的であるため、逆ミセルが選択され、従
ってこの場合の溶媒としては極性の小さな有機溶媒が好
ましい。
In the figure, 1 is a hydrophobic group, 2 is a parent wood group, and 3 is a molecular model of a surfactant. When preparing a substance using the micelle method, whether to select micelles or reverse micelles depends on the aqueous phase (high polarity) relative to the reaction system that produces the target substance.
In the case of oxides such as Sin,
Reverse micelles are selected because their production reaction is generally carried out in an aqueous phase reaction system such as a precipitation method or a hydrolysis method. Therefore, as a solvent in this case, an organic solvent with low polarity is preferable.

−船釣なミセル法を第2図を参照し逆ミセルについて説
明すると、まず適当な容器(溶媒や反応系に用いられる
試薬が揮発性の場合や、外部から他物質の混入が考えら
れる時は密閉容器)中に所定濃度の界面活性剤水溶液を
所定量採取する。目的物質Cが下記式(1)及び(2)
のようにA成分とB成分との反応で得られる時(Dは副
生物)。
- To explain the reverse micelle method with reference to Figure 2, it is necessary to first use an appropriate container (if the solvent or reagent used in the reaction system is volatile, or if there is a possibility that other substances may be mixed in from the outside), Collect a predetermined amount of a surfactant aqueous solution with a predetermined concentration into a sealed container. Target substance C has the following formulas (1) and (2)
When it is obtained by the reaction of component A and component B (D is a by-product), as in

A+B4C・・・・・・(1) A+B−)C+D  ・・・(2) 水溶液を撹拌しながら、A、Bいずれか一方の成分1例
えばA成分の有機溶媒溶液を滴下する。
A+B4C...(1) A+B-)C+D...(2) While stirring the aqueous solution, an organic solvent solution of component 1 of either A or B, such as component A, is added dropwise.

これにより逆ミセルの水相内にA成分が取込まれる[第
2図(a)]。次にこれを所定時間静置し、可溶化平衡
して達した後、撹拌しながら、他方の成分、例えばB成
分の有機溶媒溶液を滴下する。これにより前記逆ミセル
の水相内にB成分が取込まれる[第2図(b)]と同時
に、A成分とB成分との反応が起こる。こうして所定時
間反応を続けることによりミセルの大きさに対応した目
的物質Cの超微粒子が逆ミセルの水相内に生成する[第
2図(c)]、この場合、反応系は必要あれば温度制御
したり、触媒を添加することができる。また(2)式の
ような反応系の場合は副生物りが目的物質Cとは異なる
相に溶解するような溶媒を選択することによりミセル中
に目的物質Cだけを生成させることができる。なお超微
粒子の粒径や形状は、界面活性剤の種類や濃度、反応系
の試薬濃度、触媒の量、反応温度、反応時間などの条件
を変えることにより、ある程度制御することができる。
As a result, component A is incorporated into the aqueous phase of the reverse micelle [Figure 2 (a)]. Next, this is allowed to stand for a predetermined period of time, and after reaching solubilization equilibrium, the other component, for example, an organic solvent solution of component B, is added dropwise while stirring. As a result, the B component is incorporated into the aqueous phase of the reverse micelle [FIG. 2(b)], and at the same time, a reaction between the A component and the B component occurs. By continuing the reaction for a predetermined period of time, ultrafine particles of the target substance C corresponding to the size of the micelles are generated in the aqueous phase of the reverse micelles [Figure 2 (c)]. It can be controlled or a catalyst can be added. In addition, in the case of a reaction system such as the one shown in formula (2), by selecting a solvent in which the by-product is dissolved in a phase different from that of the target substance C, only the target substance C can be produced in the micelles. The particle size and shape of the ultrafine particles can be controlled to some extent by changing conditions such as the type and concentration of surfactant, the concentration of reagents in the reaction system, the amount of catalyst, reaction temperature, and reaction time.

次にこの系に、遠心分離等による沈降、超音波等による
分散及び適当な溶媒によるデカンテーションを繰返し行
なって不純物を除去した後、得られた湿潤粒子を適当な
方法で乾燥すれば、目的物質の超微粒子が乾燥状態で得
られる。
Next, this system is repeatedly subjected to sedimentation by centrifugation, dispersion by ultrasonic waves, and decantation with an appropriate solvent to remove impurities, and the resulting wet particles are dried by an appropriate method to obtain the desired substance. ultrafine particles are obtained in a dry state.

以上のようなセミル法で実際にSin、の超微粒子を作
る場合の反応系としては下記(3)式で示されるような
アルコキシドの加水分解反応(逆ミセル中)が挙げられ
る。
As a reaction system for actually producing ultrafine particles of Sin using the Cemil method as described above, an alkoxide hydrolysis reaction (in a reverse micelle) as shown by the following formula (3) can be mentioned.

Si (QC,H,)、 + 2 H20→Sin、 
+ 4 C,H,OH・・・(3)以上のようにし°て
得られる本発明のSin、超微粒子は平均粒径0.1μ
I未満で、且つせまい粒度分布のものである。平均粒径
が0.1μ園以上では粒子の比表面積が小さいため、モ
ールディング剤の重要な特性である稲麦性及び耐候性を
向上することができない。
Si (QC,H,), + 2 H20→Sin,
+ 4 C, H, OH... (3) The ultrafine particles of Sin of the present invention obtained as above have an average particle size of 0.1μ
It is less than I and has a narrow particle size distribution. If the average particle size is 0.1 μm or more, the specific surface area of the particles is small, making it impossible to improve the properties of rice grain and weather resistance, which are important properties of a molding agent.

本発明のSin、超微粒子はモールディング剤用の樹脂
と所望量混合、使用される。ここで樹脂としてはエポキ
シ樹脂、シリコーン樹脂等が挙げられる。なおSiO□
超微粒子の使用量は樹脂100重量部に対し1〜15重
量部が適当である。
The Sin and ultrafine particles of the present invention are mixed with a resin for a molding agent in a desired amount and used. Here, examples of the resin include epoxy resin and silicone resin. Furthermore, SiO□
The appropriate amount of ultrafine particles to be used is 1 to 15 parts by weight per 100 parts by weight of the resin.

以下に本発明を実施例を実施例によって説明する。The present invention will be explained below by way of examples.

実施例 l 5un2を生成する反応系は(3)式の逆ミセル中での
アルコキシドの加水分解反応である。使用した試薬及び
量は次のとうりである。
Example 1 The reaction system for producing 5un2 is a hydrolysis reaction of an alkoxide in a reverse micelle of formula (3). The reagents and amounts used were as follows.

溶   媒ニジクロヘキサン 5i(QC2H,)、 : 0.2Fo++o12/k
gH,O:    0.5 moQ/kg触   媒:
 0.2 moQ/kg まずNP−6の水溶液を触媒と共にガラス容器に入れ、
これにSi (QC,H,)4のシクロヘキサン溶液を
加え、25℃で48時間反応させる。次にこの系に遠心
分離による沈降、超音波による分散及びメタノールによ
るデカンテーションを繰返し行なった後、得られた湿潤
粒子を乾燥し、平均粒径60nmの球状SiO□超微粒
子を得た。
Solvent dichlorohexane 5i (QC2H,): 0.2Fo++o12/k
gH,O: 0.5 moQ/kg catalyst:
0.2 moQ/kg First, put the aqueous solution of NP-6 together with the catalyst in a glass container,
A cyclohexane solution of Si (QC,H,)4 is added to this, and the mixture is reacted at 25°C for 48 hours. Next, this system was repeatedly subjected to sedimentation by centrifugation, dispersion by ultrasonic waves, and decantation by methanol, and then the obtained wet particles were dried to obtain spherical SiO□ ultrafine particles with an average particle size of 60 nm.

次にこの5in2超微粒子をエポキシ樹脂(エポキシ当
量190)(エピコート828)100重量部に対し7
.5重量部添加混合してモールディング剤を作った。
Next, add 7 in
.. A molding agent was prepared by adding and mixing 5 parts by weight.

実施例 2 1(,0量を1.5n+oQ/kgとした他は実施例1
と同じ方法で平均粒径35nmの球状SiO□超微粒子
を調製し、以下同様にしてモールディング剤を作った。
Example 2 1 (Example 1 except that the amount was changed to 1.5n+oQ/kg
Spherical SiO□ ultrafine particles with an average particle diameter of 35 nm were prepared in the same manner as above, and a molding agent was made in the same manner.

実施例 3 反応温度を10℃とした他は実施例1と同じ方法で平均
粒径45nmの球状5in2超微粒子を調製し、以下同
様にしてモールディング剤を作った。
Example 3 Spherical 5in2 ultrafine particles with an average particle size of 45 nm were prepared in the same manner as in Example 1, except that the reaction temperature was 10° C., and a molding agent was prepared in the same manner.

実施例 4 反応時間を6hrとした他は実施例1と同じ方法で平均
粒径30nmの球状Sin、超微粒子を調製し、以下同
様にしてモールディング剤を作った。
Example 4 Spherical Sin ultrafine particles with an average particle size of 30 nm were prepared in the same manner as in Example 1, except that the reaction time was 6 hours, and a molding agent was prepared in the same manner.

比較例 平均粒径60n+sのSin、超微粒子の代りに市販の
平均粒径0.IJLmのSiO2微粒子を用いた他は実
施例1と同じ方法でモールディング剤を作った。
Comparative Example: Sin with an average particle size of 60n+s, and a commercially available average particle size of 0.00nm instead of ultrafine particles. A molding agent was prepared in the same manner as in Example 1, except that IJLm SiO2 fine particles were used.

次に以上の各モールディング剤について稲麦性をテスト
した。試験方法は次のとおりである。
Next, each of the above-mentioned molding agents was tested for compatibility with rice and wheat. The test method is as follows.

稲麦性: 稲麦性を定量的に表したチキソトロピー指数(回転粘度
計によって測定した2つの所定回転数における粘度の比
)によって評価した。測定条件は次のとおりである。
Rice and wheat properties: Evaluation was made using the thixotropy index (ratio of viscosity at two predetermined rotational speeds measured by a rotational viscometer), which quantitatively expressed rice and wheat properties. The measurement conditions are as follows.

使用樹脂:エピコート828、添加量:5wt、%(ボ
ールミルでlhr攪拌)、粘度計の回転数:20rpm
及び40℃mp、温度:25℃ その結果を下表に示す。
Resin used: Epikote 828, amount added: 5wt, % (stirred for 1hr with a ball mill), rotation speed of viscometer: 20rpm
and 40°C mp, temperature: 25°C The results are shown in the table below.

本発明で使用されるSin、超微粒子は比表面積が大き
いので、樹脂成分との化学結合力が大きく、このためモ
ールディング剤の稲麦性及び耐候性を大巾に向上するこ
とができる。またこのSin、超微粒子はミセル法で調
製されるので、低コスト化及び製品の信頼性を向上する
ことができる。
Since the ultrafine particles of Sin used in the present invention have a large specific surface area, they have a large chemical bonding force with the resin component, and therefore the properties and weather resistance of the molding agent can be greatly improved. Furthermore, since the Sin and ultrafine particles are prepared by the micelle method, it is possible to reduce costs and improve product reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は夫々ミセル及び逆ミセルのモ
デル図、第2図(a)〜(C)はミセルの一例の調製工
程での状態図である。 3・・・疎水基1及び親、水幕2を有する界面活性剤の
分子モデル
FIGS. 1(a) and (b) are model diagrams of micelles and reverse micelles, respectively, and FIGS. 2(a) to (C) are state diagrams of an example of micelles in the preparation process. 3...Molecular model of surfactant having hydrophobic group 1 and parent, water curtain 2

Claims (1)

【特許請求の範囲】[Claims] 1、樹脂中にSiO_2微粒子を分散してなるモールデ
ィング剤において、前記SiO_2微粒子がミセル法に
よって調製された平均粒径0.1μm未満の超微粒子で
あることを特徴とするモールディング剤。
1. A molding agent formed by dispersing SiO_2 fine particles in a resin, characterized in that the SiO_2 fine particles are ultrafine particles with an average particle size of less than 0.1 μm prepared by a micelle method.
JP12014688A 1988-05-16 1988-05-16 Molding agent Pending JPH01289842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12014688A JPH01289842A (en) 1988-05-16 1988-05-16 Molding agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12014688A JPH01289842A (en) 1988-05-16 1988-05-16 Molding agent

Publications (1)

Publication Number Publication Date
JPH01289842A true JPH01289842A (en) 1989-11-21

Family

ID=14779104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12014688A Pending JPH01289842A (en) 1988-05-16 1988-05-16 Molding agent

Country Status (1)

Country Link
JP (1) JPH01289842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083540A (en) * 1994-06-22 1996-01-09 Sony Corp Fine particle for abrading chemical machinery and production thereof and abrading method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083540A (en) * 1994-06-22 1996-01-09 Sony Corp Fine particle for abrading chemical machinery and production thereof and abrading method using the same

Similar Documents

Publication Publication Date Title
CN111868142B (en) Preparation method of spherical silicon resin powder or connected body thereof and spherical silicon resin powder or connected body thereof obtained by preparation method
JPH1067883A (en) Inorganic filler, epoxy resin composition, and semiconductor device
CN101001925A (en) Carbon black colorant for semiconductor sealing material and process for producing the same
JP2000063630A (en) Fine spherical silica and liquid sealing resin composition
CN101475179B (en) Preparation of organic-inorganic hybridization silicon oxide nanosphere
CN107400382B (en) A kind of mashing dispersing method of titanium dioxide primary product
CN107140652B (en) Azide mesoporous silica nano-particle and preparation method thereof
CN100419011C (en) Modified mesoporous silicon dioxide powder, presolution for forming low dielectric opoxy resin and low dielectric polysub amido resin, low dielectric constant base board and its forming method
CN106883609A (en) Pressure sensitive material for high-temperature high pressure sensor and preparation method thereof
CN113122170A (en) Adhesive for sealing semiconductor
CN106497503A (en) A kind of neutral alcohol type transparent silicone fluid sealant and preparation method thereof
JPH01289842A (en) Molding agent
CN114956104B (en) Silicon dioxide reinforcing agent for silicon rubber and preparation method thereof
Huang et al. New hybrid materials incorporating tetrabutyl titanate and tetraethoxysilane with functional SEBS elastomer via the sol‐gel process: Synthesis and characterization
CN108440739A (en) A kind of hyperbranched anti-sag agent and the application in mono-composition poyurethane water-proof paint
CN103936014B (en) A kind of preparation method of white carbon black
JP2006206722A (en) Lowly reactive silica powder, epoxy resin composition given by using the same, and epoxy resin molded product
CN114525045B (en) Preparation method of efficient anti-yellowing modified silicon dioxide powder
CN113698609B (en) Polysiloxane alkenyl terephthalate compound as anti-settling agent
CN106745009B (en) A kind of monodispersed submicron grade silicon dioxide microballoon and preparation method thereof
CN115417415A (en) Silicon dioxide for high-transparency silicone rubber and preparation method and application thereof
JPS6212609A (en) Modified fused spherical silica and production thereof
Cai et al. Effect of Ammonia on the SiO2 Colloidal Particles Synthesized by the Stöber Method
CN107500302A (en) A kind of hydrophobic precipitated silica and preparation method thereof
CN113549422A (en) Organic silicon pouring sealant and preparation method thereof