JPH01289799A - Active aerodynamic elastic tailoring - Google Patents

Active aerodynamic elastic tailoring

Info

Publication number
JPH01289799A
JPH01289799A JP11817488A JP11817488A JPH01289799A JP H01289799 A JPH01289799 A JP H01289799A JP 11817488 A JP11817488 A JP 11817488A JP 11817488 A JP11817488 A JP 11817488A JP H01289799 A JPH01289799 A JP H01289799A
Authority
JP
Japan
Prior art keywords
wing
angle
flight
main wing
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11817488A
Other languages
Japanese (ja)
Inventor
Makoto Horikawa
誠 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11817488A priority Critical patent/JPH01289799A/en
Publication of JPH01289799A publication Critical patent/JPH01289799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To enable the twisting angle of a wing to be changed to an optimum value by providing a rudder face capable of producing an aerodynamic force in the up-and- down direction in accordance with the steering angle, at least on one side of the front and rear of the wing in the vicinity of the wing end of an air-craft, and controlling the steering angle as the function of the angle of incidence, Mach number, or the like at the time of flight. CONSTITUTION:A missile launcher 5 is provided to the wing end of the main wing 1 of an aircraft, and also at the front and rear thereof, small rudder faces 2, 3 are provided so as to be turnable around axes in the right and left direction. Further, in the same way as before, a small rudder face 4 and a propeller fan 8 are provided on the rear peripheral side of the main wing 1, and they are intended to be used at the time of normal flight as well as taking off and landing. And it is constituted so that the small rudder faces 2, 3 can be inclined or elevated by an actuator 6 which is operated by the command from a computer 7 in which calculation is carried out making a function of the angle of incidence alpha, Mach number M, and dynamic pressure q at the time of flight. Thus, an optimum main wing twisting angle can be obtained in a relatively wide range of flight, enabling the enhancement in the flight performance to be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は飛行条件に応じた主翼捩れ角の最適化を果たす
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device that optimizes the torsion angle of a main wing according to flight conditions.

〔従来の技術〕[Conventional technology]

航空機では、迎角、マツノ・数に応じ空力的に最適々翼
の捩れ角(翼端と付根との角度の差)が存在する。飛行
中、この捩れ角を最適に保つことが望まれている。
In an aircraft, there is an aerodynamically optimal wing twist angle (difference between the angle between the wing tip and the wing root) depending on the angle of attack and the number of blades. It is desirable to maintain this twist angle at an optimum level during flight.

従来主翼捩れ角の最適化が実用機で行われた例はないが
、類似の研究は行われている。但しこの場合もたとえば
第6図に示すように複合材等で成形された主翼1の特質
と翼端の突出したミサイルランチ5の捩りモーメント等
を利用しである与えられた一つの飛行条件で最適化を行
うものであり他の条件では必ずしも最適に近いわけでは
かい。
Although optimization of the main wing torsion angle has not previously been performed on a commercial aircraft, similar research has been conducted. However, in this case as well, for example, as shown in Fig. 6, the characteristics of the main wing 1 made of composite material and the torsional moment of the missile launch 5 with a protruding wing tip can be utilized to find the optimum flight condition for a given flight condition. It is not necessarily close to optimal under other conditions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の翼の捩れ角を制御する翼には解決すべき次の
課題があった。
The above-mentioned conventional wing for controlling the twist angle of the wing had the following problems to be solved.

即ち、従来の翼はその構造様式によるいわば受動的な変
形によるものであるため、最適となる飛行条件範囲が能
動的コントロールに比べて狭い。
That is, since the conventional wing is deformed passively due to its structure, the range of optimal flight conditions is narrower than that under active control.

(11題を解決するための手段〕 本発明は上記課題の解決手段として、航空機の翼の翼端
近傍の前方及び後方の少くとも一方の側に舵角に応じて
上下方向の空力的な力の発生可能に設けられた舵面と、
同舵面の舵角を飛行時の迎角、マツハ数及び動圧の関数
として制御し翼の捩れ角を飛行の最適値に変化させる手
段とを具備してなることを特徴とする能動的空力弾性テ
イラリング(Tailoring )を提供しようとす
るものである。
(Means for Solving Problem 11) As a means for solving the above problems, the present invention provides an aerodynamic force in the vertical direction depending on the steering angle on at least one side of the front and rear sides near the tip of the wing of an aircraft. a control surface provided to enable the generation of
Active aerodynamics characterized by comprising means for controlling the rudder angle of the control surface as a function of the angle of attack, Matsuha number and dynamic pressure during flight, and changing the torsion angle of the wing to the optimum value for flight. It is intended to provide elastic tailoring.

〔作 用〕[For production]

本発明は上記のように構成されるので次の作用を有する
。即ち、翼端近傍の翼断面で見た場合、上下方向の空力
的な力を発生する舵面は翼断面の前方又は後方、或は前
後両方に設けられるので。
Since the present invention is configured as described above, it has the following effects. That is, when looking at the wing section near the wing tip, the control surface that generates vertical aerodynamic force is provided at the front or rear of the wing section, or at both front and rear sides.

翼断面の回転半径の中心近傍(捩りモーメント中心)よ
シ離れた位置で上又は下向きの力を発生し。
An upward or downward force is generated at a position near the center of the radius of rotation of the blade cross section (center of torsional moment).

翼に捩りを与える。その捩!11度合は、その時々の飛
行条件の最適値となるよう制御されるので、航空機は常
に最も望ましい、翼の捩れ角で飛行できる。
Gives twist to the wing. That twist! The 11 degree angle is controlled to be the optimum value for the flight conditions at the time, so the aircraft can always fly with the most desirable wing twist angle.

〔実施例〕〔Example〕

本発明の一実施例を第1〜5図を参照しながら説明する
An embodiment of the present invention will be described with reference to FIGS. 1 to 5.

第1図において、主翼1の翼端にはミサイルランチャ5
が設けられておシ、その前方及び後方には小舵面2及び
3が左右方向の軸廻りに回動可能に設けられている。そ
の他、従来と同様目的及び構成の小舵面4やアラ40ン
8が主翼1の後縁側に設けられていて通常飛行及び離着
陸の用を果すように構成されている。小舵面2及び3は
第2図に示すように、飛行時の迎角α、マツハ数M、動
圧qを関数として演算されるコンビエータ7からの指令
によらて作動するアクチエエータ6によって俯仰するよ
う構成されている。以上の構成において、たとえば第3
図に示すように小舵面2を下向きにδT、小舵面3を上
向きにδT操舵すると小舵面2には下向きの力が、小舵
面3には上向きの力が空力的に発生し、ミサイルランチ
ャ5は前後で半時計廻シの偶力を受けて図のMのよう々
モーメントを生じる。ミサイルランチャ5は主′fiL
1の翼端に固設されているので翼端が捩られ、Wt端と
翼の付根との間に第4図に示すように捩れ角θを生じる
ことになる。コンビエータ7は迎角α。
In Figure 1, a missile launcher 5 is mounted on the wing tip of the main wing 1.
is provided, and small control surfaces 2 and 3 are provided in front and rear thereof so as to be rotatable around an axis in the left and right direction. In addition, a small control surface 4 and a control surface 40 8 having the same purpose and structure as the conventional aircraft are provided on the trailing edge side of the main wing 1, and are configured to perform normal flight, takeoff and landing. As shown in FIG. 2, the minor control surfaces 2 and 3 are raised and raised by an actuator 6 that operates in response to a command from a combiator 7 that is calculated as a function of the angle of attack α, Matsuha number M, and dynamic pressure q during flight. It is configured like this. In the above configuration, for example, the third
As shown in the figure, when the minor control surface 2 is steered downward by δT and the minor control surface 3 is steered by δT upward, a downward force is generated on the minor control surface 2 and an upward force is generated on the minor control surface 3 aerodynamically. , the missile launcher 5 receives a counterclockwise couple at the front and rear, and generates a moment as shown by M in the figure. Missile launcher 5 is the main 'fiL'
1, the blade tip is twisted, and a twist angle θ is created between the Wt tip and the root of the blade as shown in FIG. 4. Combiator 7 has an angle of attack α.

マツハ数M、動圧qを入力として捩れ角θを実現するた
めに相応したモーメントを翼端に発生するに必要な指令
をアクチエエータ6に与える。主翼1の形状、構造が一
定の場合の演算及び指令の概念図を第5図に示す。なお
、第4図の(a)は捩れ角θが小さい場合、(b)は捩
れ角θが大きい場合を定性的に示した左側面図である。
Using the Matsuha number M and the dynamic pressure q as inputs, the actuator 6 is given a command necessary to generate a corresponding moment at the blade tip in order to realize the torsion angle θ. FIG. 5 shows a conceptual diagram of calculations and commands when the shape and structure of the main wing 1 are constant. Note that FIG. 4(a) is a left side view qualitatively showing the case where the twist angle θ is small, and FIG. 4(b) is a left side view qualitatively showing the case when the twist angle θ is large.

以上、実施例は小舵面をミサイルランチャの前後端に設
けた例で説明したが、これに限定されるものではなく、
翼端に直接、或は適宜の構造体を介して、或は翼端よシ
稍内方にそれぞれ設けられてよく、更に他の合目的な構
成で設けられてよい。
Although the embodiment has been described above as an example in which the small control surfaces are provided at the front and rear ends of the missile launcher, the invention is not limited to this.
It may be provided directly at the wing tip, via an appropriate structure, slightly inward from the wing tip, or in any other suitable configuration.

但し、摸シ能率としては翼端がよい。However, the wing tip is better for imitation efficiency.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されるので次の効果を有する
。即ち、翼端近傍の前部或いは後部或いは双方に取付け
た舵面を迎角、マツハ数及び動圧の関数で駆動すること
によシ単なる受動的テイラリングより広い飛行領域で最
適な主翼捩れ角を得ることができ、飛行性能が著しく向
上する。
Since the present invention is configured as described above, it has the following effects. In other words, by driving the control surfaces attached to the front or the rear near the wing tips, or both, in a function of the angle of attack, Matsuh number, and dynamic pressure, the optimum main wing torsion angle can be achieved over a wider flight range than by mere passive tailoring. This significantly improves flight performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を備えた航空機の右翼の平面
図、第2図は小舵面の駆動ロジックの一実施例の模式的
構成図、第3図は第1図の■−■矢視断面で小舵面の操
舵を説明した図、第4図は上記実施例による主翼1の捩
れ角の大小を説明した航空機の左側面図で、(a)は捩
れ角が小さい場合を、(b)は捩れ角が大きい場合をそ
れぞれ示す図。 fas図は上記実施例の小舵面の操舵を行うための駆動
用アクチエエタ信号を演算発信する場合の概念図、第6
図は従来例の右翼平面図である。 l・・・主翼      2.3.4・・・小舵面5・
・・ミサイルランチャ 6・・・アクチエエータ 7・・・コンビエータ8・・
・フラペロン
FIG. 1 is a plan view of the right wing of an aircraft equipped with an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of an embodiment of the control surface drive logic, and FIG. 3 is a ■A diagram illustrating the steering of the small control surface in a cross section in the direction of arrows. FIG. 4 is a left side view of the aircraft illustrating the magnitude of the torsion angle of the main wing 1 according to the above embodiment, and (a) shows the case where the torsion angle is small. , (b) are diagrams each showing a case where the twist angle is large. The fas diagram is a conceptual diagram when calculating and transmitting a driving actuator signal for steering the small control surface of the above embodiment, and is the sixth diagram.
The figure is a plan view of the right wing of a conventional example. l...Main wing 2.3.4...Small control surface 5.
... Missile launcher 6... Actieator 7... Combiator 8...
・Flaperon

Claims (1)

【特許請求の範囲】[Claims] 航空機の翼の翼端近傍の前方及び後方の少くとも一方の
側に舵角に応じて上下方向の空力的な力の発生可能に設
けられた舵面と、同舵面の舵角を飛行時の迎角、マッハ
数及び動圧の関数として制御し翼の捩れ角を飛行の最適
値に変化させる手段とを具備してなることを特徴とする
能動的空力弾性テイラリング。
A control surface is provided on at least one of the front and rear sides near the tip of an aircraft wing so that an aerodynamic force can be generated in the vertical direction according to the rudder angle, and the rudder angle of the same control surface is controlled during flight. active aeroelastic tailoring, characterized in that it comprises: means for controlling the angle of attack of the wing, the Mach number and the dynamic pressure of the wing and changing the torsion angle of the wing to an optimum value for flight;
JP11817488A 1988-05-17 1988-05-17 Active aerodynamic elastic tailoring Pending JPH01289799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11817488A JPH01289799A (en) 1988-05-17 1988-05-17 Active aerodynamic elastic tailoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11817488A JPH01289799A (en) 1988-05-17 1988-05-17 Active aerodynamic elastic tailoring

Publications (1)

Publication Number Publication Date
JPH01289799A true JPH01289799A (en) 1989-11-21

Family

ID=14729958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11817488A Pending JPH01289799A (en) 1988-05-17 1988-05-17 Active aerodynamic elastic tailoring

Country Status (1)

Country Link
JP (1) JPH01289799A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862044A1 (en) * 2003-11-06 2005-05-13 Deutsch Zentr Luft & Raumfahrt Aerodynamic resistance minimizing process for e.g. airliner, involves deflecting control surfaces on blade based on difference between set point and angle measured from angle of inclinations of central and wing span sections of blade
JP2016159737A (en) * 2015-02-27 2016-09-05 三菱重工業株式会社 Flutter control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862044A1 (en) * 2003-11-06 2005-05-13 Deutsch Zentr Luft & Raumfahrt Aerodynamic resistance minimizing process for e.g. airliner, involves deflecting control surfaces on blade based on difference between set point and angle measured from angle of inclinations of central and wing span sections of blade
JP2016159737A (en) * 2015-02-27 2016-09-05 三菱重工業株式会社 Flutter control device

Similar Documents

Publication Publication Date Title
JP2617281B2 (en) Helicopter rotor with flap
EP1771331B1 (en) System and method for improved rotor tip performance
US10414484B2 (en) Aircraft
EP2070815B1 (en) Ducted fan vehicles particularly useful as VTOL aircraft
US6098923A (en) Aircraft structure to improve directional stability
US5884872A (en) Oscillating flap lift enhancement device
US3807662A (en) Anti-torque, propulsion, and directional control system
US5492448A (en) Rotary blades
US5381985A (en) Wingtip mounted, counter-rotating proprotor for tiltwing aircraft
CN108298064B (en) Unconventional yaw control system
US20050178881A1 (en) Ducted fan vehicles particularly useful as VTOL aircraft
CN105059536A (en) Rotor wing device with variable pitch and multi-rotor-wing aircraft
WO1996006006A1 (en) Yaw control and stabilization system for helicopters
JPS62168793A (en) Helicopter having high advanced speed
IL100318A (en) Shroud-fin integration shelf for a helicopter empennage structure
EP0322775A2 (en) Thrust-deflecting vane devices of v/stol aircraft
EP3919379B1 (en) Flight efficiency improving system for compound helicopter
CN204916174U (en) Variable -pitch rotor device and many rotor crafts
CN102887222A (en) Paddle with changeable torsion-angle distribution
EP1417124A1 (en) System and method for controlling an aircraft
CN105752319A (en) Fixed wing aircraft adopting full-DOF (degree of freedom) tail wing and operating method
EP0018114A1 (en) Thrust devices
JPH01289799A (en) Active aerodynamic elastic tailoring
CN105691594A (en) Novel control method and device for flying wing aircraft
JPH09254894A (en) Helicopter blade having flap, and rotor control device using it