JPH01289682A - Own weight compensating method for master manipulator for remote control - Google Patents

Own weight compensating method for master manipulator for remote control

Info

Publication number
JPH01289682A
JPH01289682A JP11876888A JP11876888A JPH01289682A JP H01289682 A JPH01289682 A JP H01289682A JP 11876888 A JP11876888 A JP 11876888A JP 11876888 A JP11876888 A JP 11876888A JP H01289682 A JPH01289682 A JP H01289682A
Authority
JP
Japan
Prior art keywords
arm
torque
weight
master
master manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11876888A
Other languages
Japanese (ja)
Inventor
Akihiro Maekawa
明寛 前川
Masaru Higuchi
優 樋口
Koji Kuwabara
耕治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11876888A priority Critical patent/JPH01289682A/en
Publication of JPH01289682A publication Critical patent/JPH01289682A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0008Balancing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To reduce sense of fatigue at the time of operation by applying a torque to a master manipulator directed upward at all times when the attitude of one's own arm is to be held constant, and allowing the arm of the operator to be placed upon a master arm. CONSTITUTION:The output from an angle sensing means 3 is entered into a computer 10, and at an own weight torque calculating means 4, the target value for the torque due to own weight of each shaft of a master arm 1 is determined on the assumption that the value of compensative acceleration alphais greater than the acceleration g of the gravity. As a result an upward directed force is generated to the master arm 1, and when the operator wishes to keep his arm in constant attitude during operation of the master arm 1, he can put his own arm on the master arm 1 to lead to reduction of fatigue at the time of operation.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は遠隔操作用マニピュレータシステムのマスタ・
マニピュレータに適用される自重補償方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application]
This invention relates to a self-weight compensation method applied to a manipulator.

[従来の技術] 従来は遠隔操作用マスタ・マニピュレータの自重のみに
よるトルクを演算により求め、その補償トルクを各軸の
アクチュエータにより発生させる自重補償方法を採用し
ていた。すなわち重力加速度g (g −9,8” /
 5ee2) I::ヨル力ノミカマスタ・マニピュレ
ータにかかる力であるとして、各軸の自重によるトルク
の目標値演算を行っていた。
[Prior Art] Conventionally, a self-weight compensation method has been adopted in which the torque due to only the dead weight of a remote control master manipulator is calculated, and the compensating torque is generated by the actuator of each axis. That is, the gravitational acceleration g (g −9,8” /
5ee2) I:: Torque target value was calculated based on the weight of each axis, assuming that it was the force applied to the torque master manipulator.

[発明が解決しようとする課題] マスク・スレーブ方法のマニピュレータの遠隔操作の際
、スレーブΦマニピュレータを一定の姿勢に保持しよう
とする場合、マスタ・マニピュレータの姿勢を一定に保
つ必要がある。したがってオペレータは自分の腕を一定
の姿勢に保つ必要がある。この時従来方法ではマスクア
ームの自重のみを完全に補償しているためオペレータは
腕の重量によるトルクを0にすることが必要となり自分
の腕を宙に浮かせている状態で一定の姿勢を保つ必要が
ある。しかしながら数十秒以上オペレータが自分の腕を
宙に浮かせた状態でじっと一定の姿勢を保つことは、か
なりの緊張を要し、疲れやすくすぐ腕がだるくなる。
[Problems to be Solved by the Invention] When attempting to maintain a slave Φ manipulator in a constant posture during remote control of a manipulator using the mask-slave method, it is necessary to maintain a constant posture of the master manipulator. Therefore, the operator must keep his arm in a constant position. At this time, in the conventional method, only the dead weight of the mask arm is completely compensated for, so the operator must reduce the torque due to the weight of the arm to zero, and must maintain a constant posture with his arm suspended in the air. There is. However, for an operator to maintain a fixed posture with his or her arm suspended in the air for more than several tens of seconds requires a considerable amount of tension, and the operator gets tired easily and his or her arm quickly becomes tired.

本発明の課題は、上記問題点を解消することができるマ
スタ・マニピュレータの自重補償方法を提供することで
ある。
An object of the present invention is to provide a method for compensating the dead weight of a master manipulator that can solve the above-mentioned problems.

[課題を解決するための手段〕 本発明に係る自重補償方法は遠隔操作用マスタ・マニピ
ュレータの自重によるトルクを演算により求め、その補
償トルクを各軸のアクチュエータにより発生させる自重
補償方法において、補償加速度αの値を重力の加速度g
より大きい値として各軸の自重によるトルクの目標値演
算を行うことを特徴とする [作 用] 如 補償が速度をα(α>g)として自重補償を行えば、マ
スク・アームには、鉛直上向きの力を生じる。したがっ
て、マスク・アームの操作においてオペレータが腕を一
定の姿勢に保とうとすれば、。
[Means for Solving the Problems] The dead weight compensation method according to the present invention calculates the torque due to the dead weight of a remote control master manipulator, and generates the compensation torque by the actuator of each axis. The value of α is the acceleration of gravity g
[Function] If self-weight compensation is performed with the velocity set to α (α>g), the mask arm will have a vertical Generates an upward force. Therefore, if the operator tries to keep the arm in a constant posture when operating the mask arm.

オペレータは腕をマスク・アームに乗せればよ〈従来方
法にくらべ疲労感が低減される。
The operator only needs to place their arm on the mask arm (less fatigue compared to conventional methods).

[実施例] 本発明の実施例を第1図に示す。[Example] An embodiment of the invention is shown in FIG.

先づ、構造につき2自由度マスタ・マニピュレータを例
に説明する。第1図でオペレータはグリッパ7を把持し
、マスク・アーム1を操作する。
First, the structure will be explained using a two-degree-of-freedom master manipulator as an example. In FIG. 1, the operator grips the gripper 7 and operates the mask arm 1.

マスク・アーム1には、肩と肘に対応する部分にそれぞ
れ角度検出手段3、マスク・アーム駆動手段6が設けら
れている。角度検出手段3の出力は計算機10に入力さ
れ自重トルク演算手段4(演算内容は下記の(1)、(
2)式)およびトルク制御手段5を経てマスク・アーム
駆動手段6への出力となる。
The mask arm 1 is provided with an angle detection means 3 and a mask arm drive means 6 at portions corresponding to the shoulders and elbows, respectively. The output of the angle detection means 3 is input to the calculator 10, and the dead weight torque calculation means 4 (the calculation contents are as follows (1), (
2)) and is output to the mask arm drive means 6 via the torque control means 5.

次に作用につき説明する。第1図に示すマスク・アーム
のモデルを第2図に示す。肩から肘までの長さをノ11
肘からグリッパまでの長さを、1172とし肘とグリッ
パの部分に集中質ff1m1.m2が存在すると仮定す
る。この時肩関節θ1軸廻りの自重トルク目標値T1お
よび肘関節02軸廻りの自重トルク目標値T2は次式と
なる。ただしαは補償加速度であり、定数とする。
Next, the effect will be explained. A model of the mask arm shown in FIG. 1 is shown in FIG. Measure the length from shoulder to elbow.
The length from the elbow to the gripper is 1172, and the concentration between the elbow and the gripper is ff1m1. Assume that m2 exists. At this time, the dead weight torque target value T1 around the shoulder joint θ1 axis and the dead weight torque target value T2 around the elbow joint 02 axis are as follows. However, α is the compensation acceleration and is a constant.

T 1 −(+   l  +l12   )    
φ  a   争  、l+    11 sin  
 θ 】+I12 a l! 2 ・5in(θl+θ
2)    −(1)T2 =(m 2 a)2sin
(θ1+θ2 )    =12)(1)、 (2)式
においてα〉gとすればグリッパ7を鉛直上方へ向わせ
るように肩、肘それぞれの関節に次式で表わされるトル
クT1α+T2αが常時加わる。
T1-(+l+l12)
φ a conflict, l+ 11 sin
θ ]+I12 a l! 2 ・5in(θl+θ
2) −(1)T2 = (m 2 a) 2 sin
(θ1+θ2) = 12) If α>g in equations (1) and (2), torque T1α+T2α expressed by the following equation is constantly applied to each joint of the shoulder and elbow to direct the gripper 7 vertically upward.

T1 α−(m 1+12 )(cr−g)ノ1eS1
n θ1Jpfp2  Ca  g ) 、1’2  
・51n(θ1+θ2)・・・(3) T 2 a−m2  ((Z −g)l 25in(θ
1+θ2 )   −(4)なお、第3図に示す従来方
法では(1)、 (2)式でα−gとしたことになるの
でT1α−0,T2α−0となる。
T1 α-(m 1+12 )(cr-g)ノ1eS1
n θ1Jpfp2 Ca g ), 1'2
・51n(θ1+θ2)...(3) T 2 a-m2 ((Z-g)l 25in(θ
1+θ2 ) −(4) Note that in the conventional method shown in FIG. 3, α−g is used in equations (1) and (2), so T1α−0 and T2α−0 are obtained.

αの値は、オペ1ノータがマスク・アームに腕を乗せた
ときに、腕の重量によるトルクが(3)、 (41式に
よるトルクと釣合うように選ぶ。通常の場合、αは 1
.3g前後に選ぶことが望ましい。
The value of α is selected so that when the operator puts his arm on the mask arm, the torque due to the weight of the arm is balanced with the torque calculated by formula (3) (41).In normal cases, α is 1
.. It is desirable to choose around 3g.

[発明の効果] 上述したように、本発明によればオペレータは、マスク
・スレーブ・マニピュレータの操作において自分の腕の
姿勢を一定に保とうとした時マスタ・マニピュレータは
つねに鉛直上方に向って力(トルク)が加わっているた
め腕をマスク・アームに乗せることができ、操作時の疲
労感が低減される。
[Effects of the Invention] As described above, according to the present invention, when the operator tries to maintain the posture of his arm constant when operating the mask slave manipulator, the master manipulator always exerts a force ( Torque) allows you to rest your arm on the mask arm, reducing fatigue during operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としてのマスク・アーム自重
補償方法の構成図、第2図はマスク・アームのモデル図
、第3図は従来方法によるマスク・アーム自重補償方法
の構成図。 1・・・マスク・アーム、2・・・肩部アクチュエータ
、3・・・マスク・アーム肩部角度検出手段、4・・・
本発明による自重トルク演算手段、5・・・トルク制御
手段、6・・・マスク・アーム駆動手段、7・・・グリ
ッパ、10・・・計算機、20・・・従来方法による自
重トルク演算手段、21′・・・肩部アクチュエータ、
31・・・マスク・アーム肩部角度検出手段。
FIG. 1 is a block diagram of a mask arm self-weight compensation method according to an embodiment of the present invention, FIG. 2 is a model diagram of a mask arm, and FIG. 3 is a block diagram of a mask arm dead weight compensation method according to a conventional method. DESCRIPTION OF SYMBOLS 1...Mask arm, 2...Shoulder actuator, 3...Mask arm shoulder angle detection means, 4...
Dead weight torque calculating means according to the present invention, 5... Torque control means, 6... Mask arm driving means, 7... Gripper, 10... Calculator, 20... Dead weight torque calculating means by conventional method, 21′...shoulder actuator,
31...Mask arm shoulder angle detection means.

Claims (1)

【特許請求の範囲】  遠隔操作用マスタ・マニピュレータの自重によるトル
クを演算により求め、その補償トルクを各軸のアクチュ
エータにより発生させる自重補償方法において、 補償加速度αの値を重力の加速度gより大きい値として
各軸の自重によるトルクの目標値演算を行うことを特徴
とする自重補償方法。
[Claims] In a self-weight compensation method in which the torque due to the self-weight of a master manipulator for remote control is calculated and the compensating torque is generated by the actuator of each axis, the value of the compensating acceleration α is set to a value larger than the acceleration of gravity g. A self-weight compensation method characterized by calculating a target torque value based on the self-weight of each axis.
JP11876888A 1988-05-16 1988-05-16 Own weight compensating method for master manipulator for remote control Pending JPH01289682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11876888A JPH01289682A (en) 1988-05-16 1988-05-16 Own weight compensating method for master manipulator for remote control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11876888A JPH01289682A (en) 1988-05-16 1988-05-16 Own weight compensating method for master manipulator for remote control

Publications (1)

Publication Number Publication Date
JPH01289682A true JPH01289682A (en) 1989-11-21

Family

ID=14744588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11876888A Pending JPH01289682A (en) 1988-05-16 1988-05-16 Own weight compensating method for master manipulator for remote control

Country Status (1)

Country Link
JP (1) JPH01289682A (en)

Similar Documents

Publication Publication Date Title
US4547858A (en) Dynamic control for manipulator
Moallem et al. An integral manifold approach for tip-position tracking of flexible multi-link manipulators
Campeau-Lecours et al. A cable-suspended intelligent crane assist device for the intuitive manipulation of large payloads
Sun et al. Passivity based hierarchical multi-task tracking control for redundant manipulators with uncertainties
Peng et al. Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach
JPH06246652A (en) Manipulator device for handling heavy weight object
Nuño et al. Control of teleoperators with joint flexibility, uncertain parameters and time-delays
Lopez Infante et al. Usability of force-based controllers in physical human-robot interaction
JPH10128688A (en) Non-interfering control method of robot
JPH0457688A (en) Control device for robot in inertial system
JPH03161289A (en) Control method for master/slave robot
Yu et al. Neural PID admittance control of a robot
US6266578B1 (en) Computer based control system
JPH01289682A (en) Own weight compensating method for master manipulator for remote control
KR20120048106A (en) Motion control system and method for robot
JPS61201304A (en) Method for controlling position of robot
Nozaki et al. A motion control of two-wheels driven mobile manipulator for human-robot cooperative transportation
JPS6077210A (en) Controlling method of spatial kinetic mechanism
JPS59189416A (en) Guidance teaching method of industrial robot
JPS62286101A (en) Controller for multi-freedom degree manipulator
Safeea et al. User’s manual: KUKA Sunrise Toolbox
JPH05177566A (en) Coordinative control device for manipulator
JPH04369004A (en) Method for controlling impedance of manipulator
JPH07256580A (en) Plural arm cooperative controller
Marghitu et al. Gibbs-Appell Equations of Motion for a Three Link Robot with MATLAB