JPH01289606A - Noncontact online measuring device and machining method using device thereof - Google Patents

Noncontact online measuring device and machining method using device thereof

Info

Publication number
JPH01289606A
JPH01289606A JP11887488A JP11887488A JPH01289606A JP H01289606 A JPH01289606 A JP H01289606A JP 11887488 A JP11887488 A JP 11887488A JP 11887488 A JP11887488 A JP 11887488A JP H01289606 A JPH01289606 A JP H01289606A
Authority
JP
Japan
Prior art keywords
measuring device
outer diameter
tool
workpiece
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11887488A
Other languages
Japanese (ja)
Inventor
Chikamori Ishi
石 京守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYANO KK
Original Assignee
MIYANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYANO KK filed Critical MIYANO KK
Priority to JP11887488A priority Critical patent/JPH01289606A/en
Publication of JPH01289606A publication Critical patent/JPH01289606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To correct a tool-position of a cutting tool with high accuracy by allowing a measuring device capable of longitudinal positioning of an optical outer diameter measuring device and a tool post to be connected and disconnected while a lathe machines a work. CONSTITUTION:NC device 40 commands a slide rest 7 to travel and an optical outer diameter measuring device to automatically travel to a specified position of a work 11. By a travel-completion signal from the NC device, the optical outer diameter measuring device starts the measurement of the work 11 and corrects the tool position of a cutting tool after completion of the measurement. The NC device 40 then commands the optical measuring device to travel to a following measuring position. In this manner, when the required measurement is completed, the slide rest 7 travels in the opposite direction from a headstock 1 to disconnect a connecting rod 35 from a second slide 22 at a specified posi tion, and then moves to a specified position. The outer diameter of the work 11 is thus quickly measured without being in contact with the measuring device with high precision, and the tool-position of the cutting tool can be corrected with high accuracy.

Description

【発明の詳細な説明】 〔産業−■−の利用分野〕 本発明は、光学式外径計測器を用いて、施盤十に設置さ
れたワークの外径を、非接触で精度良く測定することに
より、バイトの工具位置を粘度良く補正し1 ワークの
加工精度を向ヒする光学式計測器を利用した計測方法に
関する。
[Detailed description of the invention] [Field of application in industry -■-] The present invention uses an optical outer diameter measuring device to accurately measure the outer diameter of a workpiece installed on a lathe in a non-contact manner. This invention relates to a measurement method using an optical measuring instrument that corrects the tool position of a cutting tool with good viscosity and improves the machining accuracy of a workpiece.

〔従来の技術〕[Conventional technology]

従来は旋盤の刃物台−Eまたは、往復台上にタッチセン
サ方式または、はさみ込み方式の機械的な接触式測定器
を取り付けて、主軸を停止させ、所定の位置でのワーク
外径を計測していた。
Conventionally, a touch sensor type or clip-in type mechanical contact measuring device was installed on the tool post-E or carriage of the lathe, the main spindle was stopped, and the outer diameter of the workpiece was measured at a predetermined position. was.

タッチセンサ方式のものは、ワークの片側の面にタッチ
センサを当てて、その位置を記憶し1、タッチセンサを
ワークに当らないようにして、ワークの反対側に移動し
て、ワークの反対側の面に、タッチセンサを当ててその
位置を記憶し、前の位置との差を読んで、ワークの外径
を知る方式である。この方式は計測に時間がかかり、機
械的な動きによる測定なので、測定精度に問題がある。
In the touch sensor type, the touch sensor is placed on one side of the workpiece, the position is memorized, and the touch sensor is moved to the opposite side of the workpiece without touching the workpiece. In this method, a touch sensor is placed on the surface of the workpiece, the position is memorized, and the difference from the previous position is read to determine the outer diameter of the workpiece. This method takes time to measure, and since the measurement is based on mechanical movement, there are problems with measurement accuracy.

はさみ込み方式のものは、上下2ケのプローブでワーク
をはさみ、プローブを動かして間隔を縮めて、上下とも
にワークに接触させ、その時のプローブの間隔を計測す
ることにより、ワークの外径を知る方式である。この方
式は計測に時間がかかり、機械的な動きによる測定なの
で、測定精度に問題がある。また、ワークの外径寸法が
変化すると、はさみ込むグローブを交換する必要が生じ
、ワークに応じてセットしなおす等の手間がかかる。
With the sandwich type, the workpiece is sandwiched between two probes (upper and lower), the probes are moved to shorten the gap, and both the top and bottom are in contact with the workpiece, and the outer diameter of the workpiece is determined by measuring the distance between the probes at that time. It is a method. This method takes time to measure, and since the measurement is based on mechanical movement, there are problems with measurement accuracy. Furthermore, when the outer diameter of the workpiece changes, it becomes necessary to replace the glove to be inserted, which takes time and effort, such as resetting it depending on the workpiece.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の接触式外径計測器では、機械的な動きにより外径
を計測する方式なので、誤差が生じやすく、精度上問題
があり、なおかつ計測に時間がかかるので、旋盤上に設
置するオンライン計測器としては問題があった。
Conventional contact-type outer diameter measuring instruments measure the outer diameter using mechanical movement, which is prone to errors, poses problems with accuracy, and takes time to measure.So, an online measuring instrument installed on a lathe is used. There was a problem.

本発明は上記事情を考慮してなされたもので、非接触で
精度が良く計測時間の短い光学式計測器を旋盤上に設置
することにより、」−記の種々な問題点を解決した非接
触オンライン測定方式を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and is a non-contact system that solves the various problems listed below by installing a non-contact optical measuring device with high accuracy and short measurement time on a lathe. The purpose is to provide an online measurement method.

〔問題点を解決するための手段〕[Means for solving problems]

精度の良い光学式外径計測装置を旋盤上に設置し、外径
用バイト及び内径用バイトにより、ワークの端の部分に
試し削りを行ない、上記光学式外径計測装置により切削
個所を順次針1jlllすること(こより、各バイトの
工具位置を短い時間で精度良く補正することが出来る。
A highly accurate optical outer diameter measuring device is installed on the lathe, and the outer diameter cutting tool and the inner diameter cutting tool are used to perform trial cutting on the edge of the workpiece. (Thus, the tool position of each bite can be corrected with high precision in a short time.)

なお、上記光学式外径計測装置により加工終了後のワー
ク外径を精度良く計測し、製品の良否の判定及び仕上用
外径バイトの工具位置を補正することが出来るのは勿論
である。
It goes without saying that the above-mentioned optical outer diameter measuring device can accurately measure the outer diameter of the workpiece after machining, determine whether the product is good or bad, and correct the tool position of the finishing outer diameter cutting tool.

〔作用〕[Effect]

本発明は以上のように構成されているので、バイト交換
時に試し削りを行なって計測を行ない、各バイトの工具
位置を精度良く補正することによって最初から良品を作
製することが出来る。なお、本発明によれば、内径用バ
イトによりワーク外径を試し削りすることによって、内
径用バイトの工具位置を精度良く補正することが出来る
ので、面倒で難しい内径計測を省略することが出来る。
Since the present invention is configured as described above, a good product can be manufactured from the beginning by performing trial cutting and measurement when exchanging the cutting tools, and correcting the tool position of each cutting tool with high accuracy. According to the present invention, the tool position of the inner diameter cutting tool can be corrected with high accuracy by trial cutting the outer diameter of the workpiece using the inner diameter cutting tool, so that the troublesome and difficult measurement of the inner diameter can be omitted.

光学式外径計測器の測定精度は、通常1ミクロン以下で
あるので、ワークの外径を精度良く計測することにより
従来方法では測定出来なかったバイトの摩耗、チッピン
グ等を測定することが可能となる。光学式外径計測器に
よるワークの外径計側時間は通常0.1秒以下であり、
従来の接触式外径計測器よりも非常をこ早い。
The measurement accuracy of an optical outside diameter measuring device is usually 1 micron or less, so by measuring the outside diameter of the workpiece with high precision, it is possible to measure wear, chipping, etc. of the cutting tool that could not be measured with conventional methods. Become. The time it takes to measure the outer diameter of a workpiece using an optical outer diameter measuring device is usually 0.1 seconds or less.
Much faster than conventional contact-type outside diameter measuring instruments.

光学式外径計fllll器の光の厚みは通常0.2 ミ
IJ以下であるので、ワークの測定部分の長さが短くて
よい。
Since the thickness of the light of the optical outer diameter meter is usually 0.2 mm or less, the length of the measuring part of the workpiece can be short.

光学式外径計測器では、ワークの外径寸法が光の巾の中
にはいっていれば、外径寸法はいくらでもよい。
With an optical outer diameter measuring instrument, the outer diameter of the workpiece can be any size as long as it falls within the width of the light.

〔実施例〕〔Example〕

以下、本発明を実施図に基づき説明する。 Hereinafter, the present invention will be explained based on practical drawings.

本発明による非接触オンライン計測装置の実施例は第1
図に示す通りであるが、本発明では本装置を旋削工作機
械で加工された加工物の計測に適用している。本装置を
説明する前に工作機械の構成を説明する。
The first embodiment of the non-contact online measuring device according to the present invention is
As shown in the figure, in the present invention, this device is applied to the measurement of a workpiece machined by a turning machine tool. Before explaining this device, the configuration of the machine tool will be explained.

lは主軸台で、ベツド2上に支持されて(・る。1 is the headstock, which is supported on the bed 2.

3は主軸で、主軸台1上に軸受を介して回転可能に支承
され、駆動モータを介して回転が伝達駆動される。4は
主軸3の先端に装着されたチャックで、被加工物を把持
・解放する。5は主軸3の回転軸線方向に進退動可能な
縦工具送り台6と、主軸3の回転軸線方向と直交する方
向に進退動可能な横工具送り台7とatみを成す工具台
で、ボールネジ8とサーボモータ9の駆動により送りが
制御されている3 10は被加工物11の径方向と中心
方向暑こ延びて配置された複数のバイト等の工具12を
保持するところのタレットで、工具台7に割出し手段を
介して回動可能に支承されている。次に工作機械と本発
明の装置の構造上の関係を説明する。
A main shaft 3 is rotatably supported on the headstock 1 via a bearing, and its rotation is transmitted and driven via a drive motor. Reference numeral 4 denotes a chuck attached to the tip of the main spindle 3, which grips and releases the workpiece. Reference numeral 5 designates a tool stand that is connected to a vertical tool feeder 6 that can move forward and backward in the direction of the rotational axis of the main spindle 3 and a horizontal tool feeder 7 that can move forward and backward in the direction perpendicular to the rotational axis of the main spindle 3. The feed is controlled by the drive of 8 and servo motor 9. 3 10 is a turret that holds a plurality of tools 12 such as bites arranged to extend in the radial direction and center direction of the workpiece 11. It is rotatably supported on the stand 7 via indexing means. Next, the structural relationship between the machine tool and the device of the present invention will be explained.

本発明の非接触オンライン計測装置13(以下、本装置
と記述する)は、工作機械14の本体上部または側面よ
り、加工領域上に位置する主軸軸線に対して横方向より
侵入・退避が可能なようGこ装備されている。
The non-contact online measuring device 13 (hereinafter referred to as the present device) of the present invention can enter and retreat from the top or side of the main body of the machine tool 14 in the lateral direction with respect to the spindle axis located on the machining area. It is equipped with a lot of equipment.

具体的には、工作機械14の本体上、例えば、主軸台1
または本体カバー!5」二に、或いは、基礎上基こ固定
された支柱16a% 16bを介して、主軸軸線方向に
延びた第1軌道I7上に、相対的に進退動可能な第1ス
ライダ18に装着されている。該第1スライダ18には
主軸軸線に対して横力向曇こ延びた第2軌道19が設け
られ、該第2軌道19上部に固定された支持部材20に
油圧または空気圧で作動する流体シリンダ21が固定さ
れている。該流体シリンダ21のピストンロッドの先端
に上記第2軌道19に上下に昇降動作の可能な第2スラ
イダ22が固定されている。該第2スライダ22には光
学式外径計測器23が装着されている。該光学式外径計
測器23には種々な測定原理を利用したものがあるが、
第2図をこその一例を示す。
Specifically, on the main body of the machine tool 14, for example, the headstock 1
Or the main body cover! 5", or mounted on a first slider 18 that is relatively movable forward and backward on a first track I7 extending in the direction of the axis of the main shaft, via struts 16a and 16b fixed to the base. There is. The first slider 18 is provided with a second track 19 extending in the direction of the lateral force with respect to the main shaft axis, and a fluid cylinder 21 operated by hydraulic pressure or pneumatic pressure is attached to a support member 20 fixed to the upper part of the second track 19. is fixed. A second slider 22 that can move up and down on the second track 19 is fixed to the tip of the piston rod of the fluid cylinder 21. An optical outer diameter measuring device 23 is attached to the second slider 22 . There are optical outer diameter measuring instruments 23 that utilize various measurement principles.
Figure 2 shows an example.

半導体レーザー24から発せられたレーザービームは、
一定速度で回転するポリゴンミラー25により反射され
、さらに反射ミラー26により反射されて、コリメータ
ーレンズ27により平行線となり、受光レンズ28によ
り受光素子29上に結像する。
The laser beam emitted from the semiconductor laser 24 is
The light is reflected by a polygon mirror 25 rotating at a constant speed, further reflected by a reflection mirror 26, turned into parallel lines by a collimator lens 27, and imaged by a light receiving lens 28 onto a light receiving element 29.

ポリゴンミラー25が回転することにより、平行光線は
図の下から上へと走査される。平行光線が被測定物11
に庶ぎられて、受光素子29に到達しない間の時間を計
測して被測定物11の直径を計測する方式である。第3
図は上記の原理による光学式外径計測器を具体化したも
のの一例である。
By rotating the polygon mirror 25, the parallel light beams are scanned from the bottom to the top of the figure. The parallel light beam is the object to be measured 11
In this method, the diameter of the object to be measured 11 is measured by measuring the time it takes for the object to be measured 11 to reach the light-receiving element 29. Third
The figure shows an example of an optical outer diameter measuring instrument based on the above principle.

第4図は光学式外径計測器23として、第3図のものを
使用した例である。
FIG. 4 shows an example in which the optical outer diameter measuring device 23 shown in FIG. 3 is used.

光学式外径計測器23は該計測器23の投光部と受光部
との間に計測の対象である加工物をはさんで位置するよ
うに、ホルダー30を介して第2スライダ22上に固定
されている。31は加工物の径方向に対して、加工物の
外径より幾分大きく開口した穴を設けて、ホルダー30
と光学式外径計測器23を包囲するようにして、ホルダ
ー30および第2スライダ22−Fに固定された防護カ
バー、ホルダー30には外部より空気圧を導通した流路
32が設けられ、上記防護カバー31内に通じ、空気圧
の噴き出しによって外部からのほこり、油煙等が防護カ
バー31の中に侵入しないようにして光学式外径計測器
23を保護するように考慮されている。加工領域に面す
る本体カバー15の上部には、本装置13が加工領域に
位置する加工物に対して接近・離隔可能なように、開口
した穴が設けられこの穴を横方向より流体シリンダ33
の動作を介して塞ぐ開閉可能な開閉カバー34が装着さ
れている。本装置!3は測定領域である主軸軸線上をこ
位置し、主軸軸線方向の測定範囲内においては、工具台
7の送り制御を介して本装置の位置決めを行っている。
The optical outer diameter measuring instrument 23 is placed on the second slider 22 via the holder 30 so that the workpiece to be measured is sandwiched between the light emitting part and the light receiving part of the measuring instrument 23. Fixed. 31 is a holder 30 with a hole slightly larger than the outer diameter of the workpiece in the radial direction of the workpiece.
A protective cover is fixed to the holder 30 and the second slider 22-F so as to surround the optical outer diameter measuring device 23, and the holder 30 is provided with a flow path 32 that conducts air pressure from the outside, It communicates with the inside of the cover 31, and is designed to protect the optical outer diameter measuring instrument 23 by preventing dust, oil smoke, etc. from entering the protective cover 31 from the outside due to air pressure being blown out. An open hole is provided in the upper part of the main body cover 15 facing the processing area so that the device 13 can approach and separate from the workpiece located in the processing area.
An opening/closing cover 34 is attached which can be opened and closed through the operation of. This device! Reference numeral 3 is positioned on the spindle axis, which is the measurement area, and within the measurement range in the spindle axis direction, the device is positioned by controlling the feed of the tool stand 7.

次に動作を説明する。試し削りまたは仕上加工終了後、
エアーを吹きつける等の清掃作業を自動的に行ない、工
具台7を所定の位置に後退させて、タレットIOを回転
し連結棒35が設置されているステーションを割り出す
。流体シリンダー33を作動させて防護カバー34を待
避させ、流体シリンダ2Iを作動させ第2スライダ22
及び光学式外径計測器23を本体カバー15内の所定の
位置(第1図上で、2点鎖線の位置)に移動させる。工
具台7を主軸台lの方(こ移動させて連結棒35を介し
て第2スライダ22と連結する。
Next, the operation will be explained. After trial cutting or finishing machining,
Cleaning work such as blowing air is automatically performed, the tool stand 7 is retreated to a predetermined position, and the turret IO is rotated to determine the station where the connecting rod 35 is installed. The fluid cylinder 33 is operated to retract the protective cover 34, and the fluid cylinder 2I is operated to remove the second slider 22.
Then, the optical outer diameter measuring device 23 is moved to a predetermined position within the main body cover 15 (the position indicated by the two-dot chain line in FIG. 1). The tool stand 7 is moved toward the headstock l and connected to the second slider 22 via the connecting rod 35.

連結方式の一例を第5図に示す。An example of the connection method is shown in FIG.

具体的には、タレッ1−10の工具取付面の−・箇所に
本装置と連結自在な連結棒35が固定されている。ここ
で、連結方式の一例を第5図に示すが、第2スライダ2
2に設けられたアダプタ36上に電磁石37が固定され
、連結棒35の先端に設けられた鉄等の磁性体が外径検
出用制御装置38より導通された電線39より電磁石3
7が励磁され、上記連結棒35と連結・離脱の動作が行
われる。
Specifically, a connecting rod 35 that can be freely connected to the present device is fixed to the - point on the tool mounting surface of the turret 1-10. Here, an example of the connection method is shown in FIG. 5, and the second slider 2
An electromagnet 37 is fixed on an adapter 36 provided on the connecting rod 35, and a magnetic material such as iron provided at the tip of the connecting rod 35 is connected to the electromagnet 3 by an electric wire 39 connected to the outer diameter detection control device 38.
7 is excited, and the operation of connecting and disconnecting with the connecting rod 35 is performed.

連結棒35が電磁石37と連結されると、工具台7の動
作を介して光学式外径計測器23が被測定物である加工
物の位置まで送られ位置決めされるものである。
When the connecting rod 35 is connected to the electromagnet 37, the optical outer diameter measuring device 23 is moved to the position of the workpiece to be measured through the operation of the tool stand 7 and positioned.

NC装置40からの指令によって工具台7を移動させる
ことにより、光学式外径計測器23を加工物11の所定
の位置に自動的に移動する。移動完了信号により、加工
物11の外径計測を開始し計測完了後、バイトの工具位
置補正を行う。次にNC装置40は、次の測定位置へ移
動指令を出す。
By moving the tool stand 7 according to a command from the NC device 40, the optical outer diameter measuring device 23 is automatically moved to a predetermined position on the workpiece 11. In response to the movement completion signal, measurement of the outer diameter of the workpiece 11 is started, and after the measurement is completed, the tool position of the cutting tool is corrected. Next, the NC device 40 issues a movement command to the next measurement position.

このようにして所要の計測を終了すると、工具台7は主
軸台!と反対の方に移動し、所定の位置で連結棒35と
第2スライダ22との連結を外し、さらに所定の位置へ
移動する。流体シリンダ21が作動して第2スライダ2
2及び、光学式外径計測器23を本体カバー15内より
上方に引き上げ、所定の位置に移動する。流体シリンダ
33が作動し、防護カバー34を移動させ、本体カバー
15−1−に生じた穴を塞ぐ。ターレット10は所要の
工具を設置したステーションを割り出し、次の加工作業
にはいる。
After completing the required measurements in this way, the tool rest 7 is moved to the headstock! The connecting rod 35 and the second slider 22 are disconnected from each other at a predetermined position, and then moved to a predetermined position. The fluid cylinder 21 operates and the second slider 2
2, and pull up the optical outer diameter measuring device 23 from inside the main body cover 15 and move it to a predetermined position. The fluid cylinder 33 is activated to move the protective cover 34 and close the hole created in the main body cover 15-1-. The turret 10 determines the station where the required tool is installed and starts the next machining operation.

第6図は試し削りをして計測する一例を示したものであ
る。第6A図は、外径用バイトa、b。
FIG. 6 shows an example of trial cutting and measurement. Fig. 6A shows outside diameter cutting tools a and b.

Cで、矢印のように順次切削加工を行ない、次に内径用
バイトd、eをセンターオーバーさせて矢印のようtこ
順次切削する。
Cutting is performed sequentially as shown in the arrows at C, and then the inner diameter bits d and e are moved over the center, and cutting is performed sequentially as shown in the arrows.

第6B図は、試し、削り完了後のワーク7を光学式外径
計測器で計測している状態を示している。
FIG. 6B shows a state in which the workpiece 7 after the trial cutting is completed is being measured with an optical outer diameter measuring device.

ワーク端面の形状で、(a)〜(e)は、それぞれバイ
トa−eにより切削された個所である。
In the shape of the end face of the workpiece, (a) to (e) are the parts cut by cutting tools ae, respectively.

外径検出用制御装置38(こは、基準座標メモリ38a
、ill!定メモサメモリ38b部38c及びコントロ
ール部38(1が設置されている。(;is 7図参照
)基準座標メモ’J 38 aには、各バイトによるワ
ークの基準加工径が各バイト毎に格納される。
Outer diameter detection control device 38 (here, reference coordinate memory 38a
, ill! A fixed memosa memory 38b section 38c and a control section 38 (1 are installed. (See Figure 7)) The reference coordinate memo 'J38a stores the reference machining diameter of the workpiece by each bite for each bite. .

基準加工径は、ワークの加工すべき外径のことであり通
常の場合、NC装置40からの径方向の指令値となる。
The reference machining diameter is the outer diameter of the workpiece to be machined, and is usually a command value in the radial direction from the NC device 40.

(通常の場合、NC装置からの径方向の指令値は直径で
表示されている。半径で表示されている場合は、数値を
2倍して径寸法にすればよい。) 外径用バイトで外径を通常に切削する場合は、NC装置
40からの指令値は正であるので、基準加工径は正の値
になり、センターオーバーさせた内径バ(l−で外径を
切削する場合は、NC装置からの指令値は負になるので
、基準加工径は負の値になる。測定メモIJ 38 b
には、切削に使用したバイトに対応するワーク外径の測
定結果が正の値で、各バイト毎に格納される。切削に使
用した各バイト毎の基準座標メモ’) 38 aの数値
と、測定メモリの数値との差を、演算部38cで演算し
て、工具位置の補正値としてNC装置40にフィードバ
ックする。演算部38cでは、まず基準座標メモ’) 
38 aの数値の正負を判定して、正ならば外径バ()
による切削であるので、基準座標メモリの数値と測定メ
モリの数値との差を工具位置の補正値とし、負ならば、
内径バイトをセンターオーバーさせて切削したものであ
るので、測定メモリの数値と基準座標メモリの数値との
和を、工具位置の補正値としてNC装置にフィードバッ
クする。
(Normally, the radial command value from the NC device is displayed as a diameter. If it is displayed as a radius, double the value to obtain the diameter dimension.) When cutting the outside diameter normally, the command value from the NC device 40 is positive, so the standard machining diameter is a positive value, and when cutting the outside diameter with an over-centered inside diameter bar (l- , the command value from the NC device is negative, so the standard machining diameter is a negative value.Measurement memo IJ 38 b
In , the measurement result of the workpiece outer diameter corresponding to the cutting tool used for cutting is stored as a positive value for each tooling tool. The difference between the value of the reference coordinate memo 38a for each cutting tool used for cutting and the value in the measurement memory is calculated by the calculation unit 38c and fed back to the NC device 40 as a tool position correction value. In the calculation unit 38c, first, the reference coordinate memo')
38 Determine whether the value of a is positive or negative, and if it is positive, use the outer diameter bar ()
Since the cutting is done by
Since the cutting is performed by over-centering the inner diameter cutting tool, the sum of the numerical values in the measurement memory and the numerical values in the reference coordinate memory is fed back to the NC device as a tool position correction value.

光学式外径計測器23は(e)の個所の測定をし、その
数値を外径検出用制御装置38に送り、外径検出用制御
装置38は前記のような方法で、バイトeの工具位置を
補iT:、L、次に(d)の位置に移動して計測を行な
い、バ(l−dの工具位置を補正する。
The optical outer diameter measuring device 23 measures the point (e) and sends the measured value to the outer diameter detection control device 38, and the outer diameter detection control device 38 measures the tool of the cutting tool e in the above-described manner. Correct the position iT:, L, then move to position (d) and measure, and correct the tool position of bar (ld).

このようにしてパイ) a −eの工具位置を順次補正
する。測定値及び基準座標値は各メモリに記憶されてい
るので、全計測を終了後工具位置を補正することも可能
である。
In this way, the tool positions of pi) a - e are corrected sequentially. Since the measured values and reference coordinate values are stored in each memory, it is also possible to correct the tool position after all measurements are completed.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明によれば、ワークの外径を非接触で精
度良くすばやく計測することにより、バ(トの工具位置
を精度良く補正することが出来るので、最初の加工物か
ら精度の良い製品を作製することが出来る。
As described above, according to the present invention, by quickly and accurately measuring the outer diameter of the workpiece in a non-contact manner, the tool position of the bar can be corrected with high precision. can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例(こよる非接触オンライン計
測装置を示す図、第2図は光学式外径計測器の測定原理
の一例を示す図、第3図は上記の原理による光学式外径
計測器の一実施例を示す図、第4図は上記光学式外径計
測器を組み込んだ一実施例を示す図で、第4図(2)は
正面図、第4図(B)は側面図である。第5図は非接触
オンライン計a+++装置と、ターレットとの連結部の
一実施例を示す図、第6(A)図は試し削りの一例を示
す図、第6(B)図は試し削りをした個所を計測する状
態を示す図である。第7図はNC装置と光学式外径計測
装置との関係を示す図。 1−主軸台  2−ベツド  4−チャツク7−エ具台
  10−  タレット  Il−加工物15−本体力
バー  18−第1スライダ22− 第2スライダ  
23− 光学式外径計測器34− 防護カバー  35
− 連結枠  37− 磁石  38−外径検出用制御
装置  4O−NC装置
Fig. 1 shows an embodiment of the present invention (a non-contact online measuring device), Fig. 2 shows an example of the measurement principle of an optical outer diameter measuring instrument, and Fig. 3 shows an optical system according to the above principle. FIG. 4 is a diagram showing an embodiment of the optical outer diameter measuring device, and FIG. 4(2) is a front view, and FIG. ) is a side view. FIG. 5 is a diagram showing an embodiment of the connecting part between the non-contact online meter a+++ device and the turret, FIG. 6(A) is a diagram showing an example of trial cutting, and FIG. B) Figure is a diagram showing a state in which a portion subjected to trial cutting is measured. Figure 7 is a diagram showing the relationship between the NC device and the optical outside diameter measuring device. 1- Headstock 2- Bed 4- Chuck 7 - Tool stand 10 - Turret Il - Workpiece 15 - Body force bar 18 - First slider 22 - Second slider
23- Optical outer diameter measuring instrument 34- Protective cover 35
- Connection frame 37- Magnet 38- Outer diameter detection control device 4O-NC device

Claims (1)

【特許請求の範囲】 1)旋削加工において、加工後のワーク外径寸法を、主
軸の停止中及び回転中にかかわりなく、しかもチャック
でワークを保持したままの状態で、非接触に計測する手
段として、光学式非接触外径計測器と、前記光学式非接
触外径計測器を保持するホルダーと、前記光学式非接触
外径計測器を内部に納めて保護するカバーと、前記カバ
ー内部に外部からのゴミ、ホコリ等の侵入を防ぐために
、前記カバーの内側に空気を噴出する装置とを有する計
測装置と、前記計測装置を旋盤の長手方向及び、長手方
向と直角の方向にそれぞれ独立に滑動可能とする支持装
置と、前記計測装置を、機械本体カバーの内側と外側の
定位置に移動させる駆動部と、旋盤本体がワークを加工
中に、前記計測装置が機械本体カバーの外側にあるとき
、機械本体カバー上に生ずる穴を覆う移動可能なカバー
及びその駆動部と刃物台の長手方向駆動装置により、前
記計測装置の長手方向の位置決めを行なうことを可能に
する、前記計測装置と刃物台の結合と分離が可能な連結
装置とを有する非接触オンライン外径計測装置。 2)外径用バイトによりワーク外径の試し削りを行ない
、さらに内径用バイトをセンターオーバーさせることに
よつて、内径用バイトによりワーク外径の試し削りを行
ない、非接触オンライン外径計測装置を用いて、各ワー
ク外径を計測することにより、外径用バイト及び内径用
バイトの工具位置を補正し、続けて本切削を行なうこと
により、ワークの外径及び内径を切削することを可能と
する切削方法。
[Claims] 1) In turning processing, a means for non-contactly measuring the outer diameter of a workpiece after processing, regardless of whether the main spindle is stopped or rotating, and in a state where the workpiece is held by a chuck. an optical non-contact outer diameter measuring device, a holder for holding the optical non-contacting outer diameter measuring device, a cover for storing and protecting the optical non-contacting outer diameter measuring device, and an inside of the cover. In order to prevent dirt, dust, etc. from entering from the outside, there is provided a measuring device having a device for blowing air inside the cover, and the measuring device is installed independently in the longitudinal direction of the lathe and in the direction perpendicular to the longitudinal direction. a support device that is slidable; a drive unit that moves the measuring device to fixed positions on the inside and outside of the machine body cover; and the measuring device is located on the outside of the machine body cover while the lathe body is processing a workpiece; the measuring device and the cutter, which make it possible to position the measuring device in the longitudinal direction by means of a movable cover covering a hole formed on the machine body cover, its drive and a longitudinal drive device of the tool post; A non-contact online outer diameter measuring device having a connecting device that can connect and separate the bases. 2) Trial cut the outer diameter of the workpiece using the outside diameter tool, and then test the outer diameter of the workpiece using the inner diameter tool by moving the inner diameter tool over the center. By measuring the outside diameter of each workpiece using the tool, the tool positions of the outside diameter cutting tool and the inside diameter cutting tool can be corrected, and by continuing with main cutting, it is possible to cut the outside diameter and inside diameter of the workpiece. cutting method.
JP11887488A 1988-05-16 1988-05-16 Noncontact online measuring device and machining method using device thereof Pending JPH01289606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11887488A JPH01289606A (en) 1988-05-16 1988-05-16 Noncontact online measuring device and machining method using device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11887488A JPH01289606A (en) 1988-05-16 1988-05-16 Noncontact online measuring device and machining method using device thereof

Publications (1)

Publication Number Publication Date
JPH01289606A true JPH01289606A (en) 1989-11-21

Family

ID=14747257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11887488A Pending JPH01289606A (en) 1988-05-16 1988-05-16 Noncontact online measuring device and machining method using device thereof

Country Status (1)

Country Link
JP (1) JPH01289606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135656A (en) * 1998-10-30 2000-05-16 Seibu Electric & Mach Co Ltd Work installation confirming mechanism of cutting machine tool
WO2008044366A1 (en) * 2006-10-06 2008-04-17 Tsugami Corporation Lathe, computer program for controlling lathe, and machining method in lathe
JP4891445B1 (en) * 2011-03-17 2012-03-07 パナソニック電工株式会社 Ultra-precision combined machining apparatus and ultra-precise combined machining method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135656A (en) * 1998-10-30 2000-05-16 Seibu Electric & Mach Co Ltd Work installation confirming mechanism of cutting machine tool
WO2008044366A1 (en) * 2006-10-06 2008-04-17 Tsugami Corporation Lathe, computer program for controlling lathe, and machining method in lathe
JP2008093741A (en) * 2006-10-06 2008-04-24 Tsugami Corp Lathe, computer program for controlling lathe and machining method in lathe
KR101009708B1 (en) * 2006-10-06 2011-01-19 가부시기가이샤 츠가미 Lathe, computer program for lathe control, and machining method by lathe
US8051754B2 (en) 2006-10-06 2011-11-08 Tsugami Corporation Lathe, computer program for lathe control, and machining method by lathe
JP4891445B1 (en) * 2011-03-17 2012-03-07 パナソニック電工株式会社 Ultra-precision combined machining apparatus and ultra-precise combined machining method
WO2012124813A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Ultraprecision composite processing device and ultraprecision composite processing method
US9339889B2 (en) 2011-03-17 2016-05-17 Panasonic Intellectual Property Management Co., Ltd. Hybrid ultraprecision machining device and hybrid ultraprecision machining method

Similar Documents

Publication Publication Date Title
JP4229698B2 (en) Measuring method and apparatus for cutting edge position of tool, workpiece processing method, and machine tool
US20170326701A1 (en) Machine tool
JP2809948B2 (en) Matching device for computer numerical control machine
US10391559B2 (en) Machine tool
JP5235284B2 (en) Measuring method and machine tool
JP4684428B2 (en) Tool presetter
US9658610B2 (en) Displacement and position measurement in machine tool
JPH0525626B2 (en)
JP5444590B2 (en) Workpiece reference point on-machine detection method and machining apparatus using the method
KR20200023746A (en) Complextype 5-axis machining and measuring apparatus
JPH09300178A (en) Nc machine tool provided with cutting edge tip position measuring function of tool
JP4799472B2 (en) Measuring method and apparatus for tool edge position, workpiece processing method and machine tool
JPS6232071B2 (en)
US4417490A (en) Lathe tool calibrator and method
JPH1199450A (en) Tool length measuring method and device for machine tool
JP4044361B2 (en) Attachment changer with a tool position sensor
JPH01289606A (en) Noncontact online measuring device and machining method using device thereof
JP3283278B2 (en) Automatic lathe
JP2003124152A (en) Dicing device having mobile blade detector
JP2001269843A (en) Measuring method for center position of rotating tool
JPH081405A (en) Device and method for detecting lost motion
JPH05337787A (en) Boring diameter correcting device of machine tool
JPS6331877Y2 (en)
JPH0653003U (en) Edge detection device
JPS6113243Y2 (en)