JPH0128936B2 - - Google Patents

Info

Publication number
JPH0128936B2
JPH0128936B2 JP55161055A JP16105580A JPH0128936B2 JP H0128936 B2 JPH0128936 B2 JP H0128936B2 JP 55161055 A JP55161055 A JP 55161055A JP 16105580 A JP16105580 A JP 16105580A JP H0128936 B2 JPH0128936 B2 JP H0128936B2
Authority
JP
Japan
Prior art keywords
pmma
electron beam
molecular weight
solution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55161055A
Other languages
Japanese (ja)
Other versions
JPS5784452A (en
Inventor
Seiji Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16105580A priority Critical patent/JPS5784452A/en
Publication of JPS5784452A publication Critical patent/JPS5784452A/en
Publication of JPH0128936B2 publication Critical patent/JPH0128936B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 本発明は微細高精度の選択エツチングに用いる
高感度のポジ型電子ビーム用レジストに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly sensitive positive type electron beam resist used for fine and highly accurate selective etching.

集積回路の高性能化・高集積変化をはかるには
パターン幅1μ以下の微細エツチング技術が必要
である。しかし光を利用してこれを実現すること
は回析現像などのため極めて困難で、これに代つ
て電子ビーム露光技術が応用されつつある。ここ
で使用されるレジスト材料のうち代表的なポジ型
レジストとしてPMMAが挙げられる。PMMAは
高解像度をもつてはいるが感度は低く5×
10-5c/cm2程度の感度を持つに過ぎない。このレ
ジスト材料を使用して集積回路などのパターン形
成を行なう場合、ビーム照射に多くの時間が必要
となる。又照射時間の短縮を目的としてビーム電
流を増加させるとビームの集束が困難となり微細
パターンを形成することが困難になるなど生産性
の面で欠点がみられた。
Fine etching technology with a pattern width of 1 μm or less is necessary to increase the performance and density of integrated circuits. However, it is extremely difficult to achieve this using light because of diffraction development, etc., and electron beam exposure technology is being applied instead. Among the resist materials used here, PMMA is a typical positive resist. PMMA has high resolution but low sensitivity of 5×
It has a sensitivity of only about 10 -5 c/cm 2 . When patterning an integrated circuit or the like using this resist material, a lot of time is required for beam irradiation. In addition, when the beam current is increased for the purpose of shortening the irradiation time, it becomes difficult to focus the beam, making it difficult to form a fine pattern, resulting in drawbacks in terms of productivity.

それ故高感度化のため種々の試みがなされてい
る。PMMAのエステル部分の構造を変えるのも
一つの手法であり、メチル基の代りに他の脂肪族
側鎖、フエニル基誘導体、ハロゲン化脂肪族側鎖
等を用いたレジストが報告されている。高感度化
への手法としてはその他にPMMAの分子量を高
める方法が知られている。しかし、一般に
PMMAの基板に対する密着性・耐性を上げるた
めに80〜200℃でプリベークする必要があるが、
PMMAは熱分解を起こし易くプリベーク時に分
子量が低下してしまい高分子化の意味がなくなつ
てしまう。
Therefore, various attempts have been made to increase sensitivity. One method is to change the structure of the ester moiety of PMMA, and resists using other aliphatic side chains, phenyl group derivatives, halogenated aliphatic side chains, etc. in place of methyl groups have been reported. Another known method for increasing sensitivity is increasing the molecular weight of PMMA. But in general
In order to improve the adhesion and durability of PMMA to the substrate, it is necessary to pre-bake it at 80-200℃.
PMMA easily undergoes thermal decomposition, and its molecular weight decreases during prebaking, making it meaningless to make it into a polymer.

本発明はPMMAに重合禁止剤・劣化防止剤を
添加しプリベーク時の分子量低下を抑制し感度を
向上したPMMAから成るレジストを提案するも
のである。
The present invention proposes a resist made of PMMA in which a polymerization inhibitor and deterioration inhibitor are added to PMMA to suppress a decrease in molecular weight during prebaking and improve sensitivity.

PMMAの熱分解は解重合であり、末端部から
の分解であろうとランダムな主鎖切断であろうと
ラジカルを経至して分解していくことが知られて
いる。
Thermal decomposition of PMMA is depolymerization, and it is known that it decomposes through radicals, whether it is decomposition from the terminal end or random main chain scission.

本発明はPMMAにt−ブチルカテコール、ハ
イドロキノン、アントラキノン、P−ベンゾキノ
ン及びジフエニルアミンのうちの少なくともひと
つを添加することで、プリベーク時の熱に依る逆
生長連鎖を抑制して分子量の低下を防ぐと共に、
電子ビーム露光時の分解を促進するものである。
添加剤の量はPMMAに対して重量比で10%を超
えると電子ビームを照射した時の主鎖切断を妨害
し、逆に感度を落としてしまう。添加剤の種類に
よつて若干の差はあるが、PMMAに対する重量
比で1〜2%が適当である。それ以下であると添
加剤本来の機能が見られずに分子量低下をきた
し、また逆に多過ぎると感度を下げることにな
る。
In the present invention, by adding at least one of t-butylcatechol, hydroquinone, anthraquinone, P-benzoquinone, and diphenylamine to PMMA, the reverse growth chain caused by heat during prebaking is suppressed to prevent a decrease in molecular weight,
This promotes decomposition during electron beam exposure.
If the amount of additive exceeds 10% by weight relative to PMMA, it will interfere with main chain scission when irradiated with an electron beam, and conversely decrease sensitivity. Although there are some differences depending on the type of additive, a weight ratio of 1 to 2% relative to PMMA is appropriate. If it is less than that, the original function of the additive cannot be seen and the molecular weight decreases, and if it is too much, the sensitivity will be lowered.

本発明の一例として重量平均分子量wが1000
万のPMMAにt−ブチルカテコールを重量比で
1%添加した場合、最高3×10-7C/cm2の感度で
0.5μライン並びにスペースを描画する事ができ
た。
As an example of the present invention, the weight average molecular weight w is 1000
When 1% by weight of t-butylcatechol was added to 10,000 PMMA, the maximum sensitivity was 3 × 10 -7 C/cm 2.
I was able to draw 0.5μ lines and spaces.

PMMAの分子量変化をゲルパーミエイシヨン
クロマトグラフイ(GPC)で追跡してみると、
本発明の利点が明らかとなる。
When tracking changes in the molecular weight of PMMA using gel permeation chromatography (GPC), we found that
The advantages of the invention become clear.

即ち重量平均分子量wが1000万のPMMAを
添加物無して窒素雰囲気下160℃1時間プリベー
クするとwは500万に低下する。一方t−ブチ
ルカテコールを重量比で1%添加した場合、同一
のプリベーク処理後でもwは900万にしか低下
しなかつた。
That is, when PMMA with a weight average molecular weight w of 10 million is prebaked at 160° C. for 1 hour in a nitrogen atmosphere without additives, w decreases to 5 million. On the other hand, when 1% by weight of t-butylcatechol was added, w decreased to only 9 million even after the same prebaking treatment.

次に無添加のPMMAと、1%t−ブチルカテ
コールを添加したPMMAのプリベーク後の同一
分子量レジストに同一の電子ビーム露光をした場
合の分子量変化をGPCで追つてみる。露光前の
Mw800万に対して露光後無添加のものはw200
万となり、1%t−ブチルカテコール添加の場
合、w80万に変化しており、添加剤が分解の妨
害をするのでなく、逆に分解の促進作用も為して
いる事がわかる。これは、PMMAの電子線照射
による反応は分解と再結合の競争反応であるが、
電子線のような高エネルギー照射の場合は熱分解
と違つて添加剤が再結合する基を優先的に捕促し
て全体的には分解が促進されるものと考えられ
る。
Next, we will use GPC to track the change in molecular weight when the same electron beam exposure is applied to resists with the same molecular weight after prebaking of additive-free PMMA and PMMA added with 1% t-butylcatechol. The additive-free product after exposure is w200 compared to Mw8 million before exposure.
10,000, and when 1% t-butylcatechol was added, it changed to w800,000, indicating that the additive does not interfere with decomposition, but rather promotes it. This is because the reaction of PMMA due to electron beam irradiation is a competitive reaction of decomposition and recombination.
Unlike thermal decomposition, in the case of high-energy irradiation such as an electron beam, it is thought that the additives preferentially capture groups that recombine, thereby promoting overall decomposition.

このように本発明では重合禁止剤、劣化防止剤
を添加する事によつて、プリベーク時の分子量低
下を抑制し、一方電子ビーム露光時には分解を促
進しPMMAを高感度化する事ができるのである。
In this way, in the present invention, by adding a polymerization inhibitor and anti-deterioration agent, it is possible to suppress molecular weight reduction during prebaking, while promoting decomposition during electron beam exposure and making PMMA highly sensitive. .

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 1 w=1000万のPMMAを微量のメチルエチル
ケトン溶液とし、PMMAに対し重量比で1%の
t−ブチルカテコールを添加した。その溶液を
0.2μmのフイルターで濾過し、エバポレーターで
濃縮して約2%溶液とし、その濃縮液に同量のト
ルエンを加えて希釈し粘度30〜40CPに調製した。
ガラス基板上に850Åのピユアクロムをコーテイ
ングしたクロムブランクスをネオクリンで洗浄し
た後、80℃で30分間ベーキングし上記の調製液を
スピンナーにて1000RPMで塗布し4000Åのレジ
スト層を形成した。次にそれを窒素雰囲気下160
℃1時間でプリベークし、加速電圧20KVで直径
0.1μの電子ビームを使用して3×10-7C/cm2の電
荷密度を与えるようにレジスト層に照射した。次
にこれを酢酸エチル:酢酸イソアミル=1:4の
現像液で液温20℃で10分間浸積して現像し、イソ
プロピルアルコールでリンスして所望のパターン
を得た。この時かぶりなくエツジラフネスの良い
0.5μのライン並びにスペースが得られた。
Example 1 A trace amount of methyl ethyl ketone solution was prepared from PMMA (w=10 million), and t-butylcatechol was added at a weight ratio of 1% to the PMMA. the solution
The solution was filtered through a 0.2 μm filter and concentrated using an evaporator to obtain an approximately 2% solution. The same amount of toluene was added to the concentrated solution to dilute it to a viscosity of 30 to 40 CP.
A chrome blank coated with 850 Å of pure chrome on a glass substrate was cleaned with neoclean, then baked at 80°C for 30 minutes, and the above prepared solution was applied with a spinner at 1000 RPM to form a 4000 Å resist layer. Then it was heated to 160℃ under nitrogen atmosphere.
Pre-baked for 1 hour at °C, and reduced in diameter at an accelerating voltage of 20KV.
A 0.1 μ electron beam was used to irradiate the resist layer to give a charge density of 3×10 −7 C/cm 2 . Next, this was developed by immersion in a developer containing ethyl acetate: isoamyl acetate = 1:4 at a solution temperature of 20° C. for 10 minutes, and rinsed with isopropyl alcohol to obtain a desired pattern. At this time, it has good edge roughness without fogging.
Lines and spaces of 0.5μ were obtained.

実施例 2 w=1000万のPMMAを微量のメチルエチル
ケトン溶液とし、PMMAに対し重量比で1%の
1.4−ジアミノアントラキノンを添加した。その
溶液を0.2μのフイルターで濾過しエバポレーター
で濃縮して約2%とし、その濃縮液に同量のジク
ロヘキサノンを加えて粘度を30〜40CPにした。
ガラス基板上に850Åのピユアクロムをコーテイ
ングしたクロムブランクスをネオクリンで洗浄し
た後、80℃で30分間ベーキングし、上記の調製液
をスピンナーにて1200RPMで塗布し3000Åのレ
ジスト層を形成した。次にそれを窒素雰囲気下
160℃、1時間プリベークし、加速電圧20KVで
直径0.1μの電子ビームを使用して6×10-7C/cm2
の電荷密度を与えるようにレジスト層に照射し
た。次にこれを酢酸エチル:酢酸イソアミル=
1:4の現像液で液温20℃8分間浸積して現像
し、イソプロピルアルコールでリンスして所望の
パターンを得た。この時もかぶりなくエツジラフ
ネスのよい0.5μのライン並びにスペースが得られ
た。
Example 2 A trace amount of methyl ethyl ketone solution was prepared using PMMA (w = 10 million), and 1% by weight of PMMA was added.
1.4-diaminoanthraquinone was added. The solution was filtered through a 0.2μ filter and concentrated using an evaporator to about 2%, and the same amount of dichlorohexanone was added to the concentrate to give a viscosity of 30 to 40 CP.
A chrome blank coated with 850 Å of pure chrome on a glass substrate was cleaned with neoclean, baked at 80°C for 30 minutes, and the above prepared solution was applied with a spinner at 1200 RPM to form a 3000 Å resist layer. Then it is placed under a nitrogen atmosphere.
Prebaked at 160℃ for 1 hour, and then heated to 6×10 -7 C/cm 2 using an electron beam with a diameter of 0.1μ at an accelerating voltage of 20KV.
The resist layer was irradiated to give a charge density of . Next, this is ethyl acetate:isoamyl acetate=
The film was developed by immersion in a 1:4 developer at 20° C. for 8 minutes, and rinsed with isopropyl alcohol to obtain the desired pattern. At this time as well, 0.5μ lines and spaces with good edge roughness were obtained without fogging.

対比例 w=1000万のPMMAを添加物なしで微量の
メチルエチルケトン溶液とし、その溶液を0.2μの
フイルターで濾過しエバポレーターで濃縮して約
2%溶液とした。この濃縮液に同量のトルエンを
加えて希釈し粘度30〜40CPにした。ガラス基板
上に850Åのピユアクロムをコーテイングしたク
ロムブランクスをネオクリンで洗浄した後、80℃
で30分間ベーキングし、上記の調製液をスピンナ
ーにて800RPMで塗布し4000Åのレジスト層を形
成した。次にそれを窒素雰囲気下160℃1時間プ
リベークし、加速電圧20KVで直径0.1μの電子ビ
ームを使用して3×10-7C/cm2の電荷密度を与え
るようにレジスト層に照射した。次にこれを酢酸
エチル:酢酸イソアミル=1:4の現像液に液温
20℃で9分間浸積して現像し、イソプロピルアル
コールでリンスした。この場合0.5μのライン並び
にスペースはかぶりが大きく、ラインのいびつな
パターンしか得られなかつた。
Comparison PMMA (w = 10 million) was made into a trace amount of methyl ethyl ketone solution without any additives, and the solution was filtered through a 0.2μ filter and concentrated using an evaporator to obtain an approximately 2% solution. The same amount of toluene was added to this concentrated solution to dilute it to a viscosity of 30 to 40 CP. Chrome blanks coated with 850Å Pyuachrome on a glass substrate were cleaned with neoclean and then heated at 80°C.
After baking for 30 minutes, the above prepared solution was applied using a spinner at 800 RPM to form a resist layer with a thickness of 4000 Å. It was then prebaked at 160° C. for 1 hour under a nitrogen atmosphere, and the resist layer was irradiated using an electron beam with a diameter of 0.1 μ at an accelerating voltage of 20 KV to give a charge density of 3×10 −7 C/cm 2 . Next, add this to a developer of ethyl acetate: isoamyl acetate = 1:4 at
It was developed by immersion at 20°C for 9 minutes and rinsed with isopropyl alcohol. In this case, the 0.5μ lines and spaces had a large fog, and only a distorted pattern of lines could be obtained.

上記実施例・対比例でわかる通り本発明レジス
トは従来品では得られなかつた高感度と解像度を
示し、その有用性は明らかである。
As can be seen from the above Examples and Comparative Examples, the resist of the present invention exhibits high sensitivity and resolution that could not be obtained with conventional products, and its usefulness is clear.

Claims (1)

【特許請求の範囲】[Claims] 1 高い重量平均分子量を有するポリメタクリル
酸メチル(PMMA)に、t−ブチルカテコール、
ハイドロキノン、アントラキノン、P−ベンゾキ
ノン及びジフエニルアミンのうち少なくともひと
つを1〜2重量パーセント添加し、自然劣化と熱
分解とを防止すると共に、電子ビーム照射に依る
分解反応を促進せしめて成るポジ型電子ビーム用
レジスト。
1 Polymethyl methacrylate (PMMA) with a high weight average molecular weight, t-butylcatechol,
For positive type electron beams, made by adding 1 to 2 percent by weight of at least one of hydroquinone, anthraquinone, P-benzoquinone, and diphenylamine to prevent natural deterioration and thermal decomposition and promote decomposition reactions caused by electron beam irradiation. Resist.
JP16105580A 1980-11-14 1980-11-14 Positive type resist for use in electron beams Granted JPS5784452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16105580A JPS5784452A (en) 1980-11-14 1980-11-14 Positive type resist for use in electron beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16105580A JPS5784452A (en) 1980-11-14 1980-11-14 Positive type resist for use in electron beams

Publications (2)

Publication Number Publication Date
JPS5784452A JPS5784452A (en) 1982-05-26
JPH0128936B2 true JPH0128936B2 (en) 1989-06-06

Family

ID=15727746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16105580A Granted JPS5784452A (en) 1980-11-14 1980-11-14 Positive type resist for use in electron beams

Country Status (1)

Country Link
JP (1) JPS5784452A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151824A (en) * 1978-05-22 1979-11-29 Tokyo Ouka Kougiyou Kk Photosensitive composition
JPS5540411A (en) * 1978-09-16 1980-03-21 Nippon Telegr & Teleph Corp <Ntt> Resist composition for microformation
JPS5767928A (en) * 1980-10-15 1982-04-24 Nippon Telegr & Teleph Corp <Ntt> Positive type resist for dry etching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151824A (en) * 1978-05-22 1979-11-29 Tokyo Ouka Kougiyou Kk Photosensitive composition
JPS5540411A (en) * 1978-09-16 1980-03-21 Nippon Telegr & Teleph Corp <Ntt> Resist composition for microformation
JPS5767928A (en) * 1980-10-15 1982-04-24 Nippon Telegr & Teleph Corp <Ntt> Positive type resist for dry etching

Also Published As

Publication number Publication date
JPS5784452A (en) 1982-05-26

Similar Documents

Publication Publication Date Title
USRE37179E1 (en) Radiation sensitive resin composition
US4649100A (en) Production of resist images, and a suitable dry film resist
US3779806A (en) Electron beam sensitive polymer t-butyl methacrylate resist
US4087569A (en) Prebaking treatment for resist mask composition and mask making process using same
US3935332A (en) Development of poly(1-methyl-1-cyclopentene-SO2) electron beam resist
KR100687464B1 (en) Chemically amplified positive resist composition
EP0184044A2 (en) Light-sensitive composition, registration material prepared thereof, and process for obtaining heat-resistant relief images
JPS6116972B2 (en)
EP0450189A2 (en) High temperature stable negative resists and process for the production of high temperature stable relief structure
JPH0943848A (en) Resist material and resist pattern forming method
US4096290A (en) Resist mask formation process with haloalkyl methacrylate copolymers
US3852771A (en) Electron beam recording process
US3931435A (en) Electron beam positive resists containing acetate polymers
JPS63231442A (en) Negative photoresist composition
US4346163A (en) Resist for use in forming a positive pattern with a radiation and process for forming a positive pattern with radiation
JPH0128936B2 (en)
JPH0119135B2 (en)
KR920008724B1 (en) High energy beam-sensitive copolymer
US4027052A (en) Fabrication of iron oxide pattern
US4024122A (en) Method of purifying 2,4-bis(6-diazo-5,6-dihydro-5-oxo-1-naphthalenesulfonyloxy benzophenone)
US4243742A (en) Radiation-sensitive positively acting materials
JPH0693122B2 (en) Highly sensitive radiation resist
US3499759A (en) Light-sensitive reproduction layer comprising an oxetane polymer
JP2600897B2 (en) Positive resist composition and pattern forming method
US4279986A (en) Negative resist and radical scavenger composition with capability of preventing post-irradiation polymerization