JPH01289179A - Supporting means for cryogenic container - Google Patents

Supporting means for cryogenic container

Info

Publication number
JPH01289179A
JPH01289179A JP63118900A JP11890088A JPH01289179A JP H01289179 A JPH01289179 A JP H01289179A JP 63118900 A JP63118900 A JP 63118900A JP 11890088 A JP11890088 A JP 11890088A JP H01289179 A JPH01289179 A JP H01289179A
Authority
JP
Japan
Prior art keywords
container
thermal expansion
support
expansion coefficient
liquid helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63118900A
Other languages
Japanese (ja)
Other versions
JPH0550156B2 (en
Inventor
Kaoru Nishimura
薫 西村
Ryoichi Sawada
澤田 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63118900A priority Critical patent/JPH01289179A/en
Publication of JPH01289179A publication Critical patent/JPH01289179A/en
Publication of JPH0550156B2 publication Critical patent/JPH0550156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To inhibit a change of the lengths of the whole supporting means by a difference between a positive thermal expansion coefficient and a negative thermal expansion coefficient when the supporting means are cooled with pour of a cryogenic liquid in a cryogenic container and to maintain a good heat-insulating state by a method wherein the supporting means for the cryogenic container are respectively constituted as a series coupled body consisting of a supporting member having a positive thermal expansion coefficient and a supporting member having a negative thermal expansion coefficient. CONSTITUTION:Three pieces of supporting means A1 are tightened across 8 sets left and right and before and behind between end plates 2c on both sides of a liquid helium container 2 and the inner peripheral face of an outer cylinder 3b of a vacuum container 3 in a state that a constant space is held between the container 2 with a built-in superconducting magnet 1 and the container 3 and the container 2 is supported coaxially to the container 3 and conforming the axial centers of the containers to each other. This supporting means A1 is constituted of a supporting member 11 having a positive thermal expansion coefficient and a supporting member 12 having a negative thermal expansion coefficient, both of these supporting members 11 and 12 are coupled with each other in series by an intermediate joint 13 made of stainless steel and other end parts of both members 11 and 12 are respectively coupled with end part joints 14 and 15.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は、液体ヘリウム、液体窒素等を収納する極低
温容器の支持具に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a support for a cryogenic container containing liquid helium, liquid nitrogen, etc.

このような極低温容器は、例えば、核磁気共鳴断層撮影
装置(NMR−CT)の超電導マグネットなどを冷却す
る等のために使用される。
Such a cryogenic container is used, for example, to cool a superconducting magnet of a nuclear magnetic resonance tomography apparatus (NMR-CT).

B、従来技術 この種の支持具は、極低温容器を他の部材(例えば真空
容器)に連結するもの°1、他の部材から支持具を介し
ての熱伝導による極低温容器への熱侵入を極力防止する
必要から、従来では、支持具を熱伝導度のきわめて低い
ガラス繊維強化プラスチック(GFRP)を用いて作製
していた。
B. Prior art This type of support connects the cryogenic container to other members (e.g., a vacuum container) °1. Heat enters the cryogenic container due to heat conduction from other members through the support. Conventionally, supports have been made of glass fiber reinforced plastic (GFRP), which has extremely low thermal conductivity, in order to prevent this as much as possible.

従来の支持具A0の一例を第7図に示す。An example of a conventional support A0 is shown in FIG.

この支持具A0は、GFRPで熱膨張率が正の支持部材
41と、支持部材41を直列に連結するステンレス鋼製
の2つの端部ジヨイント42.43とからで構成されて
いる。
This support A0 is composed of a support member 41 made of GFRP and having a positive coefficient of thermal expansion, and two end joints 42 and 43 made of stainless steel that connect the support member 41 in series.

支持部材41は、連続したガラス繊維を員環状に多数回
巻きつけたものをエポキシ樹脂等で固めたC;FRPで
あり、2つの互いに平行な直線部41aと、両端の2つ
の半円保合部41bとが一体となっている。
The support member 41 is made of FRP made by winding continuous glass fibers many times in a ring shape and hardening them with epoxy resin, etc., and has two mutually parallel straight parts 41a and two semicircular retaining parts at both ends. The portion 41b is integrated with the portion 41b.

端部ジゴイント42.43の端部にはそれぞれピン44
を介してプーリー状の溝付きリング45が回動自在に軸
支されている。支持部材41の各半円保合部41bは、
端部ジヨイント42.43の溝付きリング45の溝に回
動自在に係合されている。
A pin 44 is attached to each end of the end zigo points 42 and 43.
A pulley-shaped grooved ring 45 is rotatably supported via the . Each semicircular retaining portion 41b of the support member 41 is
It is rotatably engaged in a groove in a grooved ring 45 of the end joints 42, 43.

C0発明が解決しようとする課題 ガラス繊維強化プラスチックは熱膨張率が比較的小さい
のであるが、ガラス繊維強化プラスチック製の支持具で
支持する極低温容器が極低温になると、収縮し、支持具
も極低温容器から冷却され収縮する。
C0 Problem to be solved by the invention Glass fiber reinforced plastic has a relatively small coefficient of thermal expansion, but when a cryogenic container supported by a support made of glass fiber reinforced plastic reaches an extremely low temperature, it contracts and the support also collapses. It is cooled and shrunk from the cryogenic container.

例えば、第7図のGFRP製の支持具A0を介して液体
ヘリウム容器を室温の真空容器に懸架した場合を考える
。室温(約293 K )の状態から液体ヘリウム容器
に液体ヘリウムを注入し、液体ヘリウム容器は4.2K
(液体ヘリウムの沸点)まで冷却されると、ごり一般に
使われているステンレス製の液体ヘリウム容器では収縮
割合は0.30%、また、支持具は4.2Kから293
Kまで温度分布をもち、全体としての収縮割合は0.1
〜0.2%になるが、真空容器は温度変化がないので収
縮は起こらない。
For example, consider a case where a liquid helium container is suspended in a vacuum container at room temperature via a GFRP support A0 shown in FIG. Liquid helium is injected into the liquid helium container from room temperature (approximately 293 K), and the liquid helium container is heated to 4.2 K.
When cooled to (the boiling point of liquid helium), the shrinkage rate of the commonly used stainless steel liquid helium container is 0.30%, and the support tool is 4.2K to 293K.
It has a temperature distribution up to K, and the overall shrinkage rate is 0.1
~0.2%, but since there is no temperature change in the vacuum container, no shrinkage occurs.

このように真空容器は収縮しないのに対し、液体ヘリウ
ム容器および支持具は収縮するため、真空容器および液
体ヘリウム容器の中心位置が変化しないとすれば、支持
具に大きな引張り応力が加わり、支持具が破断するおそ
れがあった。
In this way, the vacuum container does not shrink, but the liquid helium container and support do. Therefore, if the center positions of the vacuum container and liquid helium container do not change, a large tensile stress is applied to the support, causing the support to There was a risk that it would break.

これを避けるためには支持部材41の断面積を大きくし
て耐引張り応力を増せばよいのであるが、強度を増加さ
せるため断面積が増加すると伝導熱量が増加し断熱性が
損なわれ、また、端部ジゴイン)42.43等他の部分
も補強する必要がある。
In order to avoid this, the cross-sectional area of the supporting member 41 can be increased to increase the tensile stress resistance, but if the cross-sectional area is increased to increase the strength, the amount of heat conducted will increase and the heat insulation will be impaired. It is also necessary to reinforce other parts such as the end jigoine) 42 and 43.

また、支持具と液体ヘリウム容器との収縮のため、液体
ヘリウムの注入の前後において、液体ヘリウム容器の中
心位置が所定の基準位置からずれる結果となっていた。
Furthermore, due to contraction of the support and the liquid helium container, the center position of the liquid helium container deviates from a predetermined reference position before and after injection of liquid helium.

特に、液体ヘリウム容器が核磁気共鳴断層撮影装置の超
電導マグネットを冷却するものである場合には、超電導
マグネットが液体ヘリウム容器内に収納されることから
、超電導マグネット自体の中心位置も基準位置からずれ
、中心磁場の均一度が悪化し、画質の劣化1画像の歪み
等を生じる結果を招いていた。
In particular, when the liquid helium container is used to cool the superconducting magnet of a nuclear magnetic resonance tomography device, the center position of the superconducting magnet itself may deviate from the reference position because the superconducting magnet is housed in the liquid helium container. , the uniformity of the central magnetic field deteriorates, resulting in deterioration of image quality and distortion of the image.

この発明は、このような事情に鑑みてなされたものであ
って、液体ヘリウム等の極低温液体を極低温容器に注入
した前後において、その極低温容器の中心位置の変位を
極力防止するとともに、耐破断性のすぐれた極低温容器
の支持具を提供することを目的とする。
This invention was made in view of the above circumstances, and is designed to prevent the center position of a cryogenic container from shifting as much as possible before and after injecting a cryogenic liquid such as liquid helium into the cryogenic container, and to The purpose of the present invention is to provide a support for a cryogenic container with excellent breakage resistance.

01課題を解決するための手段 この発明は、このような目的を達成するために、次のよ
うな構成をとる。
01 Means for Solving the Problems In order to achieve the above object, the present invention has the following configuration.

すなわち、この発明の極低温容器の支持具は、熱膨張率
が正の支持部材と熱膨張率が負の支持部材とを適当な長
さ比で直列に連結してなるものである。
That is, the cryogenic container support of the present invention is formed by connecting a support member with a positive coefficient of thermal expansion and a support member with a negative coefficient of thermal expansion in series at an appropriate length ratio.

熱膨張率が正の支持部材の材質としては、繊維強化プラ
スチックであってもよいし、金属材料であってもよい、
また、熱膨張率が負の支持部材の材質は、−船釣には繊
維強化プラスチックである。
The material of the support member having a positive coefficient of thermal expansion may be fiber-reinforced plastic or a metal material.
Further, the material of the support member having a negative coefficient of thermal expansion is fiber-reinforced plastic for boat fishing.

熱膨張率が正の支持部材の数と熱膨張率が負の支持部材
の数とは限定されず、いずれも1つあるいは2以上であ
ってもよい。
The number of support members with a positive coefficient of thermal expansion and the number of support members with a negative coefficient of thermal expansion are not limited, and each may be one or two or more.

E6作用 この発明の構成による作用は、次のとおりである。E6 action The effects of the configuration of this invention are as follows.

極低温容器への極低温液体の注入に伴って支持具が冷却
されると、熱膨張率が正の支持部材は収縮するのに対し
、熱膨張率が負の支持部材は伸長する。
When the support is cooled as a cryogenic liquid is injected into the cryogenic container, the support member with a positive coefficient of thermal expansion contracts, while the support member with a negative coefficient of thermal expansion expands.

冷却による降下温度を考慮して、熱膨張率が正の支持部
材の長さや個数と熱膨張率が負の支持部材の長さや個数
を適当に設定しておくことにより、支持具全体としての
長さ変化を充分に小さくすることが可能であり、また、
全体として任意の熱膨張率にすることも可能である。
Taking into account the temperature drop due to cooling, the length and number of support members with a positive coefficient of thermal expansion and the length and number of support members with a negative coefficient of thermal expansion can be appropriately set to reduce the length of the entire support. It is possible to sufficiently reduce the change in
It is also possible to set the overall coefficient of thermal expansion to any desired value.

これによって、支持具自体にかかる引張り応力や圧縮応
力を充分に小さくして、支持具の破断を免れることが可
能となる。また、極低温液体を注入した前後における極
低温容器の中心位置の変位も充分に小さくなる。
This makes it possible to sufficiently reduce the tensile stress and compressive stress applied to the support itself, thereby avoiding breakage of the support. Further, the displacement of the center position of the cryogenic container before and after the cryogenic liquid is injected is also sufficiently small.

F、実施例 以下、この発明の実施例を図面に基づいて詳細に説明す
る。
F. Embodiments Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

■上!腹班 第3図(A)は使用対象の一例としての核磁気共鳴断層
撮影装置(NMR−CT)を示す縦断正面図、第3図(
B)はその縦断側面図である。
■Top! Figure 3 (A) is a longitudinal sectional front view showing a nuclear magnetic resonance tomography device (NMR-CT) as an example of the object to be used;
B) is a longitudinal side view thereof.

このNMR−CTにおいて、超電導マグネット1を内蔵
した液体ヘリウム容器2は、内筒2a。
In this NMR-CT, the liquid helium container 2 containing the superconducting magnet 1 is an inner cylinder 2a.

外筒2bおよび両側の閉塞端板2Cから二重円筒状に構
成されている。内部に液体ヘリウム容器2を気密的に封
入した真空容器3も、内筒3a、外筒3bおよび両側の
閉塞端板3Cから二重円筒状に構成されている。
It has a double cylindrical shape including an outer cylinder 2b and closed end plates 2C on both sides. The vacuum container 3 in which the liquid helium container 2 is hermetically sealed is also configured in a double cylindrical shape from an inner tube 3a, an outer tube 3b, and closed end plates 3C on both sides.

超電導マグネット1を内蔵した液体ヘリウム容器2と真
空容器3とは互いに同軸状になっている。
A liquid helium container 2 containing a superconducting magnet 1 and a vacuum container 3 are coaxial with each other.

真空容器3の内部空間は患者挿入部Sとなっている。The internal space of the vacuum container 3 serves as a patient insertion section S.

液体ヘリウム容器2と真空容器3との間に一定幅の空間
を確保した状態で、液体ヘリウム容器2を真空容器3に
対して同軸状にかつ軸方向中心を合わせて支持するため
に、液体ヘリウム容器2の両側の端板2Cと、真空容器
3の外筒3bの内周面との間に8個の支持具A、を、ま
た、真空容器3の外筒3bと液体ヘリウム容器2の外筒
2bの間に4個の支持具A1′をそれぞれ左右前後対称
に掛は渡している。
In order to support the liquid helium container 2 coaxially and with the axial center aligned with the vacuum container 3 while maintaining a space of a certain width between the liquid helium container 2 and the vacuum container 3, the liquid helium container 2 is Eight supports A are provided between the end plates 2C on both sides of the container 2 and the inner peripheral surface of the outer cylinder 3b of the vacuum container 3, and between the outer cylinder 3b of the vacuum container 3 and the outside of the liquid helium container 2. Four supports A1' are hung between the tubes 2b symmetrically in the left and right directions.

支持具A、、A、’はそれぞれ上下方向、左右方向、軸
方向のゆれを防止し、液体ヘリウム容器2の中心と真空
容器3の中心とが一致するようにするためにある。
The supports A, , A, and ' are provided to prevent vibration in the vertical direction, horizontal direction, and axial direction, respectively, and to ensure that the center of the liquid helium container 2 and the center of the vacuum container 3 coincide.

なお、通常、二点鎖線で示すように、液体ヘリウム容器
2と真空容器3との間に、熱伝導率の高いアルミニウム
等の二重円筒状の熱シールド4を配置して液体ヘリウム
容器2を熱シールド4で覆うことによって外部から、液
体ヘリウム容器2への熱輻射を遮断する。
Note that, as shown by the two-dot chain line, a double cylindrical heat shield 4 made of aluminum or the like with high thermal conductivity is usually placed between the liquid helium container 2 and the vacuum container 3 to close the liquid helium container 2. By covering with a heat shield 4, heat radiation from the outside to the liquid helium container 2 is blocked.

第3図では、−重の熱シールドにしているが、二重以上
でもかまわず、それらの熱シールドを冷凍機にて冷却し
てもかまわない。
In FIG. 3, a -heavy heat shield is used, but it may be double or more, and these heat shields may be cooled with a refrigerator.

第4図(A)は核磁気共鳴断層撮影装置(NMR−CT
)の他の例を示す縦断正面図、第4図(B)はその縦断
側面図である。
Figure 4 (A) is a nuclear magnetic resonance tomography device (NMR-CT).
) is a longitudinal sectional front view showing another example, and FIG. 4(B) is a longitudinal sectional side view thereof.

この第4図に示すNMR−CTは、内筒2a。The NMR-CT shown in FIG. 4 has an inner cylinder 2a.

外筒2bおよび両側の閉塞端板2Cから二重円筒状に構
成され、超電導マグネット1を内蔵した液体ヘリウム容
器2の外側に内筒5a、外筒5b。
An inner cylinder 5a and an outer cylinder 5b are disposed on the outside of the liquid helium container 2, which has a double cylindrical shape including an outer cylinder 2b and closed end plates 2C on both sides, and has a built-in superconducting magnet 1.

閉塞端板5cからなる液体窒素容器5を套嵌させている
。内筒3a、外筒3bおよび両側の閉塞端板3cから二
重円筒状に構成された真空容器3の内部に液体ヘリウム
容器2および液体窒素容器5が気密的に封入されている
A liquid nitrogen container 5 consisting of a closed end plate 5c is fitted over the container. A liquid helium container 2 and a liquid nitrogen container 5 are hermetically sealed inside a vacuum container 3 configured in a double cylindrical shape from an inner cylinder 3a, an outer cylinder 3b, and closed end plates 3c on both sides.

超電導マグネット1を内蔵した液体ヘリウム容器2と液
体窒素容器5と真空容器3とは互いに同軸状になってい
る。
A liquid helium container 2 containing a superconducting magnet 1, a liquid nitrogen container 5, and a vacuum container 3 are coaxial with each other.

液体ヘリウム容器2と液体窒素容器5との間には一定の
空間を確保した状態で、液体ヘリウム容器2を液体窒素
容器5に対して同軸状に支持するために、液体ヘリウム
容器2の両側の端板2Cと、液体窒素容器5の内筒5a
の内周面との間に支持具A、を8つ左右前後対称に掛は
渡している。
In order to support the liquid helium container 2 coaxially with respect to the liquid nitrogen container 5 while maintaining a certain space between the liquid helium container 2 and the liquid nitrogen container 5, End plate 2C and inner cylinder 5a of liquid nitrogen container 5
Eight supports A are passed symmetrically between the inner circumferential surface of the frame and the inner circumferential surface of the frame.

なお、第3図の支持具AI′と同様のものを介在させる
こともできる。
Incidentally, a support similar to the support AI' shown in FIG. 3 may be interposed.

また、液体窒素容器5と真空容器3との間に一定幅の空
間を確保した状態で、液体窒素容器5を真空容器3に対
して同軸状に支持するために、液体窒素容器5の両側の
端板5Cと、真空容器3の外筒3bの内周面との間に支
持具A、を8つ左右前後対称に掛は渡している。
In addition, in order to support the liquid nitrogen container 5 coaxially with respect to the vacuum container 3 while securing a space of a certain width between the liquid nitrogen container 5 and the vacuum container 3, both sides of the liquid nitrogen container 5 are provided. Eight supports A are provided between the end plate 5C and the inner peripheral surface of the outer cylinder 3b of the vacuum container 3, symmetrically in the left and right directions.

なお、二点鎖線で示すように、液体窒素容器5と液体ヘ
リウム容器2との間において、アルミニウム製の二重円
筒状の熱シールド4を配置して液体ヘリウム容器2を熱
シールド4で覆う場合もある。
In addition, as shown by the two-dot chain line, when a double cylindrical heat shield 4 made of aluminum is arranged between the liquid nitrogen container 5 and the liquid helium container 2 to cover the liquid helium container 2 with the heat shield 4. There is also.

極低温容器の組み立て、立ち上げに際しては、まず、液
体ヘリウム容器2.液体窒素容器5.真空容器3の中心
合わせを行い、真空容器3内を真空引きし、次いで、液
体窒素容器5に液体窒素を注入するとともに、液体ヘリ
ウム容器2にも液体窒素を注入して予備冷却を行い、そ
の後、液体ヘリウム容器2から液体窒素を排出しその代
わりに液体ヘリウム容器2に液体ヘリウムを注入する。
When assembling and starting up the cryogenic container, first, the liquid helium container 2. Liquid nitrogen container5. The center of the vacuum container 3 is aligned, the inside of the vacuum container 3 is evacuated, and then liquid nitrogen is injected into the liquid nitrogen container 5, and liquid nitrogen is also injected into the liquid helium container 2 for preliminary cooling. , liquid nitrogen is discharged from the liquid helium container 2 and liquid helium is injected into the liquid helium container 2 instead.

次に、支持具A1およびAI’の具体的構造を第1図に
基づいて説明する。
Next, the specific structure of the supports A1 and AI' will be explained based on FIG. 1.

この支持具AIおよびAl′は、熱膨張率が正の支持部
材11と、熱膨張率が負の支持部材12と、これら両支
持部材11.12を直列に連結するステンレス鋼製の中
間ジヨイント13と、両支持部材ll。
These supports AI and Al' include a support member 11 with a positive coefficient of thermal expansion, a support member 12 with a negative coefficient of thermal expansion, and an intermediate joint 13 made of stainless steel that connects both support members 11 and 12 in series. and both supporting members ll.

12の他端側に連結されたステンレス鋼製の端部ジヨイ
ント14.15とから構成されている。
12 and an end joint 14, 15 made of stainless steel connected to the other end side.

中間ジヨイント13の両端部にはそれぞれピン16を介
してプーリー状の溝付きリング17が回動自在に軸支さ
れている。また、端部ジヨイント14.15の各端部に
もビン18を介して溝付きリング19が回動自在に軸支
されている。
Pulley-shaped grooved rings 17 are rotatably supported at both ends of the intermediate joint 13 via pins 16, respectively. Further, a grooved ring 19 is rotatably supported at each end of the end joints 14, 15 via a pin 18.

熱膨張率が正の支持部材11は、連続したガラス繊維を
長環状に多数回巻きつけたものをエポキシ樹脂等で固め
たGFRP (ガラス繊維強化プラスチック)であり、
2つの互いに平行な直線部11aと、両端の2つの半円
保合部11bとが一体となっている。
The support member 11 having a positive coefficient of thermal expansion is made of GFRP (glass fiber reinforced plastic), which is made by winding continuous glass fiber many times in a long ring shape and solidifying it with epoxy resin or the like.
Two mutually parallel linear parts 11a and two semicircular retaining parts 11b at both ends are integrated.

熱膨張率が負の支持部材12は、連続した芳香族ポリア
ミド(アラミド)繊維を長環状に多数回巻きつけたもの
をエポキシ樹脂等で固めたものであり、2つの互いに平
行な直線部12aと、両端の2つの半円保合部12bと
が一体となっている。
The support member 12, which has a negative coefficient of thermal expansion, is made by winding continuous aromatic polyamide (aramid) fibers many times in a long ring shape and solidifying it with epoxy resin or the like, and has two mutually parallel linear parts 12a and , and two semicircular retaining portions 12b at both ends are integrated.

芳香族ポリアミド繊維の好ましい例として、テクノーラ
(登録商標:奇人■製)を挙げることができる。このテ
クノーラの化学名は、コポリバラフェニレン・3−4′
オキシジフエニレン・テレフタライドで、その化学構造
式を第2図に示す。
A preferred example of the aromatic polyamide fiber is Technora (registered trademark: manufactured by Kijin ■). The chemical name of this technora is copolyvaraphenylene 3-4'
It is oxydiphenylene terephthalide, and its chemical structure is shown in Figure 2.

このテクノーラは、負の熱膨張率をもワており、加熱に
よって収縮する一方、冷却によって伸長する性質がある
。テクノーラを樹脂で固めた強化繊維をTFRPと略記
する。
This Technora also has a negative coefficient of thermal expansion, meaning that it contracts when heated and expands when cooled. Reinforced fiber made by hardening Technora with resin is abbreviated as TFRP.

本実施例に用いるGFRP、TFRPを室温(293K
)から液体窒素の沸点(77K)まで温度降下したとこ
ろ、GFRPは収縮しその割合は0.18%であり、T
FRPは伸長しその割合は0.07%であった。すなわ
ち、GFRPの熱膨張率(線膨張率)は+0.18%、
TFRPの熱膨張率(線膨張率)は−0,07%である
GFRP and TFRP used in this example were prepared at room temperature (293K).
) to the boiling point of liquid nitrogen (77K), GFRP contracted and the shrinkage rate was 0.18%.
FRP was elongated and the elongation rate was 0.07%. In other words, the thermal expansion coefficient (linear expansion coefficient) of GFRP is +0.18%,
The coefficient of thermal expansion (coefficient of linear expansion) of TFRP is -0.07%.

熱膨張率が正のGFRP製の支持部材11の各半円保合
部11bは、中間ジヨイント13の一方の溝付きリング
17の溝と、端部ジヨイント14の溝付きリング19の
溝に回動自在に係合され、熱膨張率が負のTFRP製の
支持部材12の各半円保合部12bは、中間ジヨイント
13の他方の溝付きリング17の溝と、端部ジヨイント
15の溝付きリング19の溝に回動自在に係合されてい
る。
Each semicircular retaining part 11b of the support member 11 made of GFRP with a positive coefficient of thermal expansion rotates in the groove of one grooved ring 17 of the intermediate joint 13 and the groove of the grooved ring 19 of the end joint 14. Each semicircular retaining portion 12b of the supporting member 12 made of TFRP and having a negative coefficient of thermal expansion is freely engaged with the groove of the other grooved ring 17 of the intermediate joint 13 and the grooved ring of the end joint 15. It is rotatably engaged in the groove 19.

中間ジヨイント13.端部ジヨイント14.15.溝付
きリング17.19の収縮量と、支持具A、の長さ方向
での温度分布と、両支持部材11.12の熱膨張率とを
考慮して、液体ヘリウムを注入したときの支持具AI全
全体収縮量が適当な値となり、支持具に引張り応力が生
じたり、ゆるみが生じたり、さらに極低温容器が移動し
たりしないように両支持部材11.12の各寸法を定め
である。
Intermediate joint 13. End joint 14.15. The support when liquid helium is injected, taking into account the amount of contraction of the grooved ring 17.19, the temperature distribution in the length direction of the support A, and the coefficient of thermal expansion of both support members 11.12. The dimensions of both support members 11 and 12 are determined so that the total AI shrinkage is at an appropriate value, and the supports are not subject to tensile stress or loosening, and furthermore, the cryogenic container is not moved.

なお、液体ヘリウム容器2.液体窒素容器5゜真空容器
3は、径方向および軸方向に収縮する。
In addition, liquid helium container 2. The liquid nitrogen container 5° vacuum container 3 contracts radially and axially.

その収縮量は、同じ材料なら最も温度が低い液体ヘリウ
ム容器2で最大となる。この点を考慮すると、支持具A
1の伸び縮みが全くないとすると、液体ヘリウム容器2
を少し浮き上げる可能性がある。
If the materials are the same, the amount of contraction is greatest in the liquid helium container 2, which has the lowest temperature. Considering this point, support A
Assuming that there is no expansion or contraction of 1, liquid helium container 2
may rise slightly.

その浮き上がりを防止するには、その浮き上がりを打ち
消す量だけ支持具A+が少し伸びた方がよい。この場合
、熱膨張率が負のTFRP製の支持部材12を少し長め
に設定すればよい。
In order to prevent this lifting, it is better for the support A+ to extend a little by an amount that cancels out the lifting. In this case, the supporting member 12 made of TFRP with a negative coefficient of thermal expansion may be set to be slightly longer.

以上により、液体ヘリウムの注入によって支持具A1が
冷却されても支持具AIに引張り応力が生じたり、ゆる
みが生じたりすることがなく、液体ヘリウム容器2.液
体窒素容器5.真空容器3の各中心位置を所定の基準位
置に維持させ、液体ヘリウム容器2内の超電導マグネッ
ト1の中心位置を所定の基準位置に一致させた状態を保
つことができる。
As described above, even if the support A1 is cooled by injection of liquid helium, tensile stress or loosening does not occur in the support AI, and the liquid helium container 2. Liquid nitrogen container5. Each center position of the vacuum container 3 can be maintained at a predetermined reference position, and the center position of the superconducting magnet 1 in the liquid helium container 2 can be kept in a state of matching with the predetermined reference position.

すなわち、中心磁場の均一度を精度良く保つことができ
るとともに、液体ヘリウム容器2.1体窒素容器5.真
空容器3が互いに接触することが防止され、各容器間の
断熱状態を良好に維持することができる。
That is, the uniformity of the central magnetic field can be maintained with high accuracy, and the liquid helium container 2.1 nitrogen container 5. The vacuum containers 3 are prevented from coming into contact with each other, and a good insulation state between the containers can be maintained.

また、支持具A1自体にかかる引張り応力やゆるみを実
質的にゼロにして支持具A、の破断を免れることができ
る。そして、耐引張り応力増加のために支持具A、の断
面積を大きなものとする必要がなく、むしろ、両支持部
材11.12の断面積を減少して断熱性の向上を期すこ
とができる。
Furthermore, the tensile stress and loosening applied to the support A1 itself can be made substantially zero, thereby avoiding breakage of the support A1. Further, it is not necessary to increase the cross-sectional area of the support member A in order to increase the tensile stress resistance, but rather the cross-sectional area of both support members 11 and 12 can be reduced to improve the heat insulation properties.

部、111 次に、第2実施例を第5図に基づいて説明する。Department, 111 Next, a second embodiment will be described based on FIG. 5.

GFRP製で熱膨張率が正の支持部材21が、1本の直
線部21aと、この直線部21aの両端に一体的に形成
されたリング部21bとからなり、各リング部21bに
埋金21cが嵌着固定されている。また、TFRPで熱
膨張率が負の支持部材22も、1本の゛ 直線部22a
と、この直線部22aの両端に一体的に形成されたリン
グ部22bとからなり、各リング部22bに埋金22c
が嵌着固定されている。
The support member 21 made of GFRP and having a positive coefficient of thermal expansion consists of one straight part 21a and ring parts 21b integrally formed at both ends of this straight part 21a, and each ring part 21b has a filler metal 21c. is fitted and fixed. Further, the supporting member 22 made of TFRP and having a negative coefficient of thermal expansion is also made of one linear portion 22a.
and ring portions 22b integrally formed at both ends of this straight portion 22a, each ring portion 22b has a filler metal 22c.
is fitted and fixed.

これらの支持部材21.22も、連続した繊維を長環状
に多数回巻きつけたものを、その直線部21a。
These support members 21 and 22 are also made of continuous fibers wound many times in a long ring shape, and have a straight portion 21a.

22aで互いに接触させた状態で、エポキシ樹脂等で固
めたものである。埋金21c、22cの材質はステンレ
ス鋼である。
They are made to contact each other at 22a and hardened with epoxy resin or the like. The material of the fillers 21c and 22c is stainless steel.

中間ジツイント23に対して両支持部材21.22の埋
金21c、22cをピン26を介して回動自在に連結し
、端部ジヨイント24.25C対して両支持部材21゜
22の埋金21c、22cをピン28を介して回動自在
に連結することにより、支持具Atを構成している。
The fillets 21c, 22c of both support members 21.22 are rotatably connected to the intermediate joint 23 via the pin 26, and the fillets 21c, 22c of both support members 21.22 are connected to the end joint 24.25C. 22c are rotatably connected via pins 28 to constitute a support At.

第nΩ1桝 次に、第3実施例を第6図に基づいて説明する。nth Ω1 square Next, a third embodiment will be described based on FIG. 6.

GFRP製で熱膨張率が正の支持部材31およびTFR
P製で熱膨張率が負の支持部材32が棒状に構成され、
それぞれの両端部に雄ネジ部31a、32aが形成され
ている。ステンレス鋼製の中間ジヨイント33も端部ジ
ゴイント34.35も棒状に構成され、それぞれに雌ネ
ジ部33a、34a、35aが形成されている。
Support member 31 made of GFRP and having a positive coefficient of thermal expansion and TFR
The support member 32 made of P and having a negative coefficient of thermal expansion is configured in a rod shape,
Male screw portions 31a and 32a are formed at both ends of each. Both the intermediate joint 33 and the end joints 34 and 35, which are made of stainless steel, are rod-shaped, and female threaded portions 33a, 34a, and 35a are formed in each of them.

支持部材31の各雄ネジ部31aを中間ジヨイント33
の雌ネジ部33aと端部ジツイント34の雌ネジ部34
aに螺合するとともに、支持部材32の各雄ネジ部32
aを中間ジヨイント33の雌ネジ部33aと端部ジヨイ
ント35の雌ネジ部35aに螺合することにより、支持
具A、を構成しである。
Connect each male threaded portion 31a of the support member 31 to the intermediate joint 33.
female threaded portion 33a of and female threaded portion 34 of end jig 34
a, and each male threaded portion 32 of the support member 32.
A is screwed into the female threaded portion 33a of the intermediate joint 33 and the female threaded portion 35a of the end joint 35 to form the support A.

なお、上記いずれの実施例においても、熱膨張率が負の
支持部材としてTFRP製のものを挙げたが、本発明は
これに限定されるものではなく、他の負の熱膨張率の繊
維強化プラスチックであってもよい。また、熱膨張率が
正の支持部材とじてGFRP製のものを挙げたが、本発
明はこれに限定されるものではなく、他の正の熱膨張率
の繊維強化プラスチックであってもよいし、あるいは、
熱膨張率が負の支持部材が繊維強化プラスチックで断熱
性を有していることから、熱膨張率が正の支持部材とし
ては金属製のものであってもよい。
In addition, in each of the above examples, a support member made of TFRP is used as a support member having a negative coefficient of thermal expansion, but the present invention is not limited to this, and other fiber-reinforced members having a negative coefficient of thermal expansion are used. It may also be made of plastic. Further, although a support member made of GFRP is mentioned as a support member having a positive coefficient of thermal expansion, the present invention is not limited thereto, and may be made of other fiber-reinforced plastics having a positive coefficient of thermal expansion. ,or,
Since the support member with a negative coefficient of thermal expansion is made of fiber-reinforced plastic and has heat insulating properties, the support member with a positive coefficient of thermal expansion may be made of metal.

G、発明の効果 この発明によれば、次の効果が発揮される。G. Effect of invention According to this invention, the following effects are exhibited.

極低温容器の支持具を、熱膨張率が正の支持部材と熱膨
張率が負の支持部材との直列連結体として構成しである
ため、極低温容器への極低温液体の注入に伴って支持具
が冷却されたとき、熱膨張率が正の支持部材の収縮に対
して、熱膨張率が負の支持部材が伸長することとなり、
その差し引きによって支持具全体としての長さ変化を抑
制することができる。
Since the support for the cryogenic container is constructed as a series connection of a supporting member with a positive coefficient of thermal expansion and a supporting member with a negative coefficient of thermal expansion, the When the support is cooled, while the support member with a positive coefficient of thermal expansion contracts, the support member with a negative coefficient of thermal expansion expands.
By subtracting the amount, changes in the length of the support as a whole can be suppressed.

したがって、支持具自体にかかる引張り応力や圧縮応力
を充分に小さくして支持具の破断を免れることができる
。その結果、耐引張り応力増加のために支持具の断面積
を大きくする必要がなく、断熱性の悪化を免れることが
できる。また、極低温液体の注入直後における極低温容
器の中心位置の変位を捲力防止することができる。
Therefore, the tensile stress and compressive stress applied to the support itself can be sufficiently reduced to avoid breakage of the support. As a result, there is no need to increase the cross-sectional area of the support in order to increase the tensile stress resistance, and deterioration of heat insulation properties can be avoided. Further, it is possible to prevent the center position of the cryogenic container from being displaced by twisting force immediately after the cryogenic liquid is injected.

なお、極低温容器が核磁気共鳴断層撮影装置の超電導マ
グネットを冷却するものである場合には、極低温容器内
の超電導マグネット自体の中心位置の変位が抑制される
から、中心磁場の均一度を精度良く保つことができるし
、極低温容器がその外側の熱シールド等に接触すること
を防止して良好な断熱状態を維持することができる。
In addition, if the cryogenic container is used to cool the superconducting magnet of a nuclear magnetic resonance tomography device, the displacement of the center position of the superconducting magnet itself inside the cryogenic container is suppressed, so the uniformity of the central magnetic field is It can be maintained with high precision, and a good thermal insulation state can be maintained by preventing the cryogenic container from coming into contact with the external heat shield or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はこの発明の第1実施例に係り、第
1図は極低温容器の支持具の一部破断の正面図、第2図
はテクノーラの化学構造式を表した図、第3図(A)は
使用対象の一例としての核磁気共鳴断層撮影装置(NM
R−CT)を示す縦断正面図、第3図(B)はその縦断
側面図、第4図(A)は核磁気共鳴断層撮影装置の他の
例を示す縦断正面図、第4図(B)はその縦断側面図で
ある。 第5図は第2実施例の極低温容器の支持具の一部破断の
正面図、第6図は第3実施例の極低温容器の支持具の一
部破断の正面図である。 第7図は従来の極低温容器の支持具の一部破断の正面図
である。 11、21.31・・・熱膨張率が正の支持部材12、
22.32・・・熱膨張率が負の支持部材第3図 第4図 第6図 第7図
1 to 4 relate to a first embodiment of the present invention, in which FIG. 1 is a front view of a partially broken support of a cryogenic container, FIG. 2 is a diagram showing the chemical structural formula of Technora, Figure 3 (A) shows a nuclear magnetic resonance tomography device (NM) as an example of a target for use.
3(B) is a longitudinal sectional front view showing the R-CT), FIG. 4(A) is a longitudinal sectional front view showing another example of the nuclear magnetic resonance tomography apparatus, and FIG. ) is its vertical side view. FIG. 5 is a partially cutaway front view of the cryogenic container support of the second embodiment, and FIG. 6 is a partially cutaway front view of the cryogenic container support of the third embodiment. FIG. 7 is a partially cutaway front view of a conventional support for a cryogenic container. 11, 21.31... Support member 12 with a positive coefficient of thermal expansion,
22.32...Supporting member with negative coefficient of thermal expansion Fig. 3 Fig. 4 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] (1)熱膨張率が正の支持部材と熱膨張率が負の支持部
材とを直列に連結してなる極低温容器の支持具。
(1) A support for a cryogenic container comprising a support member with a positive coefficient of thermal expansion and a support member with a negative coefficient of thermal expansion connected in series.
JP63118900A 1988-05-16 1988-05-16 Supporting means for cryogenic container Granted JPH01289179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118900A JPH01289179A (en) 1988-05-16 1988-05-16 Supporting means for cryogenic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118900A JPH01289179A (en) 1988-05-16 1988-05-16 Supporting means for cryogenic container

Publications (2)

Publication Number Publication Date
JPH01289179A true JPH01289179A (en) 1989-11-21
JPH0550156B2 JPH0550156B2 (en) 1993-07-28

Family

ID=14747950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118900A Granted JPH01289179A (en) 1988-05-16 1988-05-16 Supporting means for cryogenic container

Country Status (1)

Country Link
JP (1) JPH01289179A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196181A (en) * 1990-11-26 1992-07-15 Toshiba Corp Cryogenic vessel
EP0698892A1 (en) * 1994-08-23 1996-02-28 Forschungszentrum Karlsruhe GmbH Supporting element for compensating thermal expansion
JP2006319319A (en) * 2005-03-24 2006-11-24 Bruker Biospin Ag Thermally compensated cryostat structure having centering mechanism
JP2010505067A (en) * 2006-09-27 2010-02-18 レベルニク,マティーアス Containers for storing media and / or devices stored at low temperatures
CN102226953A (en) * 2011-03-30 2011-10-26 中国科学院电工研究所 Pull rod for spatial superconducting magnets
JP2012182248A (en) * 2011-02-28 2012-09-20 Japan Superconductor Technology Inc Cryogenic container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514651A (en) * 1974-07-03 1976-01-14 Hitachi Ltd
JPS61252466A (en) * 1985-05-02 1986-11-10 住友電気工業株式会社 Supporter for cryogenic refrigerant vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514651A (en) * 1974-07-03 1976-01-14 Hitachi Ltd
JPS61252466A (en) * 1985-05-02 1986-11-10 住友電気工業株式会社 Supporter for cryogenic refrigerant vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196181A (en) * 1990-11-26 1992-07-15 Toshiba Corp Cryogenic vessel
EP0698892A1 (en) * 1994-08-23 1996-02-28 Forschungszentrum Karlsruhe GmbH Supporting element for compensating thermal expansion
JP2006319319A (en) * 2005-03-24 2006-11-24 Bruker Biospin Ag Thermally compensated cryostat structure having centering mechanism
JP2010505067A (en) * 2006-09-27 2010-02-18 レベルニク,マティーアス Containers for storing media and / or devices stored at low temperatures
JP2012182248A (en) * 2011-02-28 2012-09-20 Japan Superconductor Technology Inc Cryogenic container
CN102226953A (en) * 2011-03-30 2011-10-26 中国科学院电工研究所 Pull rod for spatial superconducting magnets

Also Published As

Publication number Publication date
JPH0550156B2 (en) 1993-07-28

Similar Documents

Publication Publication Date Title
US5291169A (en) Open architecture magnetic resonance imaging superconducting magnet assembly
US20070247263A1 (en) Method of manufacturing a solenoidal magnet
US6011454A (en) Superconducting magnet suspension assembly
US4516405A (en) Supporting tie configuration for cryostat for cold shipment of NMR magnet
EP0135185B1 (en) Cryostat for nmr magnet
US9859045B2 (en) Superconducting magnet
JPH01289179A (en) Supporting means for cryogenic container
JP2000040615A (en) Superconductive magnet for making open structured magnetic resonance image
KR102539593B1 (en) Assembly comprising a cylindrical structure supported by a support structure
US5696476A (en) Open architecture magnetic resonance imaging superconducting magnet assembly
US20180283769A1 (en) Cryostat arrangement comprising a neck tube having a supporting structure and an outer tube surrounding the supporting structure to reduce the cryogen consumption
JP2018534759A (en) Support structure for HTS magnet
US10527693B2 (en) Superconducting magnet arrangement for magnetic resonance imaging scanner
US4781034A (en) Cryogenic support system
JPH0559567B2 (en)
US4622824A (en) Cryostat suspension system
JP2588284B2 (en) Superconductive magnet
US5650230A (en) Compressive strut for cryogenic applications
JPH0572109U (en) Superconducting magnet device
JPH0469493A (en) Heat insulating support member for cryogenic temperature vessel
JP2000182819A (en) Laminated composite material shell assembly
JP3855648B2 (en) Superconducting magnet load support and superconducting magnet device
JPH04294506A (en) Device adapting superconducting magnet
US4713945A (en) Turret for cryostat
JPH04266077A (en) Cryogenic device