JPH0128911B2 - - Google Patents

Info

Publication number
JPH0128911B2
JPH0128911B2 JP56053428A JP5342881A JPH0128911B2 JP H0128911 B2 JPH0128911 B2 JP H0128911B2 JP 56053428 A JP56053428 A JP 56053428A JP 5342881 A JP5342881 A JP 5342881A JP H0128911 B2 JPH0128911 B2 JP H0128911B2
Authority
JP
Japan
Prior art keywords
coupling plate
capacitive coupling
high voltage
corona
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56053428A
Other languages
Japanese (ja)
Other versions
JPS57166812A (en
Inventor
Giichi Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56053428A priority Critical patent/JPS57166812A/en
Publication of JPS57166812A publication Critical patent/JPS57166812A/en
Publication of JPH0128911B2 publication Critical patent/JPH0128911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Protection Of Static Devices (AREA)
  • Installation Of Bus-Bars (AREA)
  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 この発明は、SF6などのような高絶縁ガスを絶
縁媒体とする密閉形ガス絶縁装置に関するもので
ある。もう少し詳しく説明すれば、この発明は密
閉タンク内の高電圧導体を囲んで配設された静電
結合板に加えて、この静電結合板のまわりにロゴ
ヴスキーコイルを配設し、コロナ発生などの異常
が何処で発生したかを検出する密閉形ガス絶縁装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sealed gas insulating device using a highly insulating gas such as SF 6 as an insulating medium. To explain in more detail, this invention includes a capacitive coupling plate placed around a high voltage conductor in a sealed tank, and a Rogovski coil placed around this capacitive coupling plate to prevent corona generation. The present invention relates to a sealed gas insulating device that detects where an abnormality such as the above occurs.

従来、この種の密閉形ガス絶縁装置として第1
図に示すものがあつた。この密閉形ガス絶縁装置
では、接地された円筒状の密閉タンク1内に絶縁
媒体となるSF6のような高絶縁ガスが充填され、
またこの密閉タンク1内にスペーサ2を介して高
電圧導体3が同軸的に配設されている。4は高電
圧導体3に高圧電力を供給する電源であり、線路
インピーダンス5を介して高電圧導体3へ接続さ
れるとともに密閉タンク1へ直接接続されてい
る。短い円筒状の導体からなる静電結合板6は、
コロナ発生などの異常を検出するために、高電圧
導体3を囲んで同軸的に配設されかつ高電圧導体
3と静電的に結合されている。静電結合板6と密
閉タンク1の間には低圧コンデンサC2が接続さ
れ、この低圧コンデンサC2にはその端子間電圧
を入力とするコロナ検出部7が接続されている。
Rは低圧コンデンサC2に並列に接続された検出
抵抗である。
Conventionally, this was the first sealed gas insulator of this type.
I got what is shown in the figure. In this sealed gas insulation device, a grounded cylindrical sealed tank 1 is filled with a highly insulating gas such as SF 6 as an insulating medium.
Further, a high voltage conductor 3 is coaxially disposed within this sealed tank 1 with a spacer 2 interposed therebetween. 4 is a power source that supplies high voltage power to the high voltage conductor 3, and is connected to the high voltage conductor 3 via a line impedance 5, and is also directly connected to the sealed tank 1. The capacitive coupling plate 6 is made of a short cylindrical conductor.
In order to detect abnormalities such as the occurrence of corona, it is disposed coaxially around the high voltage conductor 3 and is electrostatically coupled to the high voltage conductor 3. A low-voltage capacitor C 2 is connected between the capacitive coupling plate 6 and the sealed tank 1, and a corona detection unit 7 is connected to the low-voltage capacitor C 2 , which receives the voltage between its terminals as input.
R is a sense resistor connected in parallel with the low voltage capacitor C2 .

以上のように構成された従来の密閉形ガス絶縁
装置において、いま、高電圧導体3上の或る位置
でコロナSが発生した場合、電源4の電圧
E0sinωt、コロナ電流is(t)およびコロナ検出部
7の入力電圧e(t)がどのような波形になるか
を第2図に示す。コロナSの発生によるコロナ電
流is(t)はbで示す急峻なパルス状の電流とし
て電源電圧E0sinωtのピーク付近で流れ、そのた
め電源電圧は短時間だけaで示すように低下す
る。この電圧は静電結合板6の静電容量C1と低
圧コンデンC2の静電容量で分圧されるが、検出
抵抗Rの抵抗値を小さく選んでおけば、コロナ検
出部7に入力する入力電圧e(t)はcで示すよ
うに高周波成分のみとなる。コロナ検出部7で
は、このようなパルスの大きさを検出することに
より、この装置全体の内部でコロナが発生してい
るかどうか、さらにはそのコロナの危険の度合な
どを知ることができるのである。
In the conventional sealed gas insulating device configured as described above, if a corona S occurs at a certain position on the high voltage conductor 3, the voltage of the power source 4
FIG. 2 shows the waveforms of E 0 sin ωt, the corona current i s (t), and the input voltage e(t) of the corona detection section 7. The corona current i s (t) due to the generation of the corona S flows as a steep pulse-like current shown by b near the peak of the power supply voltage E 0 sinωt, and therefore the power supply voltage decreases only for a short time as shown by a. This voltage is divided by the capacitance C1 of the capacitive coupling plate 6 and the capacitance of the low voltage capacitor C2 , but if the resistance value of the detection resistor R is selected to be small, it will be input to the corona detection section 7. The input voltage e(t) contains only high frequency components as shown by c. By detecting the magnitude of such pulses, the corona detection section 7 can determine whether or not corona is occurring within the entire device, as well as the degree of danger of the corona.

しかし、このような従来装置では、コロナが発
生している位置を検出できないので、コロナの発
生が検出されても何処で異常が起きているか分ら
ないため、装置全体を点検して異常位置を確認す
る必要があつた。
However, with conventional equipment like this, it is not possible to detect the position where corona is occurring, so even if corona is detected, it is not possible to tell where the abnormality is occurring, so it is necessary to inspect the entire equipment to confirm the abnormal position. I needed to.

したがつて、この発明は、上述したような従来
装置の問題を解消するためにコロナにより高周波
の電圧のみならず電流も検出できる構成にし、検
出点を境にしてその前後いずれにコロナ発生源が
あるかも検出しかつ判定できる新規な密閉形ガス
絶縁装置を提供することを目的としている。
Therefore, in order to solve the problems of the conventional device as described above, the present invention has a configuration that can detect not only high-frequency voltage but also current using corona, and it is possible to detect corona generation sources either before or after the detection point. The object of the present invention is to provide a new sealed gas insulating device that can detect and determine the presence of gas.

以下、この発明の一実施例を第3図について説
明すると、静電結合板6のまわりにはロゴヴスキ
ーコイル11が配設され、静電結合板6、ロゴヴ
スキーコイル11と密閉タンク1の間にはそれぞ
れ検出抵抗RC,RLが接続され、これら検出抵抗
RC,RLの信号を掛け合わせるための、高周波で
動作する掛算器12、この掛算器12の出力で印
加されるゲート回路13、そしてこのゲート回路
13の出力によつてコロナ発生位置およびその方
向を判定する判別部14が図示のとおり接続され
ている。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. Detection resistors R C and R L are connected between these detection resistors, respectively.
A multiplier 12 operating at high frequency for multiplying the R C and R L signals, a gate circuit 13 to which the output of the multiplier 12 is applied, and the output of the gate circuit 13 determines the corona occurrence position and its location. A determining unit 14 for determining the direction is connected as shown.

次に動作について説明する。いま、コロナSが
発生すると、第2図にbで示した急峻なコロナ電
流is(t)が流れることは前述したとおりである。
一方、高電圧導体3および密閉タンク1が同軸ケ
ーブルの形態をとり、その一部分に急峻なコロナ
電流が流れると、その部分を中心に両側にサージ
が伝播する。この線路の特性インピーダンスをZ
とし、或る点のサージの電圧および電流をそれぞ
れv(t)およびi(t)とすれば、 v(t)=±Zi(t) (1) が成り立つ。ここで±の符号はサージの伝播方向
の違いによつていずれか一方が成立する。例えば
第4図に矢印Pで示すようにi(t)の方向を決
めておけば、左から右へ伝播するサージ21に対
しては+、右から左へ伝播するサージ22に対し
ては−が対応する。第5図のi(t)の波形のう
ち実線は左から右へ伝播するサージ、破線は右か
ら左へ伝播するサージを表わしている。
Next, the operation will be explained. As described above, when the corona S occurs, the steep corona current i s (t) shown by b in FIG. 2 flows.
On the other hand, when the high voltage conductor 3 and the sealed tank 1 take the form of a coaxial cable, and a steep corona current flows through a portion thereof, a surge propagates to both sides around that portion. The characteristic impedance of this line is Z
If the surge voltage and current at a certain point are v(t) and i(t), respectively, then v(t)=±Zi(t) (1) holds true. Here, either sign of ± is established depending on the difference in the propagation direction of the surge. For example, if the direction of i(t) is determined as shown by arrow P in FIG. 4, + for surge 21 propagating from left to right, and - for surge 22 propagating from right to left. corresponds. In the waveform of i(t) in FIG. 5, the solid line represents a surge propagating from left to right, and the broken line represents a surge propagating from right to left.

いま、密閉形ガス絶縁装置内に発生したコロナ
に伴うサージが伝播したとき、装置各部にどのよ
うな電圧が誘起されるかを調べると、まず、静電
結合板6に誘起される電圧eCは、 eC=RCC1v′(t) (2) で表わされる。たゞし、v′(t)はdv(t)/dtを
意味し、C1は静電結合板6と高電圧導体3との
間の静電容量であつて、次式で表わされる。
Now, when we investigate what kind of voltage is induced in each part of the device when a surge associated with the corona generated in a closed gas insulated device propagates, we first find that the voltage e C induced in the capacitive coupling plate 6 is is expressed as e C = R C C 1 v'(t) (2). However, v'(t) means dv(t)/dt, and C1 is the capacitance between the capacitive coupling plate 6 and the high voltage conductor 3, which is expressed by the following equation.

C1=2πε0l/lnr2/r1 (3) ここでε0は真空の誘電率、lは第4図に示すよ
うに静電結合板6の長さ、そしてr1、r2はそれぞ
れ高電圧導体3、静電結合板6の半径である。
C 1 =2πε 0 l/lnr 2 /r 1 (3) Here, ε 0 is the permittivity of vacuum, l is the length of the capacitive coupling plate 6 as shown in FIG. 4, and r 1 and r 2 are These are the radii of the high voltage conductor 3 and the capacitive coupling plate 6, respectively.

式(2)によればeCの波形は、第5図に示すように
v(t)を微分した形となる。
According to equation (2), the waveform of e C is a differentiated form of v(t), as shown in FIG.

次にロゴヴスキーコイルに誘起される電圧eL
は、RLがコイルの内部インピーダンスに比べて
十分大きいとすると、 eL=Mi′(t) (4) で表わされる。たゞしi′(t)はdi(t)/dtを意
味し、Mはロゴヴスキーコイル11と高電圧導体
3との間の相互インダクタンスであつて次式で表
わされる。
Next, the voltage e L induced in the Rogovski coil is
is expressed as e L =Mi′(t) (4) assuming that R L is sufficiently larger than the internal impedance of the coil. Here, i'(t) means di(t)/dt, and M is the mutual inductance between the Rogovsky coil 11 and the high voltage conductor 3, which is expressed by the following equation.

M=nε0A/2πr3 (5) ここでnはコイルの巻数、Aおよびr3は第4図
に示すようにロゴヴスキーコイルの断面積および
平均半径である。
M=nε 0 A/2πr 3 (5) where n is the number of turns of the coil, A and r 3 are the cross-sectional area and average radius of the Rogovsky coil as shown in FIG.

式(5)によればeLの波形はi(t)を微分した形
となり、第5図に示すようにサージの進む方向に
よつて実線または破線の2通りが存在する。
According to equation (5), the waveform of e L is a differentiated form of i(t), and as shown in FIG. 5, there are two types, a solid line and a broken line, depending on the direction in which the surge advances.

掛算器12の出力w(t)は式(2)および式(4)か
ら w(t)=RCC1Mv′(t)・i(t) (6) となる。この式に式(1)を微分したものを代入する
と、 w(t)=±RCC1M/Z〔v′(t)〕2 (7) となる。ここで+、−の符号は第4図の正方向の
サージ21、負方向のサージ22にそれぞれ対応
する。すなわち、サージが伝播する方向によつて
w(t)≧0またはw(t)≦0のように分かれる。
これを第5図に実線および破線の波形で示す。し
たがつて、w(t)の正負によつてサージがどち
らの方向から検出点へ伝播してきたか、すなわち
コロナ発生装置の方向を判別することができるの
である。
The output w(t) of the multiplier 12 becomes w(t)=R C C 1 Mv'(t)·i(t) (6) from equations (2) and (4). Substituting the differential of equation (1) into this equation yields w(t)=±R C C 1 M/Z[v′(t)] 2 (7). Here, the + and - signs correspond to the positive direction surge 21 and negative direction surge 22 in FIG. 4, respectively. That is, w(t)≧0 or w(t)≦0 depending on the direction in which the surge propagates.
This is shown in FIG. 5 by solid and broken line waveforms. Therefore, depending on whether w(t) is positive or negative, it is possible to determine from which direction the surge has propagated to the detection point, that is, the direction of the corona generating device.

また、実際には、密閉形ガス絶縁装置は、入口
と出口のところで特性インピーダンスが不連続な
変化をするので、サージはこれらの部分で反射し
て元の方向に帰つてゆく。このため掛算器12の
出力w(t)の符号は反射されたサージが戻つて
くると反転するという現象がでてくる。このよう
な場合、コロナ源の方向の判定は、サージの最初
の第1波を捉えて行なう必要がある。ゲート回路
13はこのために設けられ、コロナの発生に伴な
う異常信号の発生後、或る一定時間経過すると閉
じてどんな入力信号も阻止する。なお、ゲート回
路13が閉じるまでの前述した一定時間は、異常
信号が検出部と装置端部の間を往復する時間以下
にしなければならない。判別部14はゲート回路
13の出力によりコロナ源の大きさおよびその方
向を判別する。
Furthermore, in reality, in a sealed gas insulated device, the characteristic impedance changes discontinuously at the inlet and outlet, so the surge is reflected at these parts and returns to the original direction. Therefore, a phenomenon occurs in which the sign of the output w(t) of the multiplier 12 is reversed when the reflected surge returns. In such a case, the direction of the corona source needs to be determined by capturing the first wave of the surge. A gate circuit 13 is provided for this purpose, and closes to block any input signal after a certain period of time has elapsed after an abnormal signal is generated due to the occurrence of corona. Note that the above-mentioned certain period of time until the gate circuit 13 closes must be less than or equal to the time it takes for the abnormal signal to travel back and forth between the detection section and the end of the device. The determining unit 14 determines the size and direction of the corona source based on the output of the gate circuit 13.

上述した実施例では検出部すなわち静電結合板
6、ロゴヴスキーコイル11、検出抵抗RCおよ
びRL、掛算器12、ゲート回路13並びに判別
部14を1箇所に配置した例であるが、これを適
宜幾つかの個所に設けることによつてコロナ源の
発生位置を一層細かく判別することができる。
In the embodiment described above, the detection section, that is, the capacitive coupling plate 6, the Rogovski coil 11, the detection resistors R C and R L , the multiplier 12, the gate circuit 13, and the discrimination section 14 are arranged in one place. By providing these at several locations as appropriate, the location of the corona source can be determined more precisely.

また、上述した実施例は離相形すなわち高電圧
導体が同軸的に配置された例であるが、3相共単
一の密閉タンクに収容された3相一括形の場合に
もこの発明を適用することができ、その際、静電
結合板およびロゴヴスキーコイルは3相の高電圧
導体全体を一まとめにして取り囲むようにすれ
ば、上述した実施例と同様の効果が得られること
は容易に理解できるであろう。
Further, although the above-mentioned embodiment is a phase-separated type, that is, an example in which the high voltage conductors are arranged coaxially, the present invention can also be applied to a three-phase integrated type in which all three phases are housed in a single sealed tank. In this case, if the capacitive coupling plate and the Rogowski coil are arranged to surround the entire three-phase high voltage conductor, it is easy to obtain the same effect as in the above embodiment. You will understand.

以上の説明から明らかなように、この発明によ
れば、静電結合板に加えてロゴヴスキーコイルを
配設し、コロナ発生に伴うサージの伝播方向に着
目してコロナ源の位置も判別できるようにしたの
で、装置の保守、点検を合理化できるというすぐ
れた効果がある。
As is clear from the above description, according to the present invention, a Rogovsky coil is provided in addition to the capacitive coupling plate, and the position of the corona source can be determined by focusing on the propagation direction of the surge accompanying corona generation. This has the excellent effect of streamlining equipment maintenance and inspection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の密閉形ガス絶縁装置の概略構成
を示す一部切欠き斜視図、第2図は第1図に示し
た密閉形ガス絶縁装置の動作説明用電圧および電
流波形図、第3図はこの発明の一実施例の概略構
成を示す一部切欠き斜視図、第4図は第3図の部
分拡大図、第5図は第3図および第4図に示した
実施例の動作説明用電圧および電流波形図であ
り、同一部分は同一符号で示す。 1……密閉タンク、3……高電圧導体、6……
静電結合板、11……ロゴヴスキーコイル、12
……掛算器、13……ゲート回路、14……判別
部、RCとRL……検出抵抗。
Fig. 1 is a partially cutaway perspective view showing the schematic configuration of a conventional closed type gas insulating device, Fig. 2 is a voltage and current waveform diagram for explaining the operation of the closed type gas insulating device shown in Fig. 1, and Fig. 3 The figure is a partially cutaway perspective view showing a schematic configuration of an embodiment of the present invention, FIG. 4 is a partially enlarged view of FIG. 3, and FIG. 5 is an operation of the embodiment shown in FIGS. 3 and 4. It is a voltage and current waveform diagram for explanation, and the same parts are indicated by the same symbols. 1... Sealed tank, 3... High voltage conductor, 6...
Electrostatic coupling plate, 11...Rogovsky coil, 12
... Multiplier, 13 ... Gate circuit, 14 ... Discrimination section, R C and R L ... Detection resistor.

Claims (1)

【特許請求の範囲】 1 密閉タンク内に絶縁媒体を充填するとともに
高電圧導体およびこの高電圧導体を囲んで静電結
合板を配設した密閉形ガス絶縁装置において、前
記静電結合板のまわりに配設されたロゴヴスキー
コイルと、前記静電結合板および前記ロゴヴスキ
ーコイルの出力が印加されて高周波で動作する掛
算器と、この掛算器の出力の極性により異常信号
の発生源の方向を判別する判別部とを備えたこと
を特徴とする密閉形ガス絶縁装置。 2 密閉タンク内に絶縁媒体を充填するとともに
高電圧導体およびこの高電圧導体を囲んで静電結
合板を配設した密閉形ガス絶縁装器において、前
記静電結合板のまわりに配設されたロゴヴスキー
コイルと、前記静電結合板および前記ロゴヴスキ
ーコイルの出力が印加されて高周波で動作する掛
算器と、この掛算器の出力発生後或る一定時間経
過すると閉じて前記出力を阻止するゲート回路
と、このゲート回路を通つた前記出力の極性によ
り異常信号の発生源の方向を判別する判別部とを
備えたことを特徴とする密閉形ガス絶縁装置。
[Scope of Claims] 1. In a sealed gas insulating device in which an insulating medium is filled in a sealed tank and a high voltage conductor and a capacitive coupling plate are arranged surrounding the high voltage conductor, the area around the capacitive coupling plate is a Rogovski coil disposed in the electrostatic coupling plate and a multiplier that operates at a high frequency by applying the outputs of the capacitive coupling plate and the Rogovsky coil; 1. A closed type gas insulating device, comprising: a determining section that determines a direction. 2. In a sealed gas insulating equipment in which an insulating medium is filled in a closed tank and a high voltage conductor and a capacitive coupling plate are arranged surrounding the high voltage conductor, a Rogovski coil, a multiplier that operates at a high frequency when the outputs of the capacitive coupling plate and the Rogovski coil are applied, and the multiplier closes to block the output after a certain period of time has elapsed after the output of the multiplier is generated. What is claimed is: 1. A closed type gas insulating device comprising: a gate circuit for determining the direction of a source of an abnormal signal based on the polarity of the output that has passed through the gate circuit;
JP56053428A 1981-04-06 1981-04-06 Enclosed gas insulating device Granted JPS57166812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56053428A JPS57166812A (en) 1981-04-06 1981-04-06 Enclosed gas insulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56053428A JPS57166812A (en) 1981-04-06 1981-04-06 Enclosed gas insulating device

Publications (2)

Publication Number Publication Date
JPS57166812A JPS57166812A (en) 1982-10-14
JPH0128911B2 true JPH0128911B2 (en) 1989-06-06

Family

ID=12942562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56053428A Granted JPS57166812A (en) 1981-04-06 1981-04-06 Enclosed gas insulating device

Country Status (1)

Country Link
JP (1) JPS57166812A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238418A (en) * 1987-01-26 1989-09-22 Yasuhiro Fukunaga Method of forecasting electrical accident related to discharge phenomenon
WO2014199432A1 (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Fault location device for gas insulated switchgear

Also Published As

Publication number Publication date
JPS57166812A (en) 1982-10-14

Similar Documents

Publication Publication Date Title
EA000068B1 (en) A device for sensing of electric discharges in a test object
CN110346688A (en) A kind of high pressure complexity cable fault quick segmentation differentiates and localization method
JPH0128911B2 (en)
GB1235705A (en) Apparatus for testing electrical insulation
US6104181A (en) Voltmeter suitable for medium/high-voltage installations, with a surface wave device
JPH03251011A (en) Partial discharge detector
GB1198637A (en) Continuous Monitoring of Corona on Power Cables.
JPH02296161A (en) Method for detecting partial discharge
Harada et al. Resistor Divider with Dividing Element on High Votage Side for Impulse Voltage Measurements
JPS62245976A (en) Detecting device for abnormality of electric equipment
JP2856523B2 (en) Voltage detector
JPH04215075A (en) Partial discharge detecting device for gas insulated circuit breaker
JP4089129B2 (en) Insulation diagnostic bridge circuit
JPH0690228B2 (en) Surge voltage measuring device
JPS596137Y2 (en) Insulation monitoring device for rotating machine windings
JPH11202001A (en) Voltage detector
JPH043524Y2 (en)
JPS63186512A (en) Grounding device for compact switchgear
JPH0672905B2 (en) Measuring method for the detection of partial discharges and apparatus for implementing the method
JPH03261313A (en) Partial discharge detector
JPH0318952Y2 (en)
JPH03246473A (en) Partial discharge measuring method
JPH0156709B2 (en)
JPH07117564B2 (en) Cable insulation deterioration point location method
JP2002033033A (en) Detecting device of conductive foreign matter for high voltage apparatus