JPH01289025A - Gas insulation bushing - Google Patents

Gas insulation bushing

Info

Publication number
JPH01289025A
JPH01289025A JP11701288A JP11701288A JPH01289025A JP H01289025 A JPH01289025 A JP H01289025A JP 11701288 A JP11701288 A JP 11701288A JP 11701288 A JP11701288 A JP 11701288A JP H01289025 A JPH01289025 A JP H01289025A
Authority
JP
Japan
Prior art keywords
conductor
passage
insulating
cooling medium
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11701288A
Other languages
Japanese (ja)
Inventor
Seiji Azuma
誠司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11701288A priority Critical patent/JPH01289025A/en
Publication of JPH01289025A publication Critical patent/JPH01289025A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the heat generated at a conductor of bushing from entering into a low temperature superconducting applied apparatus by providing a passage for a cooling medium in a conductor, and supporting the conductor by an insulator in which a passage for the cooling medium is provided, and connecting extermally a heat exchanger and a pump for the cooling medium by a cooling medium passage. CONSTITUTION:An insulative cooling medium is sealed in a circuit. The sealed cooling medium is caused to flow through a pipe line 15a by a pump 17 and passes through a inflow passage 18 in a boss 14 of a tank 13 and passes through a inflow passage 12 provided in a supporting insulator 10 and then reaches a conductor cooling medium passage 11 provided in a conductor 5. The Joule heat generated at the conductor 5 is taken away here by the insulative cooling medium to cool the conductor 5. After the insulative cooling medium circulate once the passage 11 in the conductor 5, it passes through the outflow passage 12' in the supporting insulator 10 and passes through the outflow passage 18' in the boss of the tank 13 and led outflow the bushing. Further, it enters a heat exchanger 16 via a pipe line 15b and gives heat outside and returns to pump 17 via a pipe line 15c.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、送電システム用低温超伝導応用機器の気中引
き出し部に使用するガス絶縁気中ブッシングに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a gas-insulated air bushing used in an air extraction part of low-temperature superconducting applied equipment for power transmission systems.

(従来の技術) 近年、大都市部、及びその周辺部におけるエネルギー需
要が年々増加する傾向にある。
(Prior Art) In recent years, the demand for energy in metropolitan areas and their surrounding areas has been increasing year by year.

この需要を満たすために、都市近郊には大型の火力発電
所、遠隔地に原子力発電所の建設が行われ、今後も予定
されている。遠隔地がらの電気エネルギーの送電には、
送電損失を極カ抑える目的でてきるだけ高い電圧で送電
するのが有利である。
To meet this demand, large thermal power plants near cities and nuclear power plants in remote areas are being built, and more are planned in the future. For the transmission of electrical energy from remote areas,
It is advantageous to transmit power at as high a voltage as possible in order to minimize transmission losses.

現在我国の送電電圧は最高550KVで、長距離の送電
にはこの電圧が使用されている。今後、さらに送電電圧
を上げて100OKVの送電系統も計画されているとこ
ろである。
Currently, the maximum power transmission voltage in Japan is 550KV, and this voltage is used for long-distance power transmission. In the future, there are plans to further increase the transmission voltage to a 100 OKV transmission system.

一方、送電電圧を上げて送電損失を下げる方法と別な方
法に、近年自重しい技術の発展をしている超伝導技術を
利用した低損送電系統システムに大きな期待が寄せられ
ている。
On the other hand, high expectations are being placed on low-loss power transmission system systems that utilize superconducting technology, which has seen significant technological development in recent years, as an alternative method to increasing power transmission voltage and lowering power transmission losses.

現在すでに、液体ヘリウム(沸点4K)を冷媒とした超
伝導変圧器、超伝導発電機等のプロトタイプが作成され
て実用化を日桁している。また。
Prototypes of superconducting transformers, superconducting generators, etc. using liquid helium (boiling point 4K) as a refrigerant have already been created and are on the verge of being put into practical use. Also.

液体ヘリウムに比べて低置な液体窒素(沸点77K)温
度以上で超伝導現象を示す物質も発見され、さらに室温
領域での超伝導現象もすでに発見されていて今後エネル
ギー送電分野での大きな発展が期待されている。
Substances that exhibit superconductivity at temperatures above liquid nitrogen (boiling point 77K), which is lower than liquid helium, have also been discovered, and superconductivity at room temperature has already been discovered, which will lead to major developments in the field of energy transmission in the future. It is expected.

超伝導送電系統システムが完成されるまでにはかなりの
年月を要するものと考えられるが、単一機器、例えば変
圧器等を超伝導化してエネルギー損失を少なくすること
は大きなメリットがあると考えられる。現状の送電系統
システムの中に低損失の代替品としてこのような超伝導
応用機器が入ってくるものと考えられる。
Although it will take a considerable amount of time to complete a superconducting power transmission system, it is believed that there are great benefits to reducing energy loss by making a single device, such as a transformer, superconducting. It will be done. It is thought that such superconducting applied equipment will be introduced into the current power transmission system as a low-loss alternative.

従来の送電機器の気中引き出し部には1通常第3図に示
すような、気中引き出し用のブッシングを使用している
。すなわち、絶縁性のガスを満たした碍管4が碍管上部
フランジ3と碍管下部フランジ6に取付けられ、前記碍
管上部フランジ3は、上部フランジ2とガスの密封性を
保つようバッキングを介して取付けられる。前記上部フ
ランジ2には、電流流通用の送電線を取付けるための端
子板1と、前記碍管4と同軸なる位置に電流流通用の導
体5が接続している。前記碍管下部フランジ6は、下部
フランジ7とガスの密封性を保つよう・にバッキングを
介して取付けられる。前記下部フランジ7には、前記碍
管4の内部に位置するように電界緩和用の内部シールド
8と、気中に位置するように電界緩和用の気中シールド
9が取付けられている。またガスタンク13が前記下部
フランジ7の碍管4の取付けられている側と逆側にガス
の密封性を保つようにバッキングを介して取付けられて
いる。
A bushing for air extraction as shown in FIG. 3 is usually used in the air extraction part of conventional power transmission equipment. That is, an insulator tube 4 filled with an insulating gas is attached to an insulator tube upper flange 3 and an insulator tube lower flange 6, and the insulator tube upper flange 3 is attached to the upper flange 2 via a backing so as to maintain gas-tightness. A terminal plate 1 for attaching a power transmission line for current flow and a conductor 5 for current flow are connected to the upper flange 2 at a position coaxial with the porcelain tube 4. The insulator lower flange 6 is attached to the lower flange 7 via a backing so as to maintain gas-tightness. Attached to the lower flange 7 are an internal shield 8 for alleviating the electric field located inside the insulator tube 4, and an air shield 9 for alleviating the electric field located in the air. Further, a gas tank 13 is attached to the side of the lower flange 7 opposite to the side on which the insulator tube 4 is attached via a backing so as to maintain gas tightness.

(発明が解決しようとする課Iiり 超伝導応用の送変電機を従来型系統に接続する場合、気
中への引き出し部を設ける必要がある。
(Issue Ii that the invention seeks to solve) When connecting a superconducting power transmission and substation to a conventional system, it is necessary to provide a lead-out part to the atmosphere.

低温超伝導応用機器においては、外部からの熱の侵入が
、機器の性能を大きく左右する要因となるものと考えら
れる。従来機器の気中への引き出し部は前項で説明した
ようなガス絶縁ブッシングが使用されている。この場合
電流流通によってガス中の導体5にジュール熱が発生し
て導体が熱せられ温度が上昇する。その結果このような
従来型のガス絶縁ブッシングを低温超伝導応用機器に接
続した場合、ブッシング導体部からの熱が接続部から1
機器内に侵入して、冷却性能ひいては超伝導応用機器の
性能に悪影響を与えるものと考えられる。従ってこのよ
うな従来型のガス絶縁ブッシングを使用することは出来
ない。
In low-temperature superconducting applied equipment, the intrusion of heat from the outside is considered to be a factor that greatly affects the performance of the equipment. Gas insulated bushings as explained in the previous section are used for the parts of conventional equipment that are drawn out into the air. In this case, the current flow generates Joule heat in the conductor 5 in the gas, heating the conductor and increasing its temperature. As a result, when such a conventional gas-insulated bushing is connected to low-temperature superconducting application equipment, the heat from the bushing conductor is transferred from the connection part by 1.
It is thought that it may enter the equipment and adversely affect the cooling performance and ultimately the performance of superconducting application equipment. Therefore, it is not possible to use such conventional gas insulating bushings.

本発明は、ガス絶縁ブッシングの導体で発生するジュー
ル熱が低温超伝導応用機器へ侵入することを防止し、低
温超伝導機器の性能を落とすことのない気中引き出し用
のガス絶縁ブッシングを提供することを目的とする。
The present invention provides a gas-insulated bushing for air extraction that prevents Joule heat generated in the conductor of the gas-insulated bushing from entering low-temperature superconducting applied equipment and does not reduce the performance of the low-temperature superconducting equipment. The purpose is to

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため、すなわちガス絶縁ブッシング
の導体にて発生するジュール熱を低温超伝導機器の内部
へ侵入するのを極力抑えるために、導体内部に冷却用冷
媒の通路を設け、外部から冷媒を循環させるための冷媒
の通路を設けられた絶縁物によって導体を支持し、外部
には冷媒の熱交換器及び冷媒循環用のポンプが冷媒流路
によって接続されていることを特徴とするものである。
(Means for solving the problem) In order to achieve the above purpose, that is, to suppress as much as possible the Joule heat generated in the conductor of the gas-insulated bushing from entering the inside of the low-temperature superconducting equipment, a cooling device is installed inside the conductor. A conductor is supported by an insulator provided with a refrigerant passage for circulating the refrigerant from the outside, and a refrigerant heat exchanger and a pump for refrigerant circulation are connected to the outside by the refrigerant flow path. It is characterized by the fact that

(作 用) 本発明のガス絶縁ブッシングにおいては、導体内部に設
けた冷却用冷媒通路に、外部にある冷媒循環用のポンプ
を動作させることにより、絶縁性冷媒を循環させ、電流
流通時に導体に発生するジュール熱を絶縁性冷媒によっ
て奪い導体を冷却し、ブッシング外部に設けられた絶縁
性冷媒用熱交換器によりブッシング外部へ熱を放出する
。こうして、導体での発生したジュール熱が低温超伝導
機器内部への熱の侵入を抑制することができる。
(Function) In the gas insulated bushing of the present invention, the insulating refrigerant is circulated through the cooling refrigerant passage provided inside the conductor by operating an external refrigerant circulation pump, and the insulating refrigerant is circulated through the cooling refrigerant passage provided inside the conductor. The generated Joule heat is absorbed by an insulating refrigerant to cool the conductor, and the heat is released to the outside of the bushing by an insulating refrigerant heat exchanger provided outside the bushing. In this way, it is possible to suppress the Joule heat generated in the conductor from entering the inside of the low-temperature superconducting device.

(実施例) 進んで本発明のガス絶縁ブッシングの一実施例を第一図
を用いて説明する。
(Example) Next, an example of the gas insulating bushing of the present invention will be explained using FIG.

なお、従来の技術と同一部分については同一符号を付し
て説明を省略する。
Note that the same parts as those in the prior art are given the same reference numerals and the description thereof will be omitted.

第1図において、ブッシング導体5に絶縁性冷媒流路1
1を設け、この絶縁性冷媒流路11は導体5の中を一巡
するように構成されている。また記前絶縁性冷媒流路1
1には流入口19と流出口19′ が構成されている。
In FIG. 1, an insulating refrigerant channel 1 is connected to a bushing conductor 5
1 is provided, and this insulating refrigerant flow path 11 is configured to go around the inside of the conductor 5. Further, the insulating refrigerant flow path 1
1 has an inlet 19 and an outlet 19'.

前記導体5に構成された前記流入口20と流出口20′
は支持絶縁物10に構成されたと流入路12と流出路1
2′に接続され、絶縁性冷媒が外部に漏れないように取
付けられている。またタンク13には、流入路18と流
出路18’が構成されたボス14が取付けられていて、
前記支持絶縁物10に構成された流入路12と流出路1
2′ が前記ボス14に構成された流入路18と流出路
18′に絶縁性冷媒が外部に漏れないように接続されて
いる。前記支持絶縁物10は前記導体5を前記タンク1
3に機械的に支持し、また前記導体5を前記タンク13
から電気的に絶縁するように構成されている。前記ボス
14に構成された前記流入路18と流出路18′の大気
側には流入口20と流出口20′ が構成されている。
The inlet 20 and the outlet 20' configured in the conductor 5
are formed in the support insulator 10, the inflow passage 12 and the outflow passage 1.
2', and is installed to prevent the insulating refrigerant from leaking to the outside. Further, a boss 14 having an inlet passage 18 and an outlet passage 18' is attached to the tank 13.
An inflow path 12 and an outflow path 1 formed in the support insulator 10
2' is connected to an inlet passage 18 and an outlet passage 18' formed in the boss 14 to prevent the insulating refrigerant from leaking to the outside. The support insulator 10 connects the conductor 5 to the tank 1.
3, and the conductor 5 is mechanically supported in the tank 13.
It is configured to be electrically insulated from the An inlet 20 and an outlet 20' are formed on the atmosphere side of the inlet passage 18 and the outlet passage 18' formed in the boss 14.

前記流入口20は、外部に設けられたポンプエフに管路
15aによって接続されている。また前記流出口20’
は外部に設けられた熱交換器16に管路tsbで接続さ
れている。
The inflow port 20 is connected to an externally provided pump F through a conduit 15a. In addition, the outlet 20'
is connected to a heat exchanger 16 provided outside by a pipe line tsb.

前記ポンプ17と前記熱交換器16は管路15cによっ
て接続されている。絶縁性冷媒が密封され、前記ポンプ
17、前記導体5.前記熱交換器16の間を循環するよ
うに構成されている。
The pump 17 and the heat exchanger 16 are connected by a pipe line 15c. An insulating refrigerant is sealed, and the pump 17, the conductor 5. It is configured to circulate between the heat exchangers 16.

このように構成された本実施例においては、導体冷却用
の流路をブッシング導体内に設けることによって、低温
超伝導機器の気中引き出し部用の。
In this embodiment configured as described above, a flow path for cooling the conductor is provided in the bushing conductor, so that the flow path for cooling the conductor is used for the air extraction part of the low temperature superconducting equipment.

導体部で発生する熱が低温超伝導機器へ侵入するのを抑
えるガス絶縁ブッシングを作成することができる。
It is possible to create a gas-insulated bushing that suppresses the heat generated in the conductor from entering low-temperature superconducting equipment.

すなわち、絶縁性の冷媒が前記構成説明の項で説明した
循環路に密封されている。密封された絶縁性の冷媒はポ
ンプ17によって管路15aを流れ。
That is, an insulating refrigerant is sealed in the circulation path described in the section of the configuration description. The sealed insulating refrigerant flows through the conduit 15a by the pump 17.

タンク13のボス14内の流入路18を通過し支持絶縁
物10に設けられた支持絶縁10の流入路12を通過し
It passes through the inlet passage 18 in the boss 14 of the tank 13 and passes through the inlet passage 12 of the support insulator 10 provided in the support insulator 10 .

導体5の内部に設けられた導体冷媒流路11に達する。The conductor refrigerant flow path 11 provided inside the conductor 5 is reached.

ここで電流通電時に導体5に発生するジュール熱を、導
体冷媒流路11内に循環する絶縁性冷媒が奪うことによ
って導体5を冷却する。絶縁性冷媒は導体5内の導体冷
媒流路11を一巡し、支持絶縁物lO内の流出路12′
 を通過しタンク13のボス14内の流出路18′ を
通過してブッシング外部へ導かれる。さらに管路15b
を介して熱交換器16内に入り、ここでブッシング導体
5で奪ってきた熱を外部に排出し、管路15cを介して
ポンプ17に戻る。
Here, the conductor 5 is cooled by absorbing Joule heat generated in the conductor 5 when current is applied by the insulating refrigerant circulating in the conductor refrigerant flow path 11. The insulating refrigerant goes around the conductor refrigerant flow path 11 in the conductor 5, and flows through the outflow path 12' in the support insulator lO.
It passes through the outflow passage 18' in the boss 14 of the tank 13 and is led to the outside of the bushing. Furthermore, the pipe line 15b
The heat exchanger 16 enters the heat exchanger 16 through the bushing conductor 5, where the heat taken away by the bushing conductor 5 is discharged to the outside, and returns to the pump 17 through the conduit 15c.

図中矢印は絶縁性冷媒の流れを示している。Arrows in the figure indicate the flow of the insulating refrigerant.

上記のように、導体内部に絶縁性冷媒をブッシング外部
よりli環させることにより、電流流通時に発生するジ
ュール熱を導体から容易に取り去ることが可能となる。
As described above, by circulating the insulating refrigerant inside the conductor from the outside of the bushing, it becomes possible to easily remove Joule heat generated during current flow from the conductor.

第21i!!lに他の実施例について示す、この実施例
においては、第1図中の支持絶縁物の替わりに円盤状の
支持絶縁物10により導体5は支持されていて、絶縁性
冷媒の流路として流入路12と流出路12′ が相対す
る方向に設けられている。また、前記流入路12と流出
路12′に接続するよう流入路18と流出路18′ を
持つボス14.14’がタンク13に取付けられている
0図中矢印は絶縁性冷媒の流れを示している。
21st i! ! 1 shows another embodiment. In this embodiment, the conductor 5 is supported by a disc-shaped support insulator 10 instead of the support insulator in FIG. The channel 12 and the outlet channel 12' are provided in opposite directions. Further, a boss 14.14' having an inlet passage 18 and an outlet passage 18' is attached to the tank 13 so as to be connected to the inlet passage 12 and the outlet passage 12'. ing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のガス絶縁ブッシングによれ
ば、低温超伝導機器の気中引き出し部に用いるブッシン
グに対して電流流通によって発生する熱の低温超伝導機
器への侵入を抑制する高性能の気中引き出し用ガス絶縁
ブッシングを提供することができる。
As explained above, according to the gas insulated bushing of the present invention, the bushing used for the air extraction part of low temperature superconducting equipment has a high performance that suppresses the intrusion of heat generated by current flow into the low temperature superconducting equipment. A gas insulating bushing for air extraction can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガス絶縁ブッシングの断面図、第
2図は本発明による他の実施例によるガス絶縁ブッシン
グの断面図、第3図は従来のガス絶縁ブッシングの断面
図である。 1・・・端子板       2・・・上部フランジ3
・・・碍管上部フランジ  4・・・碍管5・・・導体
        6・・・碍管下部フランジ7・・・下
部フランジ    8・・・内部シールド9・・・気中
シールド    10・・・支持絶縁物11・・・導体
冷媒流路    12・・・流入路12′ ・・・流出
路      13・・・タンク14・・・ボス   
    14・11.ボス15a・・・管路     
  15b・・・管路15c・・・管路       
16・・・熱交換器17・・・ポンプ       1
8・・・流入路18′・・・流出路      19・
・・流入口(導体)19′・・・流出口(導体)   
 20・・・流入口(ボス)20′・・・流出口(ボス
) 代理人 弁理士 則 近 憲 佑 同    第子丸   健 第2図 第3図
FIG. 1 is a sectional view of a gas insulating bushing according to the present invention, FIG. 2 is a sectional view of a gas insulating bushing according to another embodiment of the present invention, and FIG. 3 is a sectional view of a conventional gas insulating bushing. 1... Terminal board 2... Upper flange 3
... Insulator tube upper flange 4 ... Insulator tube 5 ... Conductor 6 ... Insulator pipe lower flange 7 ... Lower flange 8 ... Internal shield 9 ... Air shield 10 ... Support insulator 11 ...Conductor refrigerant flow path 12...Inflow path 12'...Outflow path 13...Tank 14...Boss
14・11. Boss 15a... conduit
15b...Pipeline 15c...Pipeline
16...Heat exchanger 17...Pump 1
8... Inflow channel 18'... Outflow channel 19.
...Inflow port (conductor) 19'...Outflow port (conductor)
20... Inflow port (boss) 20'... Outflow port (boss) Agent Patent attorney Noriyuki Chika Ken Yudo Daishimaru Ken Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 絶縁性ガスを満たした碍管内に、この碍管と同軸に中心
導体を挿通して配設したガス絶縁ブッシングにおいて、
前記中心導体に絶縁性冷媒が流れる流路を設け、さらに
前記中心導体に絶縁性冷媒の流入口と流出口を設け、こ
れが絶縁性冷媒の流入路、流出路を設けられた支持絶縁
物と前記導体の流入口と流出口に前記支持絶縁物の流入
路と流出路を接続するように取付けられ、さらに前記支
持絶縁物の前記中心導体との接続部と反対側は、前記碍
管の下部に取付けられたタンクに設けられた、絶縁性冷
媒の流入路、流出路が構成されているボスに、前記絶縁
物の絶縁性冷媒の流入路と流出路と前記ボスの流入路、
流出路が接続するように取付けられていて、前記ボスの
絶縁性冷媒の流入路と流出路の大気側にはそれぞれ絶縁
性冷媒の流入口と流出口を備え、流入口と外部に設けら
れたポンプに管路で接続され、流出口は外部に設けられ
た熱交換器に管路で接続され、前記ポンプと前記熱交換
器が管路で接続されていて、これらの流路全てに絶縁性
冷媒が密封されていることを特徴とするガス絶縁ブッシ
ング。
In a gas insulated bushing, a central conductor is inserted coaxially with the insulating pipe into an insulating pipe filled with insulating gas.
The center conductor is provided with a flow path through which an insulating refrigerant flows, and the center conductor is further provided with an inlet and an outlet for the insulating refrigerant, and this connects the support insulator provided with the insulating refrigerant inlet and outlet path, and The supporting insulator is attached to the inlet and outlet of the conductor so as to connect the inlet and outlet passages of the supporting insulator, and the supporting insulator is attached to the lower part of the insulator tube on the opposite side of the connecting portion with the center conductor. an inflow path and an outflow path for the insulating refrigerant of the insulator, and an inflow path of the boss, which is provided in a tank provided with an insulating refrigerant inflow path and an outflow path;
The insulating refrigerant inlet and outlet are installed on the atmospheric side of the insulating refrigerant inlet and outlet of the boss, respectively, and the insulating refrigerant inlet and the outlet are connected to each other. It is connected to the pump by a pipe line, the outlet is connected to an external heat exchanger by a pipe line, the pump and the heat exchanger are connected by a pipe line, and all of these flow paths are insulated. A gas insulated bushing characterized by hermetically sealed refrigerant.
JP11701288A 1988-05-16 1988-05-16 Gas insulation bushing Pending JPH01289025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11701288A JPH01289025A (en) 1988-05-16 1988-05-16 Gas insulation bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11701288A JPH01289025A (en) 1988-05-16 1988-05-16 Gas insulation bushing

Publications (1)

Publication Number Publication Date
JPH01289025A true JPH01289025A (en) 1989-11-21

Family

ID=14701268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11701288A Pending JPH01289025A (en) 1988-05-16 1988-05-16 Gas insulation bushing

Country Status (1)

Country Link
JP (1) JPH01289025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692399A1 (en) * 1992-06-15 1993-12-17 Hubbell Inc Insulator for transporting cooling fluid.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692399A1 (en) * 1992-06-15 1993-12-17 Hubbell Inc Insulator for transporting cooling fluid.
US5637827A (en) * 1992-06-15 1997-06-10 Hubbell Incorporated Insulator with internal passageway

Similar Documents

Publication Publication Date Title
CA2192533C (en) Terminal for connecting a super-conducting multiphase cable to a room temperature electrical equipment
RU2452071C2 (en) End connection assembly
Miller et al. An overview of the 45-T hybrid magnet system for the new National High Magnetic Field Laboratory
KR20120127271A (en) Contact element intended for a superconducting cable unit
CN101346779B (en) Cooling of high voltage devices
US7928321B2 (en) Current lead for superconducting apparatus
CN107134767B (en) A kind of high-voltage large current contact conductor applied under big temperature gradient conditions
CN109861163A (en) Three-phase coaxial superconducting cable turns the switching device and forwarding method of three core hyperconductive cables
US5371651A (en) Power semiconductor valve device for outdoor location
JPH01289025A (en) Gas insulation bushing
JP2008205463A (en) Current limiter having bushing for connecting superconducting components in ultralow-temperature container and external circuit
US20050081538A1 (en) Cryogenic compressor enclosure device and method
US5319154A (en) Method of cooling a current feed for very low temperature electrical equipment and device for implementing it
JP2023549483A (en) Suspended superconducting transmission line
JPS6233759B2 (en)
KR20170049891A (en) Terminal device for superconducting cable
JP2002075082A (en) Superconducting system for electric energy transmission and transformation
RU208602U1 (en) Superconducting current limiting device for voltage class up to 1000 V
CN102386580A (en) Busbar, method for cooling thereof and electrical apparatus
JPH033211A (en) Electrical equipment with cooler
JPH01122306A (en) Gas-insulated switching device
JPH09120916A (en) Gas-cooled stationary induction machine
Miele et al. ATLAS magnet common cryogenic, vacuum, electrical and control systems
JPH1012058A (en) Superconductive electrical energy transmission cable
JPS6141368Y2 (en)