JPH0128893B2 - - Google Patents

Info

Publication number
JPH0128893B2
JPH0128893B2 JP56028533A JP2853381A JPH0128893B2 JP H0128893 B2 JPH0128893 B2 JP H0128893B2 JP 56028533 A JP56028533 A JP 56028533A JP 2853381 A JP2853381 A JP 2853381A JP H0128893 B2 JPH0128893 B2 JP H0128893B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
component semiconductor
infrared
component
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56028533A
Other languages
Japanese (ja)
Other versions
JPS57142527A (en
Inventor
Hiroshi Takigawa
Kunihiro Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2853381A priority Critical patent/JPS57142527A/en
Publication of JPS57142527A publication Critical patent/JPS57142527A/en
Publication of JPH0128893B2 publication Critical patent/JPH0128893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は赤外線検知器、特に異なる波長帯の赤
外線検知能力をそなえた赤外線検知器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared detector, and particularly to an infrared detector having infrared detection capabilities in different wavelength bands.

目標物体から放射された赤外線を検知すること
によつて該目標物体の検知、認識を行う赤外線機
器においては、該目標物体を識別する能力を高め
るために、応答波長帯が互いに異なる赤外線検知
素子の対を検知器内で近接して配設した赤外線検
知器の使用が望ましい。これは白黒テレビよりも
カラーテレビの方が、色の違いによる識別という
機能が加わるために、検出できる情報量がそれだ
け増加するものと同じことであつて、最近では上
記のような赤外線検知器の開発が盛んに行われて
いる。
Infrared devices that detect and recognize a target object by detecting infrared rays emitted from the target object use infrared sensing elements with different response wavelength bands to improve the ability to identify the target object. It is preferable to use an infrared detector with pairs placed close together within the detector. This is similar to the fact that color TVs have the ability to distinguish between different colors, which increases the amount of information that can be detected compared to black and white TVs. Development is actively underway.

第1図はこのような赤外線検知器にとつては望
ましい2つの応答波長帯を有する赤外線検知素子
の理想的分光感度の一例を示したものであつて、
長波長の赤外線検出用検知素子の分光感度曲線イ
は短波長の赤外線検出用検知素子の分光感度曲線
ロと重なつておらず、2つの分光感度曲線イ,ロ
はほとんど完全に分離されている。
FIG. 1 shows an example of the ideal spectral sensitivity of an infrared sensing element having two desirable response wavelength bands for such an infrared detector.
The spectral sensitivity curve A of the sensing element for detecting long wavelength infrared rays does not overlap with the spectral sensitivity curve B of the sensing element for detecting short wavelength infrared rays, and the two spectral sensitivity curves A and B are almost completely separated. .

しかるに通常の赤外線検知素子は一般に短い波
長(すなわちフオトンエネルギーの大きい波長)
の赤外線ならばどの波長にも応答してしまうた
め、2つの分光感度曲線イ,ロは第2図に示した
ように重なり合つてしまうのが現実であつて、こ
のような分光感度特性を有するならば、前記した
赤外線検知器の識別能力は著しく低下してしま
う。
However, ordinary infrared sensing elements generally detect short wavelengths (i.e., wavelengths with large photon energy).
Since it responds to any wavelength of infrared rays, the two spectral sensitivity curves a and b overlap as shown in Figure 2. If so, the discrimination ability of the above-mentioned infrared detector will be significantly reduced.

このような分光感度曲線の重なりを防止するに
は、たとえば2種類の異なるバンドパスフイルタ
を用いる方法や赤外線検知素子それぞれの受光面
に、干渉を利用してバンドパスフイルタ効果を持
たせた2種類の多層膜を形成する方法などが考え
られるが、前者は各バンドパスフイルタを接近し
て配置した赤外線検知素子のごく近くに設置する
ことが困難であり、後者は赤外線検知素子材料が
一般に熱に弱いので、被着に高温を必要とする多
層膜の形成は不可能に近いという欠点がある。
In order to prevent such overlap of spectral sensitivity curves, for example, two different types of bandpass filters may be used, or two types of bandpass filters may be created using interference on the light-receiving surface of each infrared sensing element. Methods such as forming a multilayer film may be considered, but the former method makes it difficult to install each bandpass filter very close to the infrared sensing element, which is arranged close to each other, and the latter method is difficult because the infrared sensing element material is generally susceptible to heat. Because of its weakness, it has the disadvantage that it is nearly impossible to form multilayer films that require high temperatures for deposition.

また前記のような赤外線検知器では対をなす赤
外線検知素子数が多いほど、識別能力が高まるは
ずであるが、こうした多素子赤外線検知器となれ
ば上記したようなバンドパスフイルタを用いるこ
とも、またフイルタ効果を持たせた2種類の多層
膜の形成も、一層困難なものとなる。
Furthermore, in the case of the above-mentioned infrared detector, the discrimination ability should increase as the number of paired infrared detecting elements increases, but in the case of such a multi-element infrared detector, it is also possible to use the above-mentioned bandpass filter. Furthermore, it becomes even more difficult to form two types of multilayer films that have a filter effect.

そこで本発明はこうした欠点に鑑みてなされた
もので、赤外線を透過する基板上に、禁制帯幅が
比較的大きい第1の多元半導体層を設けると共
に、該第1の多元半導体層上の所定部分に該第1
の多元半導体と同一導電型で、かつ禁制帯幅が小
さな第2の多元半導体層を複数個規則的な島状パ
ターンで配設し、上記第1の多元半導体層の部分
的露出表面に第1のホトダイオードを、また上記
第2の各島状多元半導体層表面に第2のホトダイ
オードをそれぞれ配設して、これら第1および第
2の各ホトダイオードに前記基板側から入射する
赤外線に対して異なる波長帯の光検知能力を持た
せるようにしたことを特徴とする赤外線検知器を
提供せんとするものであつて、第3図以下の図面
を用いて詳記する。
The present invention has been made in view of these drawbacks, and includes providing a first multi-component semiconductor layer having a relatively large forbidden band width on a substrate that transmits infrared rays, and a predetermined portion of the first multi-component semiconductor layer on the first multi-component semiconductor layer. 1st
A plurality of second multi-component semiconductor layers having the same conductivity type as the multi-component semiconductor and having a small forbidden band width are arranged in a regular island pattern, and the first multi-component semiconductor layer is provided on the partially exposed surface of the first multi-component semiconductor layer. and a second photodiode is arranged on the surface of each of the second island-like multi-component semiconductor layers, and each of the first and second photodiodes has a different wavelength for infrared rays incident on the substrate side. It is an object of the present invention to provide an infrared detector characterized by having a band light detection ability, which will be described in detail with reference to the drawings from FIG. 3 onwards.

第3図は本発明に係る赤外線検知器の主要部分
たる赤外線検知素子の要部構造を断面図で示した
一実施例であつて、禁制帯幅Egがたとえば1.6ev
のように充分大きいカドミウムテルル(CdTe)
基板1の片方の主面上に、禁制帯幅Egがたとえ
ば0.4evと比較的大きな値を有する第1の多元半
導体層2がエピタルキシヤル成長法などによつて
形成されている。そして該第1の多元半導体層2
上の所定部分11にはやはりエピタキシヤル成長
法などによつて、禁制帯幅Egがたとえば0.2ev程
度である第2の多元半導体層3が形成されている
が、12として示した部分は該多元半導体層3を
たとえばエツチングによつて除去し、前記第1の
多元半導体層2の表面が露出した部分である。
FIG. 3 is an embodiment showing a cross-sectional view of the main structure of an infrared sensing element, which is a main part of an infrared detector according to the present invention, in which the forbidden band width Eg is, for example, 1.6ev.
Cadmium telluride (CdTe) large enough as
A first multi-component semiconductor layer 2 having a relatively large forbidden band width Eg of, for example, 0.4ev is formed on one main surface of the substrate 1 by an epitaxial growth method or the like. and the first multi-component semiconductor layer 2
In the upper predetermined portion 11, a second multi-component semiconductor layer 3 having a forbidden band width Eg of, for example, about 0.2 ev is formed by epitaxial growth or the like. This is a portion where the surface of the first multi-component semiconductor layer 2 is exposed by removing the semiconductor layer 3 by, for example, etching.

上記第1および第2の多元半導体層2および3
は両者ともたとえばp型とされているのである
が、前記の露出した第1の多元半導体2の所定部
12には上記多元半導体層2,3と逆導電型であ
る第1のn型の不純物ドープ層7が設けられて第
1のホトダイオードを形作つており、また上記第
2の多元半導体層3の所定部11には第2のn型
の不純物ドープ層8が設けられて第2のホトダイ
オードを形作つている。なお4はたとえば硫化亜
鉛(ZoS)からなる表面保護膜であり、前記第1
および第2のホトダイオードを形作つている不純
物ドープ層7,8と接触している引出し電極9,
10(たとえばインジウムなどを材料とする)は
上記ZoSの表面保護膜4上に配設されている。ま
た光(赤外線)hν1およびhν2が波線ハ,ニで示し
たように入射してくる方のCdTe基板1の他方の
主面上を覆つている5として示したものは該
CdTe基板面への入射光の反射防止膜であつて、
これはたとえばZoSを材料として形成される。
The first and second multi-component semiconductor layers 2 and 3
are both p-type, for example, but a first n-type impurity having a conductivity type opposite to that of the multi-component semiconductor layers 2 and 3 is present in the exposed predetermined portion 12 of the first multi-component semiconductor layer 2. A doped layer 7 is provided to form a first photodiode, and a second n-type impurity doped layer 8 is provided in a predetermined portion 11 of the second multi-component semiconductor layer 3 to form a second photodiode. is forming. Note that 4 is a surface protective film made of, for example, zinc sulfide (Z o S), and
and an extraction electrode 9 in contact with the impurity doped layers 7, 8 forming the second photodiode.
10 (for example, made of indium or the like) is disposed on the Z o S surface protection film 4 . In addition, what is shown as 5 covering the other main surface of the CdTe substrate 1 on which the light (infrared rays) hν 1 and hν 2 are incident as shown by the broken lines C and D is applicable.
An anti-reflection film for incident light on the CdTe substrate surface,
This is made of Z o S, for example.

第3図に示した赤外線検知素子はしたがつて多
元半導体の2層ヘテロ接合構造を形成していると
言えるし、上記第1および第2の不純物ドープ層
7,8はいわゆる後方入射型のホトダイオードと
なつていると言える。
The infrared sensing element shown in FIG. 3 can therefore be said to form a two-layer heterojunction structure of multi-component semiconductors, and the first and second impurity-doped layers 7 and 8 form a so-called back-illuminated photodiode. It can be said that it has become.

また6は透過波長が1〜6μmであるバンドパ
スフイルタで前記hν1,hν2なる赤外線はこのバン
ドパスフイルタ6を透過して入射されるのである
が、CdTe基板1はその禁制帯幅が1.6evであるか
ら、0.8μmより長い波長の赤外線は該CdTe基板
1によつて吸収されてしまう。このためCdTe基
板だけでも0.8μmより長い波長の赤外線に対する
遮断効果があり、この波長の赤外線に対しては不
透明であるのと同じ結果となる。したがつてこの
特性を利用するならば、前記の6として示したフ
イルタは1〜6μm帯だけの光を通すものでなく
ともよく、6μm以上の波長を遮断するハイパス
フイルタであつてもよい。
Further, 6 is a bandpass filter whose transmission wavelength is 1 to 6 μm, and the infrared rays hν 1 and hν 2 are transmitted through this bandpass filter 6 and are incident, but the forbidden band width of the CdTe substrate 1 is 1.6 μm. ev, infrared rays with wavelengths longer than 0.8 μm are absorbed by the CdTe substrate 1. Therefore, the CdTe substrate alone has the effect of blocking infrared rays with wavelengths longer than 0.8 μm, and has the same effect as being opaque to infrared rays of this wavelength. Therefore, if this characteristic is utilized, the filter shown as 6 does not need to be one that only passes light in the 1-6 μm band, and may be a high-pass filter that blocks wavelengths of 6 μm or more.

ところで、上記のようにして通過帯域が0.8〜
6μmに制限されて波線ハおよびニのように入射
して来た2種類の光のうち、まず波線ハに沿つて
入射して来た光は禁制帯幅Egが0.4evである第1
の多元半導体層(Hg0.6Cd0.4Te層)に入射するが
この層では上記の入射光の波長のうち、0.8〜3μ
mの波長の赤外線が吸収される。したがつてこの
第1の多元半導体層2に作られている前記第1の
ホトダイオード7では、この0.8〜3μmの範囲の
波長の光が光電変換されてその出力は引き出し電
極9を介して出力される。
By the way, as above, the passband is 0.8~
Of the two types of light that are limited to 6 μm and enter as indicated by the wavy lines C and D, the first light that enters along the wavy line C has a forbidden band width Eg of 0.4ev.
is incident on the multi-component semiconductor layer (Hg 0.6 Cd 0.4 Te layer), but in this layer, among the wavelengths of the above incident light, 0.8 to 3μ
Infrared radiation with a wavelength of m is absorbed. Therefore, in the first photodiode 7 formed in the first multi-component semiconductor layer 2, this light with a wavelength in the range of 0.8 to 3 μm is photoelectrically converted, and the output is outputted via the extraction electrode 9. Ru.

これに対して波線ニに沿つて入射して来た光が
第2のホトダイオード8に届くまでには、その光
は途中で前記第1の多元半導体層(Eg=0.4ev)
2中を通過しなければならないので、上記したよ
うに、該第1の半導体層2における0.8〜3μmの
範囲の光吸収をこうむる。したがつて該第1の多
元半導体層2を通過してたとえばHg0.73Cd0.27Te
からなる第2の多元半導体層3(Eg=0.2ev)に
入つて来た光は0.8〜3μmの波長成分が失なわれ
ており、3〜6μmの波長成分だけが残された光
となつている。したがつて該第2の多元半導体層
3に作られている前記第2のホトダイオード8で
は、この3〜6μmの範囲の波長の光が光電変換
されてその出力は引き出し電極10を介して出力
される。
On the other hand, before the light incident along the wavy line D reaches the second photodiode 8, the light passes through the first multi-dimensional semiconductor layer (Eg=0.4ev).
As described above, since the light must pass through the first semiconductor layer 2, the light is absorbed in the range of 0.8 to 3 μm in the first semiconductor layer 2. Therefore, for example, Hg 0.73 Cd 0.27 Te passes through the first multi-component semiconductor layer 2.
The light entering the second multi-component semiconductor layer 3 (Eg = 0.2ev) consisting of 0.8 to 3 μm wavelength components is lost, and only the 3 to 6 μm wavelength components remain. There is. Therefore, in the second photodiode 8 formed in the second multi-component semiconductor layer 3, this light with a wavelength in the range of 3 to 6 μm is photoelectrically converted, and the output is outputted via the extraction electrode 10. Ru.

すなわち、赤外線検知素子の対をなす第1およ
び第2のホトダイオードをこのように第1および
第2の多元半導体層2,3のそれぞれに作りつけ
ることによつて、第1図のイおよびロに示したよ
うな別個に分離された分光感度特性が獲得でき
る。
That is, by fabricating the first and second photodiodes forming a pair of infrared sensing elements in the first and second multi-semiconductor layers 2 and 3, respectively, A and B in FIG. Discretely separated spectral sensitivity characteristics as shown can be obtained.

ちなみにホトダイオードは第3図に示したよう
に2個すなわち1対に限られることはなく、たと
えば多元半導体層を第1、第2、第3のようにし
て各層の組成を順次変え、禁制帯幅をたとえば3
段階に変えるならば第1図に示した分光感度特性
はイ,ロの2つではなく3つに分割して生ぜしめ
ることもできる。また上記実施例はCdTe基板の
上にHgCdTe層を多層にエピタキシヤル成長させ
たものであつたが、多元半導体材料としては
HgCdTeに限られることなく、たとえば鉛テルル
(PbTe)基板上に第1および第2の互いに組成
したがつて禁制帯幅Egの異なつた鉛錫テルル
(PbSoTe)層を複数層に形成して赤外線検知素子
を作ることも可能である。
Incidentally, the number of photodiodes is not limited to two, that is, one pair, as shown in Figure 3. For example, the number of photodiodes is not limited to two, that is, a pair, but for example, the composition of each layer can be changed sequentially by forming a first, second, and third multi-component semiconductor layer, thereby increasing the forbidden band width. For example, 3
If the spectral sensitivity characteristics shown in FIG. 1 are changed to stages, the spectral sensitivity characteristics shown in FIG. Furthermore, in the above embodiment, a multilayer HgCdTe layer was epitaxially grown on a CdTe substrate, but as a multi-component semiconductor material,
Not limited to HgCdTe, for example, a plurality of first and second lead-tin tellurium (P b S o T e ) layers having different compositions and different forbidden band widths Eg are formed on a lead-tellurium (PbTe) substrate. It is also possible to form an infrared sensing element.

また赤外線検知素子はこれら多素子のものとし
て電荷転送装置(以下CCDと称する)に結合す
ることにより2次元の光センサとなすことが周知
のようにしばしば行われるが、CCDは多元半導
体では構成できないので、おのずからCCD部は
シリコン(Si)基板上に作り、光センサ部は前記
したように多元半導体層を用いて構成して両者を
いわゆるフエースダウンボンデイングの手法で結
合していわゆるハイブリツド構成とする必要が生
じることもある。
In addition, as is well known, infrared sensing elements are often made into two-dimensional optical sensors by combining these multi-element devices with a charge transfer device (hereinafter referred to as CCD), but CCDs cannot be constructed from multi-component semiconductors. Therefore, it is necessary to make the CCD section on a silicon (Si) substrate, and the optical sensor section to be constructed using multiple semiconductor layers as described above, and to combine the two using a so-called face-down bonding method to create a so-called hybrid configuration. may occur.

第4図はこのような場合におけるいわゆる赤外
線CCD(IRCCDとも呼ばれる)の構造を示す要部
断面図であつて、第3図と同一部位には同一符号
を付すが第3図と異なるところは規則的に配設さ
れたホトダイオード7,8で検出された信号を取
出す引き出し電極がなくなつている点である。そ
してこの引出し電極にかわつてインジウム(In)
系の材料で作られたバンプ25によつて、検出信
号電荷を矢印ホ方向に送りCCDの入力ダイオー
ド23に導入するようになつている。そしてこの
送られて来た検出信号電荷は、CCDの転送電極
26によつてたとえば紙面に直角な方向に並列に
送られて読み出されるようになつている。ただ
し、21はCCDのSi基板、22は該基板上を被
覆する二酸化シリコン(SiO2)膜であるが、この
第4図では第3図中において示したバンドパスフ
イルタ6は省略されている。
Figure 4 is a sectional view of the main parts showing the structure of a so-called infrared CCD (also called IRCCD) in such a case, and the same parts as in Figure 3 are given the same symbols, but the parts that are different from Figure 3 are according to the rules. The main difference is that there is no extraction electrode for extracting the signals detected by the photodiodes 7 and 8 arranged in the same direction. Indium (In) was used instead of this extraction electrode.
The bumps 25 made of the same material send the detection signal charges in the direction of the arrow H and are introduced into the input diode 23 of the CCD. The sent detection signal charges are then sent in parallel, for example, in a direction perpendicular to the plane of the paper, and read out by the transfer electrodes 26 of the CCD. However, although 21 is a Si substrate of the CCD and 22 is a silicon dioxide (S i O 2 ) film covering the substrate, the bandpass filter 6 shown in FIG. 3 is omitted in this FIG. There is.

以上に述べた本発明に係る赤外線検知器を用い
れば目標物体を識別する能力が大きく高められる
ために、実用上多大の効果が期待できる。
If the infrared detector according to the present invention described above is used, the ability to identify a target object can be greatly improved, and therefore, great practical effects can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は望ましい2つの応答波長帯を有する赤
外線検知素子の理想的分光感度の一例を示す図、
第2図は現実に得られる分光感度特性を示した
図、第3図は本発明に係る赤外線検知器の検知素
子の要部構造の一実施例を示す図、第4図は本発
明の変形実施例を示す図である。 1:CdTe基板、2:第1の多元半導体層、
3:第2の多元半導体層、4:表面保護膜、5:
反射防止膜、6:バンドパスフイルタ、7:第1
のホトダイオード、8:第2のホトダイオード、
9,10:引き出し電極、11:第2の多元半導
体層の所定部分、21:シリコン基板、22:
SiO2膜、23:入力ダイオード、25:バンプ。
FIG. 1 is a diagram showing an example of the ideal spectral sensitivity of an infrared sensing element having two desirable response wavelength bands;
FIG. 2 is a diagram showing the spectral sensitivity characteristics actually obtained, FIG. 3 is a diagram showing an example of the main structure of the detection element of the infrared detector according to the present invention, and FIG. 4 is a modification of the present invention. It is a figure showing an example. 1: CdTe substrate, 2: first multidimensional semiconductor layer,
3: Second multi-component semiconductor layer, 4: Surface protective film, 5:
Anti-reflection film, 6: band pass filter, 7: first
photodiode, 8: second photodiode,
9, 10: Extraction electrode, 11: Predetermined portion of second multi-component semiconductor layer, 21: Silicon substrate, 22:
SiO 2 film, 23: input diode, 25: bump.

Claims (1)

【特許請求の範囲】 1 赤外線を透過する基板1上に、 禁制帯幅が比較的大きい第1の多元半導体層2
を設けると共に、 該第1の多元半導体層上の所定部分に該第1の
多元半導体と同一導電型で、かつ禁制帯幅が小さ
な第2の多元半導体層3を複数個規則的な島状パ
ターンで配設し、 上記第1の多元半導体層の部分的露出表面に第
1のホトダイオード7を、また上記第2の各島状
多元半導体層表面に第2のホトダイオード8をそ
れぞれ配設して、 これら第1および第2の各ホトダイオードに前
記基板側から入射する赤外線に対して異なる波長
帯の光検知能力を持たせるようにしたことを特徴
とする赤外線検知器。
[Claims] 1. On a substrate 1 that transmits infrared rays, a first multi-component semiconductor layer 2 having a relatively large forbidden band width is provided.
At the same time, a plurality of second multi-component semiconductor layers 3 having the same conductivity type as the first multi-component semiconductor and having a small forbidden band width are formed in a regular island-like pattern at a predetermined portion on the first multi-component semiconductor layer. A first photodiode 7 is disposed on the partially exposed surface of the first multi-component semiconductor layer, and a second photodiode 8 is disposed on the surface of each of the second island-like multi-component semiconductor layers, An infrared detector characterized in that each of the first and second photodiodes has the ability to detect infrared light incident from the substrate side in different wavelength bands.
JP2853381A 1981-02-27 1981-02-27 Infrared detector Granted JPS57142527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2853381A JPS57142527A (en) 1981-02-27 1981-02-27 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2853381A JPS57142527A (en) 1981-02-27 1981-02-27 Infrared detector

Publications (2)

Publication Number Publication Date
JPS57142527A JPS57142527A (en) 1982-09-03
JPH0128893B2 true JPH0128893B2 (en) 1989-06-06

Family

ID=12251301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2853381A Granted JPS57142527A (en) 1981-02-27 1981-02-27 Infrared detector

Country Status (1)

Country Link
JP (1) JPS57142527A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3206312A1 (en) * 1982-02-22 1983-09-01 Standard Elektrik Lorenz Ag, 7000 Stuttgart DEMULTIPLEXER PHOTODIOD
US5818051A (en) * 1996-04-04 1998-10-06 Raytheon Ti Systems, Inc. Multiple color infrared detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967557U (en) * 1972-09-26 1974-06-12

Also Published As

Publication number Publication date
JPS57142527A (en) 1982-09-03

Similar Documents

Publication Publication Date Title
US5373182A (en) Integrated IR and visible detector
TWI805980B (en) Method and structure to improve image sensor crosstalk
US9129874B1 (en) Light sensor having IR cut interference filter with color filter integrated on-chip
US6379979B1 (en) Method of making infrared and visible light detector
US7667750B2 (en) Photoelectric-conversion-layer-stack-type color solid-state imaging device
CN110800110B (en) Resonant cavity enhanced image sensor
KR20180008327A (en) A dual band photodetector and a method thereof
US20080131588A1 (en) Back-illuminated image sensor and method of fabricating the same
US7582943B2 (en) Color light receiving device and image pickup device
KR102662144B1 (en) Image sensor and method of forming the same
US20190098271A1 (en) Hd color imaging using monochromatic cmos image sensors integrated in 3d package
JP6763406B2 (en) Light receiving element, manufacturing method of light receiving element, image sensor and electronic device
JPH01207640A (en) Semiconductor photodetecting device and ultraviolet detecting method, and semiconductor photodetecting element and its manufacture
US4626675A (en) Demultiplexing photodiode sensitive to plural wavelength bands
US5059786A (en) Multi-color coincident infrared detector
US5449944A (en) Semiconductor infrared image pickup device and method of fabricating the same
JP2006066456A (en) Solid state image sensor
JPH0128893B2 (en)
EP4131381B1 (en) Hybrid image sensors having optical and short-wave infrared pixels integrated therein
JPH0265181A (en) Infrared detector
KR102470061B1 (en) Devices for improved multispectral detection
JPS6348234B2 (en)
JPH0472664A (en) Solid-state image sensing device
JPH11214664A (en) Solid state image sensing element and manufacture thereof
JPH01220862A (en) Solid-state image sensing device