JPH01288787A - Measuring method of position of steaming body - Google Patents

Measuring method of position of steaming body

Info

Publication number
JPH01288787A
JPH01288787A JP11815688A JP11815688A JPH01288787A JP H01288787 A JPH01288787 A JP H01288787A JP 11815688 A JP11815688 A JP 11815688A JP 11815688 A JP11815688 A JP 11815688A JP H01288787 A JPH01288787 A JP H01288787A
Authority
JP
Japan
Prior art keywords
receiver
vehicle
frequency
steaming
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11815688A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nitori
一彦 似鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP11815688A priority Critical patent/JPH01288787A/en
Publication of JPH01288787A publication Critical patent/JPH01288787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the measurement of the position of a steaming body being a target by a receiver group set in one point substantially, by receiving a steaming sound of the steaming body by three Geophones having maximum sensitivities in the directions of three axes intersecting one another perpendicularly and by one nondirectional receiver. CONSTITUTION:A nondirectional receiver HO is disposed at the origin O of coordinates, while Geophones Gx-Gz are disposed in the vicinity of the origin O on the axes x, y and z of rectangular coordinates so that the directions of the respective sensitivities being maximum coincide with the directions of the coordinate axes. A steaming sound emitted by a target is received by these devices. First, the respective azimuth angles are detected from the outputs of the Geophones Gx-Gz by an azimuth estimating element 12, and based on these angles, theta and phi of polar coordinates are determined or calculated. Then, the point of the nearest proximity is estimated from a change of theta with time. Besides, the frequency of the target sound is detected from the output of the receiver HO by a frequency estimating element 11, and based on the frequency, the speed of the target body at the time of the nearest proximity is estimated. A value (r) of the polar coordinates is calculated from these values by a position computing part 13.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、航走体が放射する水中音波を小型の受波器を
用いて受信し、その受信信号を信号処理することにより
航走体の位置を算出する測位方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention uses a small receiver to receive underwater sound waves emitted by a moving object, and processes the received signal. This relates to a positioning method for calculating the position of.

(従来の技術) 従来、航走体の発生する水中音(航走音)を受信するの
みの、いわゆるパッシブな方法で航走体の位置を計測す
る方法として、第5図に示す3点測距法(特公昭54−
38910参照)と第6図に示す3角測距法があシ、パ
ッシブ・ンーナーの分野で使われてきた。第5図におい
て、航走音が一直線上に配置された3個の受波器1〜3
によって受信され、それらの受信信号の間の相互相関関
数を求めるなどの方法により航走体Vから3個の受波器
1〜3までの音波伝搬時間のそれぞれの差を測定し、こ
れから航走体Vの位置が求められる。第6図において、
航走音は2つの受波器アレイ1゜2により受信され、各
受波器アレイ1,2によって航走音の到来方向が計測さ
れるので、この2つの角度情報から航走体Vの位置が求
められる。
(Prior Art) Conventionally, as a method of measuring the position of a vehicle using a so-called passive method that only receives underwater sounds (travelling sounds) generated by the vehicle, a three-point measurement method shown in Fig. 5 has been used. Distance method (Tokuko Showa 54-
38910) and the triangular ranging method shown in Figure 6 have been used in the field of passive navigation. In Fig. 5, three receivers 1 to 3 are arranged in a straight line for the sound of navigation.
The difference in the propagation time of the sound waves from the vehicle V to the three receivers 1 to 3 is measured by a method such as determining the cross-correlation function between the received signals. The position of body V is determined. In Figure 6,
The navigation sound is received by two receiver arrays 1 and 2, and the arrival direction of the navigation sound is measured by each receiver array 1, 2, so the position of the vehicle V can be determined from these two angle information. is required.

(発明が解決しようとする課題) しかし、以上述べたいずれの方法でも受波器または受波
器アレイの設置の間隔をかなシ大きくしなければ測位の
精度を上げることができず、小さな缶体などに取付ける
には不適当であるという問題点があった。
(Problem to be Solved by the Invention) However, with any of the methods described above, positioning accuracy cannot be improved unless the intervals between the installation of the receivers or receiver arrays are greatly increased. There was a problem in that it was unsuitable for installation on other objects.

この発明は、以上の問題点を除き、原則的に1点に設置
された受波器群によって航走体の測位が可能な方法を提
供することを目的とする。
An object of the present invention is to provide a method that eliminates the above-mentioned problems and allows positioning of a mobile object using a group of receivers installed at one point in principle.

(課題を解決するための手段) 本発明は、互に直交する3軸の方向に最大感度を持つ3
個のジオフオン(あるいは指向性受波器)と1個の無指
向性受波器により航走体が放射する航走音を受信し、航
走音の周波数および入射方位角を測定し、その時間変化
を観測することてより、航走体の最接近時を推定し、そ
の時の航走体の位置を算出するようにした、航走体の測
位方法である。
(Means for Solving the Problems) The present invention provides three
The navigation sound emitted by the vehicle is received by two geo-phonons (or directional receivers) and one omnidirectional receiver, and the frequency and incident azimuth of the navigation sound are measured. This is a positioning method for a vehicle that estimates the time of closest approach of the vehicle by observing changes, and calculates the position of the vehicle at that time.

(作 用) 本発明では、航走体がジオフオンの1軸方向に大きな速
度成分を持たない場合において、最接近時の位置を検出
する。
(Function) In the present invention, the position at the time of closest approach is detected when the mobile object does not have a large velocity component in one axis direction of the geoffon.

まず、受波器群の出力から方位角θ工、θア、θ2を検
出し、それに基づいて極座標のθ、ψを決定もしくは算
出する。
First, the azimuth angles θ, θa, and θ2 are detected from the outputs of the receiver group, and based on these, the polar coordinates θ and ψ are determined or calculated.

また、θの時間変化から、最接近時点を推定する。Also, the time of closest approach is estimated from the change in θ over time.

また、無指向性受波器の出力から航走音の周波数を検出
し、それに基づいて、最接近時における航走体速度を推
定する。
Additionally, the frequency of the cruise sound is detected from the output of the omnidirectional receiver, and based on that, the vehicle speed at the time of closest approach is estimated.

そして、航走体速度、θおよびψに基づいて、他の極座
標γを算出する。
Then, other polar coordinates γ are calculated based on the vehicle speed, θ and ψ.

(実施例) 第1図は、この発明の実施例のセンサーの配置図であり
、座標の原点Oに無指向性受波器H8が、直角座標のx
、y、z軸上の原点付近にジオフオンGx・Gy、 Q
2がそれぞれの感度の最大の方向が各座標軸の方向と一
致するように配置される。第2図は、センサーと航走体
の位置関係を示す図であシ、第1図に示したセンサー群
H8I GX + G71G7.は原点Oの付近に置か
れ、航走体Vの位置は直角座標系では(X g yr 
Z ) 、極座標系では(γ。
(Embodiment) FIG. 1 is a layout diagram of a sensor according to an embodiment of the present invention, in which an omnidirectional receiver H8 is placed at the origin O of coordinates, and x
, geoion Gx・Gy, Q near the origin on the y and z axes
2 are arranged so that the direction of maximum sensitivity of each coincides with the direction of each coordinate axis. FIG. 2 is a diagram showing the positional relationship between the sensors and the vehicle, and shows the sensor group H8I GX + G71G7. shown in FIG. is placed near the origin O, and the position of the vehicle V is (X g yr
Z ), in the polar coordinate system (γ.

θ、ψ)と表わされる。また、航走体VはX@と平行に
速度Vで移動しているものとする。このどき。
θ, ψ). Further, it is assumed that the vehicle V is moving at a speed V parallel to X@. These days.

の関係が成シ立つ。A relationship is established.

第3図は、この発明の実施例の処理部のブロック図であ
り、受波器H6の出力信号は周波数推定部11に送られ
、そこで航走音のラインスペクトル成分の周波数fが測
定される。さらに、受波器H8の出力信号とジオフオン
Gz + Gy + Gzの出力信号は方位推定部12
に送られ、そこで指向性ンノブイのDIFAR(dir
ection finding and rangin
g )処理と同様の処理によって、航走音の入射ベクト
ルとx、y、z軸とのなす角θ工、θア、θ2が測定さ
れる。位置計算部13は、航走音の周波数f、方位角θ
工、θア、02′f、入力し、その時間変化をグロット
し、以下の関係を用いて航走体の位置を算出する。まず
、 が成り立つから、式(1)により、θ=θ7およびが成
り立つ。つぎに、航走体■がyz−平面を横切る時点を
t=oと置くと、x==vtとなりrmin” =y+
z  と置くと、 の関係が成り立つ。
FIG. 3 is a block diagram of the processing section according to the embodiment of the present invention, and the output signal of the receiver H6 is sent to the frequency estimating section 11, where the frequency f of the line spectrum component of the cruise sound is measured. . Furthermore, the output signal of the receiver H8 and the output signal of the geophonon Gz + Gy + Gz are sent to the direction estimation unit 12.
, where the directional knob buoy DIFAR (dir
ction finding and rangein
The angles θ, θa, and θ2 formed by the incident vector of the cruise sound and the x, y, and z axes are measured by the same process as g). The position calculation unit 13 calculates the frequency f of the navigation sound and the azimuth θ.
, θa, 02'f are input, their time changes are plotted, and the position of the vehicle is calculated using the following relationship. First, since the following holds true, θ=θ7 holds true according to equation (1). Next, if we set the point in time when the vehicle ■ crosses the yz-plane as t=o, then x==vt and rmin"=y+
If we put z, the following relationship holds true.

航走体Vは、周波数f0の正弦波を放射しながら速度V
で等速直線運動しているものとし、センサーから見たそ
の相対速度をV、とすると、センサーで受信される音波
の周波数は、ドツプラーシフトを受け、fl = (1
+−L) j’o       (5)となる。ここで
、Cは音速である。航走体Vがセンサーから十分遠いと
きにはVr 夕Vであり、最接近時(t=0 )にはv
、二〇であるから、t=oの時刻が推定可能ならば、周
波数推定部により得られる航走音の周波数の推定値の1
=0における値f(t=0)とそれより充分前における
値f、Ct=γ 曽)の比から によって航走体の速度Vの推定が得られる。
The vehicle V increases the speed V while emitting a sine wave with a frequency f0.
Assuming that it is moving in a straight line with a uniform velocity at
+-L) j'o (5). Here, C is the speed of sound. When the vehicle V is far enough from the sensor, Vr is V, and when it is at its closest approach (t=0), it is V
, 20, so if the time t=o can be estimated, 1 of the estimated value of the frequency of the navigation sound obtained by the frequency estimator
An estimate of the speed V of the vehicle can be obtained from the ratio of the value f at =0 (t=0) and the value f sufficiently before that, Ct = γ so).

つぎに、方位推定部から得られるθ=02および式(3
)により得られるψの時間変化は、1=0の近くでは第
4図のようになるので、θの変化の最小点を求めること
によ、bt=oの推定値を得ることができる。また、こ
のときのψの勾配は、式(4)の3番目の式によってv
/yであるから、1=0の近傍におけるψの勾配の推定
をgとすると、g= v/y            
  (7)の関係が成り立つ。
Next, θ=02 obtained from the direction estimation section and equation (3
) is obtained as shown in FIG. 4 near 1=0, so by finding the minimum point of change in θ, an estimated value of bt=o can be obtained. Also, the gradient of ψ at this time is calculated by the third equation of equation (4) as v
/y, so if g is the estimate of the gradient of ψ in the vicinity of 1=0, then g= v/y
The relationship (7) holds true.

1=0におけるθおよびγの推定を、それぞれΔ θ およびr、とすると、 mxn の関係が成シ立つから、式(7)と組合わせると△ によって距離γ□、nの推定値が得られる。方位θ。Estimates of θ and γ at 1=0 are expressed as Δ Let θ and r, mxn Since the relationship holds true, when combined with equation (7), △ An estimated value of the distance γ□,n can be obtained. Direction θ.

ψの推定はすでに得られているので、これにょシ、航走
体■の位置(γ、θ、ψ)の最接近時1=0における計
測値を得ることができた。また、それ以後の位置も容易
に推定することができる。
Since the estimate of ψ has already been obtained, we were able to obtain the measured values of the position (γ, θ, ψ) of the vehicle (1) at the time of closest approach (1=0). Furthermore, subsequent positions can be easily estimated.

以上の説明では、航走値はX軸と平行に移動するものと
したが、そうでない場合にも単に第4図におけるψの曲
線が上下に移動するのみで、距離の推定値は全く同様に
して得られる。
In the above explanation, it is assumed that the cruising value moves parallel to the can be obtained.

(発明の効果) 以上のように、本発明の測位方法によれば、はぼ1点に
置かれた小型のセンサー群を用いて等速直線運動する航
走体の位置を・ンノシブな方法のみで計測できるので、
センサーの設置場所に制限があり、かつ自ら発音するこ
とが好しくない場合の航走体の測位方法として用いれば
効果が大きい。
(Effects of the Invention) As described above, according to the positioning method of the present invention, the position of a vehicle moving in a straight line at a constant velocity can be determined using a small sensor group placed at a single point. Since it can be measured with
It is highly effective if used as a positioning method for a moving vehicle when there are restrictions on the installation location of the sensor and it is not desirable to make sounds on its own.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例の説明図であって、
第1図はセンサの配置図、第2図は航走体とセンサとの
関係を説明する図、第3図は処理部のブロック図、第4
図は極座標θ、ψの変化を示す図、第5図と第6図どは
それぞれ従来技術の説明図である。 Ho・・・無指向性受波器、Gz T Gy r Gz
・・・ジオフオン、11・・・周波数推定部、12・・
・方位推定部、13・・・位置計算部。 特許出願人   沖電気工業株式会社 に帽部の プロ+77 I2I 第3図 り t==0の(キiL1てt11乃θ畜よひ“Yの考化第
4図 3急漫l距法 第5図 3有111距は 第6因 1、事件の表示 昭和63年 特  許 8第118156号2、発明の
名称 航走体の測位方法 3、補正をする者 事件との関係      特 許 出 願 人6、補正
の内容 (1)明細書第7頁第2行目から第3行目に「(t=■
)」とあるのを「(t=−の)」 と補正する。 (2)同書同頁(6)式を下記のように補正する。 下刃\9 (3)同書第8盲9行目に「航走値」とあるσを「航走
体」と補正する。
FIGS. 1 to 4 are explanatory diagrams of one embodiment of the present invention,
Figure 1 is a layout diagram of the sensor, Figure 2 is a diagram explaining the relationship between the vehicle and the sensor, Figure 3 is a block diagram of the processing section, and Figure 4 is a diagram explaining the relationship between the moving object and the sensor.
The figure shows changes in polar coordinates θ and ψ, and FIGS. 5 and 6 are explanatory diagrams of the prior art, respectively. Ho...Omnidirectional receiver, Gz T Gy r Gz
...Geoffon, 11...Frequency estimation section, 12...
- Orientation estimation section, 13... position calculation section. Patent applicant: Oki Electric Industry Co., Ltd. Pro+77 I2I 3rd calculation t==0 (key iL1 te t11 no θ damn yohi "Y's consideration" 3, 111 distance is the 6th factor 1, Indication of the case 1988 Patent No. 8 No. 118156 2, Name of the invention Method for positioning a moving object 3, Person making the amendment Relationship with the case Patent applicant 6, Contents of the amendment (1) From the second line to the third line of page 7 of the specification, “(t=■
)” should be corrected to “(t=-)”. (2) Formula (6) on the same page of the same book is corrected as follows. Lower Blade\9 (3) In the 8th blind line 9 of the same book, σ that says ``cruising value'' is corrected to ``cruising object.''

Claims (1)

【特許請求の範囲】  互に直交する3軸の方向に最大感度を持つ3個のジオ
フォンと1個の無指向性受波器により航走体が放射する
航走音を受信し、 航走音の周波数および入射方位角を測定し、その時間変
化を観測することにより、航走体の最接近時を推定し、 その時の航走体の位置を算出することを特徴とする航走
体の測位方法。
[Scope of Claims] Three geophones with maximum sensitivity in the directions of three mutually orthogonal axes and one omnidirectional receiver receive the traveling sound emitted by the mobile vehicle, A method of positioning a mobile vehicle, characterized in that the frequency and incident azimuth of the vehicle are measured, and the time change thereof is observed, thereby estimating the time of closest approach of the vehicle, and calculating the position of the vehicle at that time. Method.
JP11815688A 1988-05-17 1988-05-17 Measuring method of position of steaming body Pending JPH01288787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11815688A JPH01288787A (en) 1988-05-17 1988-05-17 Measuring method of position of steaming body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11815688A JPH01288787A (en) 1988-05-17 1988-05-17 Measuring method of position of steaming body

Publications (1)

Publication Number Publication Date
JPH01288787A true JPH01288787A (en) 1989-11-21

Family

ID=14729483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11815688A Pending JPH01288787A (en) 1988-05-17 1988-05-17 Measuring method of position of steaming body

Country Status (1)

Country Link
JP (1) JPH01288787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275737A (en) * 2005-03-29 2006-10-12 Universal Shipbuilding Corp Detection buoy
JP2008256400A (en) * 2007-04-02 2008-10-23 Universal Shipbuilding Corp Method and device for estimating and detecting position of moving body etc. and program of method for estimating and detecting position of moving body etc.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275737A (en) * 2005-03-29 2006-10-12 Universal Shipbuilding Corp Detection buoy
JP2008256400A (en) * 2007-04-02 2008-10-23 Universal Shipbuilding Corp Method and device for estimating and detecting position of moving body etc. and program of method for estimating and detecting position of moving body etc.

Similar Documents

Publication Publication Date Title
EP0634881B1 (en) Determination of position
CN104133217B (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
Sun et al. Array geometry calibration for underwater compact arrays
EP0600242B1 (en) Linear array lateral motion compensation method
JPH0472525A (en) Sound source direction distinguishing sensor
JPH01288787A (en) Measuring method of position of steaming body
CN107202975A (en) A kind of a burst of first attitude error rectification method of two-dimensional vector
JPH033190B2 (en)
CN115792806A (en) Non-cooperative line spectrum distributed underwater sound positioning method
Damarla Azimuth & elevation estimation using acoustic array
JPS5836752B2 (en) Sonic exploration method
KR100371793B1 (en) A Method for Determining the Location of Sound Source
JP2708109B2 (en) Underwater object depth detection method and depth detection device
US11629960B2 (en) Inertial and RF sensor fusion
Kreczmer Influence of Signal Interference on Determining Direction of Arrival by Using the Indirect Phase Determination Method
CN114791588B (en) Underwater acoustic pulse positioning method and system
Kotus et al. Localization of sound sources with dual acoustic vector sensor
JPH01136081A (en) Passive sonar
Zhang et al. A Novel Self-Calibration Method for Acoustic Vector Sensor
Kang et al. Acoustic source localization based on the extended Kalman filter for an underwater vehicle with a pair of hydrophones
CN112462328A (en) Weighting and orientation method based on sensor array arrival time difference measurement subset
JP3506605B2 (en) Apparatus and method for detecting speed of navigation object
JPH06281716A (en) Bearing detector
RU165657U1 (en) HYDROACOUSTIC SHOULDER
JPH05274039A (en) Moving body attitude and position measuring instrument