JPH01288647A - Active damping base for precise instrument - Google Patents

Active damping base for precise instrument

Info

Publication number
JPH01288647A
JPH01288647A JP11538988A JP11538988A JPH01288647A JP H01288647 A JPH01288647 A JP H01288647A JP 11538988 A JP11538988 A JP 11538988A JP 11538988 A JP11538988 A JP 11538988A JP H01288647 A JPH01288647 A JP H01288647A
Authority
JP
Japan
Prior art keywords
vibration
foundation
harmful
additional mass
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11538988A
Other languages
Japanese (ja)
Other versions
JP2551460B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Masashi Yasuda
正志 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokkyokiki Corp
Original Assignee
Tokkyokiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokkyokiki Corp filed Critical Tokkyokiki Corp
Priority to JP63115389A priority Critical patent/JP2551460B2/en
Publication of JPH01288647A publication Critical patent/JPH01288647A/en
Application granted granted Critical
Publication of JP2551460B2 publication Critical patent/JP2551460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • F16F7/1017Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass by fluid means

Landscapes

  • Engineering & Computer Science (AREA)
  • Lasers (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Atmospheric Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Vibration Prevention Devices (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To cut off the vibration transmission onto a high precision instrument by arranging an elastic support body having a low spring constant in the horizontal direction and high spring constant in the vertical direction and controlling the vibration of the additional mass so that its phase may reverse against a harmful vibration. CONSTITUTION:An elastic support body 2 is that which laminates a metal sheet 12 and rubber sheet 13 alternately. Pressure containers 4a, 4b are mutually communicated via the conduit 14 having an orifice 5 and communicated respectively to air springs 6a, 6b as well. A compressed air source 7 is connected via a vibration control valve 9 to one part of the pressure containers 4a, 4b and the whole body of this part becomes the actuator A for active control offsetting a harmful vibration by sensing the harmful vibration vibrating an upper part foundation 1a and applying the reaction force for control reversing its phase to the upper part foundation 1a. Consequently the upper part foundation 1a can maintain its still state despite of the input of the harmful vibration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ステッパ、マスクアライナ、電子ビーム露光
装置、STM、レーザー装置等の半導体製造装置を始め
とする超精密加工・測定装置を載置するための精密機器
用能動制振基礎に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to ultra-precision processing and measuring equipment including semiconductor manufacturing equipment such as steppers, mask aligners, electron beam exposure equipment, STM, and laser equipment. Concerning the basics of active vibration damping for precision equipment.

(従来の技術とその問題点) 従来、振動を嫌う半導体工場等の精密施設では、特に精
密な機器を設置するスペースとして他のエリアから切り
離した剛性の高い基礎を用いてきた。
(Conventional technology and its problems) Conventionally, in precision facilities such as semiconductor factories where vibrations are averse, highly rigid foundations that are separated from other areas have been used as spaces for installing particularly precise equipment.

しかしなから、半導体設備を例にとてみれば超LSIの
開発など微細加工のグレードが次第に高くなるに連れて
これらの基礎の振動特性が問題となってきた。
However, if we take semiconductor equipment as an example, as the grade of microfabrication becomes higher and higher due to the development of ultra-LSIs, the vibration characteristics of these fundamentals have become a problem.

通常、半導体工場では一般にグレーチング床構造が用い
られ、超精密機器の設置場所は振動の伝達を防ぐために
その床とは独立した基礎を設けるもので、その高さは1
〜3111程のかさ上げが必要であった。その為、垂直
方向の剛性は比較的十分に維持できるものの水平方向の
剛性を維持する事は非常に困難であった。このような超
精密機器用の基礎においても水平方向の振動の増幅が発
生し易くその対策が要望されていたものであったが、従
来の防振基礎では必ず共振点付近での振動増幅を伴い、
更には搭載する超精密機器との達成振動の問題もあって
、その解決は非常に困難であった。
Normally, a grating floor structure is used in semiconductor factories, and where ultra-precision equipment is installed, a foundation is provided independent of the floor to prevent the transmission of vibrations, and the height of the foundation is 1.
It was necessary to raise the height by ~3111. Therefore, although the rigidity in the vertical direction can be maintained relatively sufficiently, it is extremely difficult to maintain the rigidity in the horizontal direction. Even in foundations for such ultra-precision equipment, amplification of vibrations in the horizontal direction is likely to occur, and countermeasures have been required.However, with conventional vibration-proof foundations, vibrations are always amplified near the resonance point. ,
Furthermore, there was also the problem of vibration achieved with the ultra-precision equipment on board, which was extremely difficult to solve.

加えて、超精密機器そのものにも防振装置が組み込まれ
ており、多くの固有モードか同じような周波数帯域に集
まり、有効な振動遮断効果を持たせる事が困難でもあっ
た。
In addition, vibration isolators are built into the ultra-precision equipment itself, and many eigenmodes converge in similar frequency bands, making it difficult to provide effective vibration isolation effects.

(発明の目的 ) 本発明はかかる従来例の欠点に鑑みて為されたもので、
その目的とする処はかかる複雑な振動環境を一挙に解決
し、超精密機器への振動伝達を遮断する事の出来る画期
的な精密機器用能動制振基礎を提供するにある。
(Object of the invention) The present invention was made in view of the drawbacks of the conventional example, and
The purpose is to provide an innovative active vibration damping foundation for precision equipment that can solve such complex vibration environments at once and cut off vibration transmission to ultra-precision equipment.

(問題点を解決するための手段) 本発明は、係る従来技術の問題点を解決するために第1
項では; ■水平方向のばね常数が低く、垂直方向のばね常数が高
い弾性支持体く2)を下部基礎(1b)上に配設して上
部基礎(1a)を支持し、 ■上部基礎(1a)を振動させる有害振動をセンシング
して付加質量(8)の制御振動を有害振動に対してその
位相が反転するように制御して有害振動を相殺するアク
ティブ制御用アクチュエータクへ)を配設する。
(Means for Solving the Problems) The present invention provides the first method for solving the problems of the prior art.
In section: ■An elastic support with a low spring constant in the horizontal direction and a high spring constant in the vertical direction (2) is placed on the lower foundation (1b) to support the upper foundation (1a), and ■The upper foundation ( 1a) is installed in the active control actuator that senses the harmful vibration that vibrates and controls the control vibration of the additional mass (8) so that its phase is inverted with respect to the harmful vibration to offset the harmful vibration. do.

と言う技術的手段を採用しており、第2項では;■水平
方向のばね常数が低く、垂直方向のばね常数が高い弾性
支持体(2)を下部基礎(1b)上に配設して上部基礎
(1a)を支持し、 ■上部基礎(1a)に水平方向に揺動自在な付加質量(
8)を配設してイ4加質量(8)の水平固有振動数を上
部基礎(1a)の水乍1次モードの固有振動数にほぼ等
しく設定し、上部基礎(la)を振動させる有害振動を
センシングしてイ1加質量(8)の制御振動を有害振動
に対してその位相が反転するように制御して有害振動を
相殺する。
The following technical measures have been adopted, and in Section 2: ■ An elastic support (2) with a low spring constant in the horizontal direction and a high spring constant in the vertical direction is placed on the lower foundation (1b). The upper foundation (1a) is supported by an additional mass (1a) that can swing freely in the horizontal direction.
8) to set the horizontal natural frequency of the added mass (8) to be approximately equal to the natural frequency of the water first mode of the upper foundation (1a), thereby reducing the harmful vibrations of the upper foundation (la). The harmful vibration is canceled by sensing the vibration and controlling the controlled vibration of the added mass (8) so that its phase is inverted with respect to the harmful vibration.

と言う技術的手段を採用しており、第3項では:■■水
平方向振動可能な基礎本体(1)に水平方向に揺動自在
な(−1加質量(8)を配設して付加質量(8)の水平
固有振動数を基礎本体(1)の水平1次モードの固有振
動数にほぼ等しく設定し、基礎本体(1)を振動させる
有害振動をセンシングして付加質量(8)の制御振動を
有害振動に対してその位相が反転するように制御して有
害振動を相殺する。
In Section 3, we have adopted the following technical means: The horizontal natural frequency of the mass (8) is set approximately equal to the natural frequency of the horizontal primary mode of the base body (1), and the harmful vibrations that cause the base body (1) to vibrate are sensed to reduce the vibration of the additional mass (8). The control vibration is controlled so that its phase is inverted with respect to the harmful vibration, thereby canceling out the harmful vibration.

:と言う技術的手段を採用している。: We have adopted the technical means of

(作  用  ) 以下、本発明にかかる精密機器用能動制振基礎の作用に
(ツいて説明する。
(Function) Hereinafter, the function of the active vibration damping foundation for precision equipment according to the present invention will be explained.

第1項では、弾性支持体(2)によって振動の増幅及び
伝達をパッシブに絶縁するのであるが、弾性支持体く2
)は上下方向に於いてはばね常数が高いので、上下方向
の振動やロッキング関するものは高い周波数領域に配さ
れる事になる。
In item 1, the elastic support (2) passively insulates vibration amplification and transmission.
) has a high spring constant in the vertical direction, so vibrations and rocking in the vertical direction are placed in a high frequency range.

一方、この弾性支持体く2)は水平方向のばね常数が小
さいために水平方向ではアクティブ制御が可能になる。
On the other hand, since this elastic support 2) has a small spring constant in the horizontal direction, active control is possible in the horizontal direction.

そこで、水平方向では上部基礎(1a)を振動させる有
害振動をセンシングしてその位相を反転した制御用反力
を付加質量(1a)に加えて付加質量(1a)を振動さ
せ、その制御振動によって有害振動を相殺する。その結
果、上部基礎(1a)は有害振動の入力に拘わらず静止
状態を維持する。
Therefore, in the horizontal direction, the harmful vibration that vibrates the upper foundation (1a) is sensed, and a control reaction force whose phase is inverted is added to the additional mass (1a) to vibrate the additional mass (1a). Cancel harmful vibrations. As a result, the upper foundation (1a) maintains a stationary state regardless of the input of harmful vibrations.

第2項も同様の作用を発揮する物であるが、この場合は
前述に更に以下の点を加味している。即ち、基礎に入力
する雑多な周波数の内、基礎を共振させる成る周波数が
あるが、付加質量(8)の水平固有振動数をこの周波数
にほぼ等しくする事により、上部基礎(1a)を振動さ
せる有害振動をセンシングし、これを反転させて付加質
量(8)を振動さぜ、これによって作り出した制御振動
を有害振動に重畳して有害振動を相殺させようとした時
に最も効率良く相殺する事が出来るものである。
The second term also exhibits the same effect, but in this case, the following points are added to the above. That is, among the miscellaneous frequencies input to the foundation, there is a frequency that causes the foundation to resonate, but by making the horizontal natural frequency of the additional mass (8) approximately equal to this frequency, the upper foundation (1a) is made to vibrate. The most efficient way to cancel the harmful vibrations is to sense the harmful vibrations, invert the vibrations, vibrate the additional mass (8), and superimpose the control vibrations created by this on the harmful vibrations to cancel out the harmful vibrations. It is possible.

第3項は、第2項の弾性支持体(2)の代わりに水平方
向に振動可能な基礎本体(1)を用い、第2項と同様イ
]加質fit(8)にてアクティブ制御するものである
In the third term, a horizontally vibrating basic body (1) is used instead of the elastic support (2) in the second term, and active control is performed using the addition fit (8) as in the second term. It is something.

(実施例) 本発明の精密機器用能動制振基礎の適用を受ける超精密
機器(10)としては、例えはステッパ、マスクアライ
ナ、電子ビーム露光装置、S TM、レーザー装置等の
半導体製造装置を始めとする超精密加工 測定装置など
がある。
(Example) Examples of ultra-precision equipment (10) to which the active vibration damping basis for precision equipment of the present invention is applied include semiconductor manufacturing equipment such as steppers, mask aligners, electron beam exposure equipment, STM, and laser equipment. These include ultra-precision machining and measuring equipment.

超精密機器(10)に悪影響を与える振動として、例え
ば、■常時微動、交通振動、工事振動などの外乱振動、
■建屋内部に振動源が存在する内乱振動、■建屋外から
同じく入力する振動の内、自然力に依存する自然外力な
とかあるに れら振動は、外乱振動では、振動源、!!!盤弓建屋に
)フリーアクセス床<11)に)架台中機器と言うよう
な経路を取って伝達し、内乱振動は、機器に)架台に)
フリーアクセス床中架台中機器、又は、人の歩行(台車
等)Qフリーアクセス床に)架台に)機器と言うような
経路を通って伝達するものである。
Examples of vibrations that adversely affect ultra-precision equipment (10) include: - Disturbance vibrations such as constant microtremors, traffic vibrations, and construction vibrations;
■Internal vibration with a vibration source inside the building;■Vibration that is also input from outside the building, but with natural external forces that depend on natural forces.Disturbance vibration is a vibration source! ! ! Internal disturbance vibrations are transmitted via a path such as to the board building) to the free access floor <11) to the equipment in the mount, and the internal vibration is transmitted to the equipment) to the mount)
It is transmitted through a route such as a free access floor, a pedestal, a device, or a person walking (such as a trolley) Q to a free access floor) to a pedestal) to a device.

振動遮断はこの間のどの時点で行っても良いものである
が、本発明では機器(10)を搭載する基礎において行
うものである。
Although vibration isolation may be performed at any point during this period, in the present invention it is performed at the foundation on which the equipment (10) is mounted.

以下、制振基礎に付いて説明する。本発明第1項に記載
の制振基礎は、第2,4図に示すように下部基礎(1b
)と上部基礎(1a)とで構成されており、下部基礎(
1b)上に配設した弾性支持体く2)にて上部基礎(1
a)が支持されている。弾性支持体(2)は金属板(1
2)とゴム板〈13)とを交互に積層したもので、垂直
方向にはある程度の抵抗を持つが水平方向の抵抗はわず
かである。
The vibration damping basics will be explained below. The damping foundation according to item 1 of the present invention has a lower foundation (1b
) and an upper foundation (1a), and a lower foundation (
1b) The upper foundation (1
a) is supported. The elastic support (2) is a metal plate (1
2) and rubber plates (13) are alternately laminated, and has some resistance in the vertical direction, but little resistance in the horizontal direction.

上部基礎(1a)に2基1対の固定圧力容器(4a)(
4b)を水平に取着し、固定圧力容器(4a) (4b
)間に上部基礎(1a)から弾性ばねのようなもので懸
垂された付加質量(8)を配設し、固定圧力容器(4a
) (4b)と付加質量(8)との間に空気ばね(6a
) (6b)をそれぞれ介設したもので、空気ばね(6
a> (6b)にて付加質量(8)を挟持・弾接するよ
うになっている。圧力容器(4a) (4b)はオリフ
ィス〈5)を有する導管(14)を介して互いに連通し
ており、圧力容器(4a) (4b)と空気ばね(6u
)(6b)とはそれぞれ連通しており、一方の圧力容器
(4a) (4b)には振動制御弁(9)を介して圧縮
空気源(l)か接続されており、この部分全体が上部基
礎(1a)を振動させる有害振動をセンシングしてその
位相を反転した制御用反力を上部基礎(1a)に加えて
有害振動を相殺するアクデイプ制御用アクチュエータ(
^)である。
Two fixed pressure vessels (4a) (one pair) are installed on the upper foundation (1a).
4b) horizontally and fixed pressure vessels (4a) (4b)
), an additional mass (8) suspended from the upper foundation (1a) by something like an elastic spring is arranged between the fixed pressure vessels (4a
) (4b) and the additional mass (8).
) (6b) are interposed respectively, and air springs (6b) are interposed respectively.
a> The additional mass (8) is held and elastically contacted at (6b). The pressure vessels (4a) (4b) communicate with each other via a conduit (14) with an orifice (5), and the pressure vessels (4a) (4b) and the air spring (6u
) (6b), and one pressure vessel (4a) (4b) is connected to a compressed air source (l) via a vibration control valve (9), and this entire part is connected to the upper part. Acudep control actuator () that senses the harmful vibration that vibrates the foundation (1a) and applies a control reaction force whose phase is reversed to the upper foundation (1a) to offset the harmful vibration.
^).

振動制御弁(9)は、例えばサーボ弁や比例制御弁など
各種制御弁で、駆動回路(15)によってその開閉度合
が精密に制御される。前記駆動回路り15)は、外部か
ら伝わってきた振動又は装置自身から発生した振動を検
出する加速度センサのような振動センサ(16)、高周
波成分を枦遇するフ:二めの低域通過フィルタ、前記振
動信号を演算する演算回路、演算回路から出力された信
号の位相を180°反転する位相反転器、位相反転され
た信号に基づいて前記振動制御弁(9)を制御するため
の駆動回路(15)などで構成されている。
The vibration control valve (9) is one of various control valves, such as a servo valve or a proportional control valve, and its opening/closing degree is precisely controlled by the drive circuit (15). The drive circuit 15) includes a vibration sensor (16) such as an acceleration sensor that detects vibrations transmitted from the outside or vibrations generated from the device itself, and a second low-pass filter that receives high frequency components. , an arithmetic circuit that calculates the vibration signal, a phase inverter that inverts the phase of the signal output from the arithmetic circuit by 180 degrees, and a drive circuit that controls the vibration control valve (9) based on the phase-inverted signal. (15) etc.

しかして、床面から伝わってきた外部振動その他有害振
動の振動量は振動センサ(16)にてこれに対応する振
動信号電圧として検出される。この段階では振動信号電
圧には高周波分が重畳しており、次の低域通過フィルタ
にて高周波成分が濾過されて比較的滑らかな低周波成分
だけの振動信号電圧として出力される。濾過された振動
信号電圧は次ぎに演算回路に入力し、変動検出信号とし
て出力される。この変動検出信号は続いて位相反転器に
入力し、180°位相が反転した反転信号が出力され、
次の駆動回路(15)に入力し、この反転信号に基づい
て駆動回路(15)が前記振動制御弁(9)の開度を精
密に制御し、一方の圧力容器(4a)の空気圧を制御し
て付加質量(8)を振動させ、この制御振動にて外部か
ら入力した有害振動を相殺する。この圧力容器(4a)
の空気圧をP、とする。オリフィス(5)にて接続され
た他方の圧力容器(4b)の空気圧をP2とすると両者
は互いに連通しあっているのでほぼP、=P2となる。
The amount of external vibration and other harmful vibration transmitted from the floor surface is detected by the vibration sensor (16) as a corresponding vibration signal voltage. At this stage, a high frequency component is superimposed on the vibration signal voltage, and the next low-pass filter filters out the high frequency component and outputs a relatively smooth vibration signal voltage consisting only of low frequency components. The filtered vibration signal voltage is then input to an arithmetic circuit and output as a fluctuation detection signal. This fluctuation detection signal is then input to a phase inverter, and an inverted signal with a 180° phase inversion is output.
The signal is input to the next drive circuit (15), and based on this inverted signal, the drive circuit (15) precisely controls the opening degree of the vibration control valve (9) and controls the air pressure in one pressure vessel (4a). The additional mass (8) is caused to vibrate, and the harmful vibration input from the outside is offset by this controlled vibration. This pressure vessel (4a)
Let the air pressure be P. If the air pressure of the other pressure vessel (4b) connected at the orifice (5) is P2, then since both are in communication with each other, it becomes approximately P, = P2.

ただし、間にオリフィス(5)が介挿されているために
Plの振動(交流)成分はほぼ遮断されてP2へはほぼ
静圧(直流)成分のみが伝わる事になる。これにより、
振動制御弁(9)には必要なレベルの空気圧を設定する
だけで振動制御弁(9)に接続された圧力容器(4a)
とこれに対向する他方の圧力容器(4b)の静圧成分が
自動的にバランスする事になる。換言すれば、両圧力容
器(4a) (4b)の対向力が自動的に等しくなる。
However, since the orifice (5) is inserted between them, the vibration (alternating current) component of Pl is almost blocked, and only the static pressure (direct current) component is transmitted to P2. This results in
The pressure vessel (4a) connected to the vibration control valve (9) simply sets the required level of air pressure to the vibration control valve (9).
The static pressure components of the other pressure vessel (4b) facing this are automatically balanced. In other words, the opposing forces of both pressure vessels (4a) (4b) automatically become equal.

その結果、一方の圧力容器(4a)を制御すれば足り、
差動特性が向上するだけでなく構成も安価に出来るもの
である。
As a result, it is sufficient to control one pressure vessel (4a);
Not only does the differential characteristic improve, but the structure can also be made at low cost.

又、本発明に使用する弾性支持体(2)は金属板(12
)と例えばゴム板(13)のような弾性板の積層体であ
るので、上部基礎(1a)に重心の高い設備を載置した
としても上下方向並びにロッキングに対しては対効力を
有しているので、水平振動によるロッキングなどは生じ
ないものである。
Further, the elastic support (2) used in the present invention is a metal plate (12
) and a laminate of elastic plates such as rubber plates (13), so even if equipment with a high center of gravity is placed on the upper foundation (1a), it has no effect against vertical movement and rocking. Therefore, locking due to horizontal vibration does not occur.

第2項は、第1項に加えて、付加質量(8)の水平固有
振動数を上部基礎(1a)の水平1次モードの固有振動
数にほぼ等しく設定したもので、上部基礎(1a)を振
動させる有害振動をセンシングして付加質量(8)の制
御振動を有害振動に対してその位相が反転するように制
御した場合、最大効率で有害振動を相殺する事になる。
In addition to the first term, the second term is the one in which the horizontal natural frequency of the additional mass (8) is set approximately equal to the natural frequency of the horizontal first mode of the upper foundation (1a), and the upper foundation (1a) If the harmful vibrations that vibrate are sensed and the controlled vibration of the additional mass (8) is controlled so that its phase is inverted with respect to the harmful vibrations, the harmful vibrations will be canceled out with maximum efficiency.

即ち、付加質量(8)の水平固有振動数が上部基礎(1
a)の水平1次モードの固有振動数にほぼ等しく設定さ
れているので、有害振動の共振周波数領域での相殺が可
能となって、その結果最も効果的に制振作用を発揮出来
るのである。
In other words, the horizontal natural frequency of the additional mass (8) is the upper foundation (1
Since it is set approximately equal to the natural frequency of the horizontal first mode in a), it is possible to cancel harmful vibrations in the resonant frequency region, and as a result, the vibration damping effect can be exhibited most effectively.

第3項は第2項を簡略化したもので、上部基礎(1a)
とは下部基礎(1b)とを基礎本体(1)にまとめ、弾
性支持体(2)の代わりに基礎本体(1)自体を水平方
向に振動可能にしたものである。基礎本体(1)に付加
質量(8)を持つアクチュエータ(Δ)を設けるなどそ
の他の点並びにその作用は第2項と同じである。
The third term is a simplified version of the second term, and is based on the upper foundation (1a).
The lower foundation (1b) and the base body (1) are combined into a base body (1), and the base body (1) itself can vibrate in the horizontal direction instead of the elastic support (2). Other points such as providing the actuator (Δ) having an additional mass (8) on the base body (1) and their functions are the same as in the second term.

尚、図示していないがオリフィス(5)の代わりに管抵
抗のある管を用いても良いし、一方の圧力容器に振動制
御弁を介して圧縮空気源を接続すると共にオリフィスの
代わりにレギュレータを設けた導管を圧縮空気源から直
接他方の圧縮容器に接続しても良い。ただし、この場合
はレギュレータにて両圧力容器の圧力をバランスさせて
やる必要がある。その他、一方の空気ばねの対向力とバ
ランスさせてやる必要があるが、他方の空気ばねを圧縮
スプリングに変える事も可能である。
Although not shown, a pipe with resistance may be used instead of the orifice (5), or a compressed air source may be connected to one pressure vessel via a vibration control valve, and a regulator may be used instead of the orifice. A provided conduit may be connected directly from the compressed air source to the other compressed vessel. However, in this case, it is necessary to balance the pressures in both pressure vessels using a regulator. In addition, it is necessary to balance the opposing force of one air spring, but it is also possible to change the other air spring to a compression spring.

尚、アクチュエータ(^)は第1図のように通常は上部
基礎(1a)乃至基礎本体(1)の4辺に配設されるも
のである。
Incidentally, the actuators (^) are normally arranged on four sides of the upper foundation (1a) to the foundation body (1) as shown in FIG.

上記実施例は空気ばね(6a)(6b)を使用した制御
機構に付いて説明したが、勿論これに限られるものでな
く、電磁石の磁気力を利用したアクチュエータ(八)な
ど各種のものを用いる事が出来る事は言うまでもない。
Although the above embodiment has been explained with reference to a control mechanism using air springs (6a) (6b), it is of course not limited to this, and various types such as an actuator (8) using the magnetic force of an electromagnet may be used. Needless to say, it can be done.

(効果) 本発明第1,2項は、水平方向のばね常数が低く、垂直
方向のばね常数が高い弾性支持体を下部基礎上に配設し
て上部基礎を支持しであるので、上下方向の振動やロッ
キング関するものは高い周波数領域に配される事になっ
てなとえ重心の高い装置を載置してもロッキングを起こ
して連成するような事がないものである。又、第1項に
おいては、水平方向のばね常数が小さいなめに水平方向
ではアクティブ制御が可能になって上部基礎を振動させ
る有害振動をセンシングしてその位相を反転した制御用
反力を付加質量に加えて付加質量を振動させ、その制御
振動によって有害振動を効果的に相殺する事が出来るも
のである。その結果、上部基礎は有害振動の入力に拘わ
らず静止状態を維持する。
(Effects) In the first and second aspects of the present invention, an elastic support body having a low spring constant in the horizontal direction and a high spring constant in the vertical direction is disposed on the lower foundation to support the upper foundation. Things related to vibration and rocking are placed in a high frequency range, so even if a device with a high center of gravity is installed, rocking will not occur and cause coupling. In addition, in the first term, since the spring constant in the horizontal direction is small, active control is possible in the horizontal direction, and harmful vibrations that vibrate the upper foundation are sensed and a control reaction force with the phase reversed is added to the mass. In addition to this, the additional mass is vibrated, and the controlled vibration can effectively cancel out harmful vibrations. As a result, the upper foundation remains stationary despite the input of harmful vibrations.

本発明第2項は前記に加え、上部基礎において水平方向
に揺動自在に配設された付加質量の水平固有振動数を上
部基礎の水平1次モードの固有振動数にほぼ等しく設定
し、上部基礎を振動させる有害振動をセンシングして付
加質量の制御振動を有害振動に対してその位相が反転す
るように制御しているので、有害振動によって上部基礎
が共振しようとするのを最も効果的に相殺する事が出来
、上部基礎の静止効果を著しく高めるものである。
In addition to the above, the second aspect of the present invention is to set the horizontal natural frequency of the additional mass that is horizontally swingably disposed in the upper foundation to be approximately equal to the natural frequency of the horizontal primary mode of the upper foundation, and The harmful vibration that causes the foundation to vibrate is sensed and the control vibration of the additional mass is controlled so that its phase is inverted with respect to the harmful vibration, so it is possible to most effectively prevent the upper foundation from resonating due to harmful vibration. This can be offset and significantly enhances the static effect of the upper foundation.

又、本発明第3項は、第2項の弾性支持体の代わりに水
平方向に振動可能な基礎本体を使用したものであり、そ
の他は第2項と同じである。
In addition, the third aspect of the present invention is the same as the second aspect, except that a horizontally vibrating basic body is used instead of the elastic support in the second aspect.

以」二をまとめると、弾性支持体又は水平方向に振動可
能な基礎本体によって縦方向と水平方向とではね特性に
異方性を持たぜ、搭載機器の、!!!量やアンバランス
に対して高い安定性を保証する事が出来、しかもロッキ
ングなどがないために搭載物との速成の問題も生じず、
アクデイプ制御の干渉もないものである。加えて、第2
.3項では、付加質屋系の固有振動数を、制御しようと
する系の固有振動数に合わせているためにアクティブ制
御の力効率か最も高く、フィードバック系も安定である
To summarize the second point, the elastic support or the basic body that can vibrate in the horizontal direction gives anisotropy in the spring characteristics in the vertical and horizontal directions, and the on-board equipment... ! ! It can guarantee high stability against volume and imbalance, and since there is no locking, there are no problems with rapid formation with the loaded object.
There is no interference from accu-dip control. In addition, the second
.. In term 3, since the natural frequency of the additional pawnshop system is matched to the natural frequency of the system to be controlled, the force efficiency of active control is the highest, and the feedback system is also stable.

尚、空気ばねを使用したアクチュエータを使用する場合
は、リニアミータ等のアクチュエータに比べて磁場を発
生ぜず、電子ビーム露光装置など磁場を嫌う精密機器に
対しても適用可能である。
Note that when an actuator using an air spring is used, it does not generate a magnetic field compared to actuators such as a linear meter, and can be applied to precision equipment that dislikes magnetic fields such as electron beam exposure equipment.

最後に、一般的に建物や構造物は高さ7面積比を大きく
すると垂直方向に対して、剛性を持たせ易く逆に水平方
向には柔になりやすい。そのため、水平方向には構造物
のモードの影響が現れやすく、振幅も増幅して伝達され
る。そのため精密施設では建物は低層階設計であり、基
礎も面積を大きくとる必要が有った。しかし、スペース
の有効利用トータルコストの点から考えると、多層階小
スペースが有利である。従って、水平方向の振動を全周
波数帯域において低減する事の出来る本発明の基礎の有
用性は明白である。
Finally, in general, when a building or structure has a large height-to-area ratio, it tends to be more rigid in the vertical direction, but conversely, it tends to be more flexible in the horizontal direction. Therefore, the influence of the mode of the structure tends to appear in the horizontal direction, and the amplitude is also amplified and transmitted. For this reason, buildings in precision facilities had low-rise designs, and the foundations needed to be large in area. However, from the point of view of the total cost of effective use of space, a multi-story small space is advantageous. Therefore, the usefulness of the basis of the present invention, which can reduce horizontal vibrations in all frequency bands, is obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・本発明の第1実施例の概略構成平面図第2図・
本発明の第1実施例の概略構成正面図第3図・・・本発
明の第2実施例の概略構成正面図第4図・・本発明の第
3実施例の概略構成正面図第5図・・・本発明の制御時
の制振性能を示すグラフ第6図・・・本発明の非制御時
の制振性能で従来例の制振性能を示すグラフ (八)・ アクチュエータ (1)・・・基礎本体   (1a)・−上部基礎Ob
)・・下部基礎   <2)・・弾性支持体(4a) 
(4b)・・・圧力容器 (5)・・オリフィス(6a
) (6b)・空気ばね (7)・圧縮空気源(8)・
付加質量   (9)・・振動制御弁(10)・・・機
器     (11)・・フリーアクセス床(12)・
・金属板    (13)・・・ゴノ\板〈14)・・
導管     (15)・・・駆動回路(16)・・振
動センサ
Fig. 1 - Schematic plan view of the configuration of the first embodiment of the present invention Fig. 2 -
Schematic front view of the structure of the first embodiment of the present invention FIG. 3 Schematic front view of the structure of the second embodiment of the invention FIG. 4 Schematic front view of the structure of the third embodiment of the invention FIG. 5 ...Graph showing the vibration damping performance during control of the present invention Figure 6...Graph (8) showing the damping performance of the conventional example with the vibration damping performance during non-control of the present invention Actuator (1)・・Foundation body (1a)・−Upper foundation Ob
)...Lower foundation <2)...Elastic support (4a)
(4b)...Pressure vessel (5)...Orifice (6a
) (6b)・Air spring (7)・Compressed air source (8)・
Additional mass (9)...Vibration control valve (10)...Equipment (11)...Free access floor (12)...
・Metal plate (13)...Gono\board〈14)...
Conduit (15)...Drive circuit (16)...Vibration sensor

Claims (3)

【特許請求の範囲】[Claims] (1)水平方向のばね常数が低く、垂直方向のばね常数
が高い弾性支持体を下部基礎上に配設して上部基礎を支
持し、上部基礎を振動させる有害振動をセンシングして
付加質量の制御振動を有害振動に対してその位相が反転
するように制御して有害振動を相殺するアクティブ制御
用アクチュエータを配設してなる事を特徴とする精密機
器用能動制振基礎。
(1) An elastic support with a low spring constant in the horizontal direction and a high spring constant in the vertical direction is placed on the lower foundation to support the upper foundation, and the harmful vibrations that vibrate the upper foundation are sensed and the additional mass is reduced. An active vibration damping foundation for precision equipment, characterized in that it is equipped with an active control actuator that cancels harmful vibrations by controlling controlled vibrations so that the phase thereof is reversed with respect to harmful vibrations.
(2)水平方向のばね常数が低く、垂直方向のばね常数
が高い弾性支持体を下部基礎上に配設して上部基礎を支
持し、上部基礎に水平方向に揺動自在な付加質量を配設
して付加質量の水平固有振動数を上部基礎の水平1次モ
ードの固有振動数にほぼ等しく設定し、上部基礎を振動
させる有害振動をセンシングして付加質量の制御振動を
有害振動に対してその位相が反転するように制御して有
害振動を相殺する事を特徴とする精密機器用能動制振基
礎。
(2) An elastic support with a low spring constant in the horizontal direction and a high spring constant in the vertical direction is placed on the lower foundation to support the upper foundation, and an additional mass that can swing freely in the horizontal direction is placed on the upper foundation. The horizontal natural frequency of the additional mass is set approximately equal to the natural frequency of the horizontal first mode of the upper foundation, and the control vibration of the additional mass is controlled against the harmful vibration by sensing the harmful vibration that vibrates the upper foundation. An active vibration damping foundation for precision equipment that cancels out harmful vibrations by controlling the phase to be reversed.
(3)水平方向に振動可能な基礎本体に水平方向に揺動
自在な付加質量を配設して付加質量の水平固有振動数を
基礎本体の水平1次モードの固有振動数にほぼ等しく設
定し、基礎本体を振動させる有害振動をセンシングして
付加質量の制御振動を有害振動に対してその位相が反転
するように制御して有害振動を相殺する事を特徴とする
精密機器用能動制振基礎。
(3) An additional mass that can swing horizontally is placed on the foundation body that can vibrate in the horizontal direction, and the horizontal natural frequency of the additional mass is set approximately equal to the natural frequency of the horizontal primary mode of the foundation body. , an active vibration damping foundation for precision equipment, which is characterized in that it senses the harmful vibration that vibrates the basic body and controls the controlled vibration of the additional mass so that its phase is reversed with respect to the harmful vibration, thereby canceling out the harmful vibration. .
JP63115389A 1988-05-12 1988-05-12 Active vibration control foundation for precision equipment Expired - Lifetime JP2551460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63115389A JP2551460B2 (en) 1988-05-12 1988-05-12 Active vibration control foundation for precision equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63115389A JP2551460B2 (en) 1988-05-12 1988-05-12 Active vibration control foundation for precision equipment

Publications (2)

Publication Number Publication Date
JPH01288647A true JPH01288647A (en) 1989-11-20
JP2551460B2 JP2551460B2 (en) 1996-11-06

Family

ID=14661336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63115389A Expired - Lifetime JP2551460B2 (en) 1988-05-12 1988-05-12 Active vibration control foundation for precision equipment

Country Status (1)

Country Link
JP (1) JP2551460B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144114A (en) * 1990-10-05 1992-05-18 Canon Inc Aligner
JPH04143764A (en) * 1990-10-05 1992-05-18 Canon Inc Exposing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009089B1 (en) * 2017-11-29 2019-08-13 금오공과대학교 산학협력단 Active damper for canceling vibration of manufacturing equipments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55622A (en) * 1978-06-16 1980-01-07 Toshiba Corp Solid state pickup device
JPS6262036A (en) * 1985-09-09 1987-03-18 Mitsubishi Electric Corp Vibration control device
JPS62159824A (en) * 1985-12-28 1987-07-15 Bridgestone Corp Earthquake motion releasing/vibration removing support device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55622A (en) * 1978-06-16 1980-01-07 Toshiba Corp Solid state pickup device
JPS6262036A (en) * 1985-09-09 1987-03-18 Mitsubishi Electric Corp Vibration control device
JPS62159824A (en) * 1985-12-28 1987-07-15 Bridgestone Corp Earthquake motion releasing/vibration removing support device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144114A (en) * 1990-10-05 1992-05-18 Canon Inc Aligner
JPH04143764A (en) * 1990-10-05 1992-05-18 Canon Inc Exposing device

Also Published As

Publication number Publication date
JP2551460B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
KR101719380B1 (en) An active vibration isolation and damping system
EP0195850B1 (en) Active vibration isolation system
Beard et al. Practical product implementation of an active/passive vibration isolation system
US8091694B2 (en) Actuator arrangement for active vibration isolation comprising an inertial reference mass
US20060272411A1 (en) Torsional rate sensor with momentum balance and mode decoupling
US20060272410A1 (en) Torsional rate sensor with momentum balance and mode decoupling
WO2007086849A1 (en) Robust six degree-of-freedom micromachined gyroscope with anti-phase drive scheme and method of operation of the same
CN101542234A (en) Vibratory gyroscope with parasitic mode damping
JPS61286634A (en) Vibration suppressing apparatus
CN106321708A (en) Two-degree-of-freedom vibration isolating and precision positioning combined active vibration isolator
Beijen et al. Two-sensor control in active vibration isolation using hard mounts
JPH05340444A (en) Vibration isolating device and control method therefor
WO1999026120A1 (en) Vibration eliminator, aligner and projection exposure method
US7822509B2 (en) Control system for active vibration isolation of a supported payload
JPH01288647A (en) Active damping base for precise instrument
JP2001271871A (en) Active vibration control device
US6401535B1 (en) Active cover accelerometer
JP3799244B2 (en) Gas spring vibration isolator
Tantanawat et al. Application of compliant mechanisms to active vibration isolation systems
JPH09112628A (en) Magnetic levitation vibration resistant device
JPH01247838A (en) Positive control precision damping method and actuator employing said method and damping bed
JP2005069303A (en) Pneumatic control type vibration isolator
JP3616399B2 (en) Active vibration isolator
AU716382B2 (en) Active pneumatic mount
JP3372975B2 (en) Active vibration isolation method and vibration isolation device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12