JPH01288305A - Modifying method for sulfonic multi-layered membrane - Google Patents

Modifying method for sulfonic multi-layered membrane

Info

Publication number
JPH01288305A
JPH01288305A JP11695188A JP11695188A JPH01288305A JP H01288305 A JPH01288305 A JP H01288305A JP 11695188 A JP11695188 A JP 11695188A JP 11695188 A JP11695188 A JP 11695188A JP H01288305 A JPH01288305 A JP H01288305A
Authority
JP
Japan
Prior art keywords
membrane
sulfonic acid
sulfonated
heat
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11695188A
Other languages
Japanese (ja)
Inventor
Satoshi Yanase
聡 柳瀬
Noboru Kubota
昇 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11695188A priority Critical patent/JPH01288305A/en
Publication of JPH01288305A publication Critical patent/JPH01288305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve rejection of electrically neutral low-molecular substance without impairing thermal resistance and operability at low pressures by superposing heat-resisting polymer containing sulfonic acid group upon a supporter membrane, impregnating it thereafter with an aqueous solution containing furfural and sulfuric acid to heat it. CONSTITUTION:Heat-resisting polymers containing sulfonic acid groups such as sulfonated polysulfone or sulfonated polyetherimide etc., are superposed upon a supporter membrane, which is impregnated with a water solution containing furfuryl alcohol and sulfuric acid to be heated. The multi-layered membrane so obtained is operable under such low pressure as about 10kg/cm<2> and exhibits thermal resistance, while its solute rejection for electrically neutral low-molecular compound is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶液系におけるイオンや低分子化合物の分離
に有用なスルホン酸型複合膜の溶質排除率を向上させる
方法に関するもので、本発明によって改質された膜は耐
熱性を有する低圧型逆浸透膜として利用できる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for improving the solute exclusion rate of a sulfonic acid type composite membrane useful for separating ions and low molecular weight compounds in a solution system. The modified membrane can be used as a heat-resistant, low-pressure reverse osmosis membrane.

(従来の技術) 近年、その操作性と経済性の観点から、耐熱性を持ち、
しかも低い圧力で操作できる逆浸透膜の研究が盛んに行
われているが、耐熱性エンジニアリングプラスチックを
スルホン化したポリマーは、その要求を満たす膜素材と
して利用することができる。その中でもスルホン化ポリ
スルホン(例えば、特開昭61−4506など)、スル
ホン化ポリフェニレンオキサイド(例えば、特公昭43
−13131など)はそのまま製膜したり、あるいは適
当な支持膜上に積層させたりして複合膜として利用でき
ることが報告されている。一般に逆浸透膜では、従来の
酢酸セルロースに代表されるような、イオンや低分子化
合物に対して高い排除率を示すものは耐熱性に乏しい。
(Conventional technology) In recent years, from the viewpoint of operability and economic efficiency,
Moreover, research into reverse osmosis membranes that can be operated at low pressures is being actively conducted, and sulfonated heat-resistant engineering plastics can be used as membrane materials that meet these requirements. Among them, sulfonated polysulfone (for example, JP-A-61-4506), sulfonated polyphenylene oxide (for example, JP-A-43
-13131, etc.) can be used as a composite film by forming a film as it is or by laminating it on a suitable support film. In general, reverse osmosis membranes that exhibit a high rejection rate for ions and low-molecular compounds, such as conventional cellulose acetate, have poor heat resistance.

また高い排除率を示し、かつ90℃近い高温にも耐える
といわれているスルホン化ポリフルフリルアルコール膜
(例えば、1.Cabasso、A、P、Tamvak
is、J、Appl、Polym、Sci、、1979
,23.1509−1525など)は、40 k g 
/ c m ”以上の使用圧力を必要とし透水性も低い
(圧力10kg/am2に換算しておよそ0,1〜0.
2m37m” ・日)といった、操作上・経済上の難点
を持っている。−方、15kg/cm2程度の低い圧力
で使用でき、イオンおよびアルコールのような低分子化
合物に対しても高い排除率を示すポリアミド系の複合膜
(例えば、特開昭62−121603など)も報告され
ているが、ポリアミド系の膜は一般に膜の殺菌や洗浄に
必要な塩素に対する耐久性に乏しく、かつ耐熱性がない
ため、その使用範囲は限定されてしまう。これに対して
、上記のスルホン化された耐熱性ポリマーを利用すると
、これらの欠点をカバーした、耐熱性を持ち10 k 
g / cm2程度の低い圧力で操作できる複合膜を提
供することができる。しかしながら、これらの膜はその
排除率において、一般の逆浸透膜に対して劣る。とりわ
け、電気的に中正な低分子化合物に対しては高い排除率
を期待できず、例えばスルホン化ポリフェニレンオキサ
イド複合膜における、分子量342のショ糖の排除率は
40%程度である(例えば、特願昭62−59928な
ど)。これは、膜中のスルホン酸基の水和による膜の膨
潤により膜の緻密性が減少するのに加え、電気的に中性
な化合物は膜中のスルホン酸基の持つ陰電荷によるドナ
ン排除の影響を受けないためだと解釈される。
In addition, sulfonated polyfurfuryl alcohol membranes (for example, 1.Cabasso, A, P, Tamvak
is, J. Appl, Polym, Sci., 1979
, 23.1509-1525, etc.) is 40 kg
/ cm" or more, and the water permeability is low.
However, it has operational and economical drawbacks, such as 2m37m"/day). On the other hand, it can be used at a low pressure of about 15kg/cm2, and has a high rejection rate even for ions and low-molecular compounds such as alcohol. Polyamide-based composite membranes (e.g., JP-A-62-121603) have also been reported, but polyamide-based membranes generally have poor durability against chlorine, which is necessary for sterilizing and cleaning the membrane, and lack heat resistance. Therefore, its range of use is limited.On the other hand, the use of the above-mentioned sulfonated heat-resistant polymer overcomes these drawbacks and has heat resistance of 10K.
Composite membranes can be provided that can be operated at pressures as low as g/cm2. However, these membranes are inferior to general reverse osmosis membranes in their rejection rates. In particular, a high rejection rate cannot be expected for electrically neutral low-molecular compounds; for example, the rejection rate of sucrose with a molecular weight of 342 in a sulfonated polyphenylene oxide composite membrane is about 40% (for example, in the patent application (Sho 62-59928, etc.) This is because the density of the membrane decreases due to swelling of the membrane due to hydration of the sulfonic acid groups in the membrane, and electrically neutral compounds are more susceptible to Donnan exclusion due to the negative charge of the sulfonic acid groups in the membrane. It is interpreted that this is to avoid being affected.

(発明が解決しようとする問題点) 本発明は、耐熱性を有したスルホン酸型複合膜の溶質排
除性を向上させる方法を提供せんとするものである。
(Problems to be Solved by the Invention) The present invention aims to provide a method for improving the solute exclusion properties of a heat-resistant sulfonic acid type composite membrane.

(問題を解決するための手段) 本発明は、スルホン酸型複合膜の表面に、フルフリルア
ルコールと硫酸を含む水溶液を含浸させ、次いで加熱す
ることによって、10 k g / cm2程度の低い
圧力で操作でき、耐熱性と高い溶質排除率を持った複合
膜が得られることを見出し、これに基すいてなされたも
のである。この原因についての詳細はあきらかではない
が、スルホン酸基を含んだポリマーより成る複合膜の活
性層が、硫酸存在下におけるフルフリルアルコールの重
合によって生成するスルホン化ポリフルフリルアルコー
ルによって、ポリマー鎖同士が複雑にからみあった状態
で固定化され、その結果として水分子の浸透による膨潤
が妨げられるためと推定される。
(Means for Solving the Problems) The present invention impregnates the surface of a sulfonic acid type composite membrane with an aqueous solution containing furfuryl alcohol and sulfuric acid, and then heats the membrane to produce a membrane with a pressure as low as 10 kg/cm2. This work was carried out based on the discovery that a composite membrane that can be manipulated, has heat resistance, and a high solute exclusion rate can be obtained. The details of the cause of this are not clear, but the active layer of the composite membrane made of a polymer containing sulfonic acid groups is caused by sulfonated polyfurfuryl alcohol produced by polymerization of furfuryl alcohol in the presence of sulfuric acid. It is presumed that this is because they are immobilized in a complexly entangled state, which prevents them from swelling due to the penetration of water molecules.

本発明におけるスルホン酸型複合膜とは、スルホン酸基
を含む耐熱性高分子を支持膜上に活性層として積層させ
た複合膜を指し、スルホン酸基を含む耐熱性高分子とし
てはスルホン化ポリスルホン、スルホン化ポリフェニレ
ンオキサイド又は、スルホン化ポリエーテルイミドなど
が好ましく用いられる。スルホン酸基の状態としては水
素型あるいはアルカリ金属塩いずれの型になっていても
良い。これら複合膜の製法は一般に知られているもので
良く(例えば、R,Y、M、Huang。
The sulfonic acid type composite membrane in the present invention refers to a composite membrane in which a heat-resistant polymer containing sulfonic acid groups is laminated as an active layer on a support membrane. , sulfonated polyphenylene oxide, or sulfonated polyetherimide are preferably used. The state of the sulfonic acid group may be either hydrogen type or alkali metal salt type. The manufacturing method of these composite membranes may be generally known (for example, R, Y, M, Huang.

J、J、にim、J、Appl、Polym、Sci、
、1984,29.4029〜4035など)、スルホ
ン酸型ポリマーを、支持膜を溶解しない溶剤に適当な濃
度で溶解し、支持膜上に塗付した後、溶剤を蒸発させて
製膜することができる。支持膜としては特に限定される
ものではないが、上記スルホン酸型ポリマーを溶解する
ような溶剤に対して溶解することのない高分子としてポ
リスルホンやポリエーテルイミドなどがあげられ、とり
わけすぐれた耐熱性、耐塩素性、広範な使用pH範囲を
持つという点からポリスルホンを用いるのが好ましい。
J, J, im, J, Appl, Polym, Sci,
, 1984, 29. 4029-4035, etc.), a sulfonic acid type polymer can be dissolved at an appropriate concentration in a solvent that does not dissolve the support film, applied onto the support film, and then the solvent can be evaporated to form a film. can. The support membrane is not particularly limited, but examples of polymers that do not dissolve in solvents that dissolve the sulfonic acid type polymers include polysulfone and polyetherimide, which have particularly excellent heat resistance. It is preferable to use polysulfone because of its chlorine resistance and wide usable pH range.

また、膜形態としては平服、中空糸等、どのようなもの
でもよく、特に限定されない。
Furthermore, the membrane form may be of any type, such as plain clothes or hollow fibers, and is not particularly limited.

この複合膜表面に含浸させる水溶液は、フルフリルアル
コール0.3〜1.5重量%、硫酸0.3〜1.5ff
i量%の組成より成る。フルフリルアルコールと硫酸の
重量%は、多すぎると重合が進みすぎ、より強固な活性
層を形成するため膜の透水性が低下する。また、少なす
ぎると重合が不十分なために排除率の向上性が小さくな
る。得られる膜性能から見て上記の範囲が適当である。
The aqueous solution impregnated on the surface of this composite membrane contains 0.3 to 1.5% by weight of furfuryl alcohol and 0.3 to 1.5ff of sulfuric acid.
It consists of a composition of i amount %. If the weight percentages of furfuryl alcohol and sulfuric acid are too large, polymerization will proceed too much and a stronger active layer will be formed, resulting in a decrease in water permeability of the membrane. On the other hand, if the amount is too small, polymerization will be insufficient and the improvement in rejection rate will be reduced. The above range is appropriate in view of the membrane performance obtained.

なお、上記範囲内で重量%を調整することによって、膜
性能を変化させることができる。また、この水溶液は、
ドデシル硫酸ナトリウム0〜1.0重量%、イソプロパ
ツール0〜20.0重量%を含んでいても良い。ここで
、ドデシル硫酸ナトリウムはこの水溶液を含浸させる複
合膜表面との親和性を向上させるために、また、イソプ
ロパツールは溶液中でフルフリルアルコールが重合する
のを防ぐために加えられる。なお、ここでいう複合膜表
面とはスルホン酸型ポリマーが積層している活性層側を
指す。
Note that the membrane performance can be changed by adjusting the weight % within the above range. In addition, this aqueous solution is
It may contain 0 to 1.0% by weight of sodium dodecyl sulfate and 0 to 20.0% by weight of isopropanol. Here, sodium dodecyl sulfate is added to improve the affinity with the composite membrane surface impregnated with this aqueous solution, and isopropanol is added to prevent furfuryl alcohol from polymerizing in the solution. Note that the composite membrane surface herein refers to the active layer side on which the sulfonic acid type polymer is laminated.

次に、この水溶液をこの複合膜表面に含浸させる。これ
にはどのような方法を用いても良いが、複合膜表面をこ
の溶液に1分程度接触させた後、過剰に付着した溶液を
除去するために膜を数分間垂直に保持する方法が簡便で
ある。その後、この膜を加熱する。この時、加熱温度が
高く、加熱時間が長いほどフルフリルアルコールの重合
は促進され、膜の透水性は低下する。また加熱温度が低
く、加熱時間が短いと重合がなかなか進行せず、排除率
の向上が不十分になる。このように加熱時間と加熱温度
を調整することにより膜性能を変化させることができる
が、得られる膜性能から判断して温度としては100〜
130℃、時間としては10〜15分間が適当である。
Next, the surface of this composite membrane is impregnated with this aqueous solution. Any method can be used for this, but a convenient method is to contact the composite membrane surface with this solution for about 1 minute and then hold the membrane vertically for several minutes to remove excess solution. It is. This film is then heated. At this time, the higher the heating temperature and the longer the heating time, the more the polymerization of furfuryl alcohol is promoted and the water permeability of the membrane decreases. Furthermore, if the heating temperature is low and the heating time is short, polymerization will not proceed easily and the rejection rate will not be improved sufficiently. The membrane performance can be changed by adjusting the heating time and heating temperature in this way, but judging from the membrane performance obtained, the temperature should be 100~
A temperature of 130° C. for 10 to 15 minutes is appropriate.

以下、実施例によって本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

(実施例1) ポリスルホン(UCC社製のUdel、P−3500)
20重量%、N、N−ジメチルアセトアミド71重量%
、テトラエチレングリコール9重量%を用いて製膜用原
液を作製し、特開昭58−156018、実施例1の方
法に準じて、外径1.35mm、内径0.72mmの中
空糸状限外濾過膜を作製した。この膜を含水状態のまま
25重量%のグリセリン水溶液に60℃で5時間浸漬し
、次いで、50℃の乾燥機中で24時間乾燥させること
により、グリセリンが内部に目詰めされた中空糸状乾燥
限外濾過膜を得た。以下これを支持膜として用いた。次
に、イオン交換容量1.50ミリ当ffi/gのスルホ
ン化ポリスルホンを2.0重量%エチレグリコールモノ
ーn−ブチルエーテル溶液とし、ポリスルホン中空糸状
支持膜外表面にこの溶液を塗付した後、中空糸を垂直に
保フたまま室温で2日間風乾させ、複合膜を作製した。
(Example 1) Polysulfone (Udel, P-3500 manufactured by UCC)
20% by weight, N,N-dimethylacetamide 71% by weight
A stock solution for membrane formation was prepared using 9% by weight of tetraethylene glycol, and a hollow fiber ultrafiltration film having an outer diameter of 1.35 mm and an inner diameter of 0.72 mm was prepared according to the method of JP-A-58-156018, Example 1. A membrane was prepared. This membrane was immersed in a 25% by weight glycerin aqueous solution at 60°C for 5 hours in a water-containing state, and then dried in a dryer at 50°C for 24 hours. An outer filtration membrane was obtained. This was used as a support membrane hereinafter. Next, sulfonated polysulfone with an ion exchange capacity of 1.50 mm/ffi/g was made into a 2.0% by weight ethylene glycol monon-butyl ether solution, and this solution was applied to the outer surface of the polysulfone hollow fiber support membrane. A composite membrane was prepared by air-drying the yarn at room temperature for 2 days while keeping it vertical.

次に、フルフリルアルコール0.3重量%、硫酸0.3
重量%、ドデシル硫酸ナトリウム0.3重量%、インプ
ロパツール20重量%の水溶液を調整し、上記複合膜の
外表面にこの水溶液を塗付した後、10分間垂直に保持
し、次いで100℃の熱風乾燥機中で10分間加熱した
。この膜を500ppmシヨ糖水溶液を評価溶液として
外圧式10kg/cm2の圧力で評価したところ、透水
率0.95m’/m” ・日、排除率55.2%であっ
た。
Next, furfuryl alcohol 0.3% by weight, sulfuric acid 0.3%
After preparing an aqueous solution containing 0.3% by weight of sodium dodecyl sulfate and 20% by weight of Improper Tool, this aqueous solution was applied to the outer surface of the composite membrane, held vertically for 10 minutes, and then heated at 100°C. It was heated in a hot air dryer for 10 minutes. When this membrane was evaluated using a 500 ppm sucrose aqueous solution as an evaluation solution under an external pressure of 10 kg/cm2, the water permeability was 0.95 m'/m''·day and the rejection rate was 55.2%.

(実施例2) スルホン化ポリスルホンの代りにイオン交換容31.9
8ミリ当量/gのスルホン化ポリフェニレンオキサイド
を用いた以外は、実施例1と同様の方法で膜を処理し評
価したところ、500ppmシヨ糖水溶液の透水率0 
、87 m ’ / m 2 ・日、排除率59.7%
であった。
(Example 2) Ion exchange volume 31.9 instead of sulfonated polysulfone
When the membrane was treated and evaluated in the same manner as in Example 1 except that 8 meq/g of sulfonated polyphenylene oxide was used, the water permeability of a 500 ppm sucrose aqueous solution was 0.
, 87 m'/m2 day, exclusion rate 59.7%
Met.

(実施例3) スルホン化ポリスルホンの代りにイオン交換容ji3.
93ミリ当1t/gのスルホン化ポリエーテルイミドを
用い、溶剤としてエチレングリコールモノ−n−ブチル
エーテルの代りにジメチルスルホキシドと水(重量比9
:1)の混合溶剤を用いた以外は、実施例1と同様の方
法で膜を処理し評価したところ、500ppmシヨ糖水
溶液の透水率1゜15m3/m2・日、排除率45.8
%であった。
(Example 3) Ion exchange volume ji3. instead of sulfonated polysulfone.
Using 1 t/g of sulfonated polyetherimide per 93 mmol, dimethyl sulfoxide and water (weight ratio 9) were used instead of ethylene glycol mono-n-butyl ether as a solvent.
: When the membrane was treated and evaluated in the same manner as in Example 1 except for using the mixed solvent of 1), the water permeability of 500 ppm sucrose aqueous solution was 1°15 m3/m2·day, and the rejection rate was 45.8.
%Met.

(実施例4) 複合膜へ含浸させる水溶液の組成をフルフリルアルコー
ル1.5重量%、硫酸1.5重量%とじた以外は、実施
例2と同様の方法で膜を処理し評価したところ、500
ppmシヨ糖水溶液の透水率0.70m3/m2 ・日
、排除率62.0%であった。
(Example 4) The membrane was treated and evaluated in the same manner as in Example 2, except that the composition of the aqueous solution impregnated into the composite membrane was 1.5% by weight of furfuryl alcohol and 1.5% by weight of sulfuric acid. 500
The water permeability of the ppm sucrose aqueous solution was 0.70 m3/m2·day, and the rejection rate was 62.0%.

(実施例5) 加熱条件を130℃で15分とした以外は、実施例2と
同様の方法で膜を処理し評価したところ、500ppm
シヨ糖水溶液の透水率0.53m ’ / m ” ・
日、排除率75.5%であった。
(Example 5) A film was treated and evaluated in the same manner as in Example 2, except that the heating conditions were 130°C for 15 minutes.
Water permeability of sucrose aqueous solution 0.53m'/m''・
On day one, the exclusion rate was 75.5%.

(実施例6) 実施例1で処理した膜を80℃熱水に4時間浸漬した後
、実施例1と同様の方法で評価したところ、500pp
mシヨ糖水溶液の透水率0.98m 3/ m ” ・
日、排除率56.0%であり、熱水浸漬後の膜性能の低
下はみられなかった。
(Example 6) After the membrane treated in Example 1 was immersed in 80°C hot water for 4 hours, it was evaluated in the same manner as in Example 1.
Water permeability of m-sucrose aqueous solution: 0.98 m 3/m ”・
The rejection rate was 56.0%, and no deterioration in membrane performance was observed after immersion in hot water.

(実施例7) 実施例2で処理した膜を80℃熱水に4時間浸漬した後
、実施例2と同様の方法で評価したところ、500pp
mシヨ糖水溶液の透水率0.88m 3/ m 2 ・
日、排除率60.0%であり、熱水浸漬後の膜性能の低
下はみられなかった。
(Example 7) After the membrane treated in Example 2 was immersed in 80°C hot water for 4 hours, it was evaluated in the same manner as in Example 2.
Water permeability of sucrose aqueous solution 0.88 m 3 / m 2 ・
The rejection rate was 60.0%, and no deterioration in membrane performance was observed after immersion in hot water.

(実施例8) 実施例3で処理した膜を80℃熱水に4時間浸漬した後
、実施例3と同様の方法で評価したところ、500pp
mシヨ糖水溶液の透水率1.15m’ /m2・El、
排除率46.0%であり、熱水浸漬後の膜性能の低下は
みられなかった。
(Example 8) After the membrane treated in Example 3 was immersed in 80°C hot water for 4 hours, it was evaluated in the same manner as in Example 3.
mWater permeability of sucrose aqueous solution 1.15 m'/m2・El,
The rejection rate was 46.0%, and no decrease in membrane performance was observed after immersion in hot water.

(比較例1) 実施例1における中空糸状スルホン化ポリスルホン複合
膜を、本発明による改質処理を施さずに実施例1と同様
の方法で評価したところ、500ppmシヨ糖水溶液の
透水率1.30m37m2・日、排除率25.0%であ
った。
(Comparative Example 1) When the hollow fiber sulfonated polysulfone composite membrane in Example 1 was evaluated in the same manner as in Example 1 without being subjected to the modification treatment according to the present invention, the water permeability of a 500 ppm sucrose aqueous solution was 1.30 m37 m2.・On Sunday, the exclusion rate was 25.0%.

(比較例2) 実施例2における中空糸状スルホン化ポリフェニレンオ
キサイド複合膜を、本発明による改質処理を施さずに実
施例2と同様の方法で評価したところ、500ppmシ
ヨ糖水溶液の透水率1.03m3/m2 ・日、排除率
39.8%であった。
(Comparative Example 2) When the hollow fiber sulfonated polyphenylene oxide composite membrane in Example 2 was evaluated in the same manner as in Example 2 without being subjected to the modification treatment according to the present invention, the water permeability of a 500 ppm sucrose aqueous solution was 1. 03 m3/m2 ·day, the exclusion rate was 39.8%.

(比較例3) 実施例3における中空糸状スルホン化ポリエーテルイミ
ド複合膜を、本発明による改質処理を施さずに実施例3
と同様の方法で評価したところ、500ppmシヨ糖水
溶液の透水率1.70m3/m2・日、排除率5.0%
であった。
(Comparative Example 3) The hollow fiber sulfonated polyetherimide composite membrane in Example 3 was prepared in Example 3 without being subjected to the modification treatment according to the present invention.
When evaluated using the same method as above, the water permeability of 500 ppm sucrose aqueous solution was 1.70 m3/m2・day, and the rejection rate was 5.0%.
Met.

(発明の効果) 耐熱性を持ち、10kg/Cm2程度の低い圧力で操作
できるというスルホン酸型複合膜の利点を著しく損なわ
ずに、電気的に中性な低分子化合物の溶質排除率を向上
させた膜を得ることができる。
(Effect of the invention) The solute exclusion rate of electrically neutral low molecular weight compounds can be improved without significantly impairing the advantages of the sulfonic acid type composite membrane, which is heat resistance and can be operated at a low pressure of about 10 kg/Cm2. A thin film can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)支持膜上にスルホン酸基を含む耐熱性高分子を積
層させて成る複合膜の表面に、フルフリルアルコールと
硫酸を含む水溶液を含浸させ、次いで加熱することを特
徴とするスルホン酸型複合膜の改質方法。
(1) A sulfonic acid type characterized by impregnating the surface of a composite membrane formed by laminating a heat-resistant polymer containing a sulfonic acid group on a support membrane with an aqueous solution containing furfuryl alcohol and sulfuric acid, and then heating it. Method for modifying composite membranes.
(2)スルホン酸基を含む耐熱性高分子が、スルホン化
ポリスルホン、スルホン化ポリフェニレンオキサイド又
は、スルホン化ポリエーテルイミドである請求項1記載
のスルホン酸型複合膜の改質方法。
(2) The method for modifying a sulfonic acid type composite membrane according to claim 1, wherein the heat-resistant polymer containing sulfonic acid groups is sulfonated polysulfone, sulfonated polyphenylene oxide, or sulfonated polyetherimide.
JP11695188A 1988-05-16 1988-05-16 Modifying method for sulfonic multi-layered membrane Pending JPH01288305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11695188A JPH01288305A (en) 1988-05-16 1988-05-16 Modifying method for sulfonic multi-layered membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11695188A JPH01288305A (en) 1988-05-16 1988-05-16 Modifying method for sulfonic multi-layered membrane

Publications (1)

Publication Number Publication Date
JPH01288305A true JPH01288305A (en) 1989-11-20

Family

ID=14699774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11695188A Pending JPH01288305A (en) 1988-05-16 1988-05-16 Modifying method for sulfonic multi-layered membrane

Country Status (1)

Country Link
JP (1) JPH01288305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143348A (en) * 2013-12-26 2015-08-06 フタムラ化学株式会社 Resin solid acid and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143348A (en) * 2013-12-26 2015-08-06 フタムラ化学株式会社 Resin solid acid and method for producing the same

Similar Documents

Publication Publication Date Title
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
JP2008093543A (en) Manufacturing method of dry composite semipermeable membrane
EP2801401A1 (en) Outstandingly contamination resistant reverse osmosis membrane and production method therefor
CN112351832B (en) Method for producing porous hollow fiber membrane for humidification
JPH03196822A (en) Semipermeable membrane made from homogeneously mixable polymer mixture
JPS63248409A (en) Improved oxidation resistant film and its production
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
KR100813908B1 (en) Preparation method of highly permeable composite polyamide nanofiltration membranes
JP2004290751A (en) Method for manufacturing steam permeable membrane
KR102056872B1 (en) Positive charged poly(vinylidene fluoride) porous membranes and manufacturing method thereof
JPH05301035A (en) Separation membrane made of polyion complex
WO1989005182A1 (en) Hydrolyzed membrane and process for its production
AU2006261581B2 (en) Cross linking treatment of polymer membranes
JPH01288305A (en) Modifying method for sulfonic multi-layered membrane
JPH10309449A (en) Organic material separating polymer film and its manufacture
KR102309602B1 (en) Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
CN115463552A (en) Anti-pollution chlorine-resistant reverse osmosis membrane and preparation method and application thereof
JPH0122008B2 (en)
JPS63305904A (en) Modifying method for sulfonic acid-type semi permeable membrane
KR102102040B1 (en) Fouling resistant reverse osmosis membrane, manufacturing method thereof and fouling resistant reverse osmosis module containing the same
CN1261197C (en) Hollow fiber ultrafiltration membrane of polysulfone with permanent hydrophilicity and its preparing process
JPS5892406A (en) Selective permeable membrane
JPS63283707A (en) Semipermeable membrane of polymer ampholyte
CN110394072B (en) Method for preparing high-flux reverse osmosis membrane by using long-chain aliphatic amine compound derivative
KR102598050B1 (en) Polyimide-based organic solvent nanofiltration membrane with crosslinked active layer and preparation method thereof