JPH01287450A - Water content measuring method using microwave - Google Patents

Water content measuring method using microwave

Info

Publication number
JPH01287450A
JPH01287450A JP11708788A JP11708788A JPH01287450A JP H01287450 A JPH01287450 A JP H01287450A JP 11708788 A JP11708788 A JP 11708788A JP 11708788 A JP11708788 A JP 11708788A JP H01287450 A JPH01287450 A JP H01287450A
Authority
JP
Japan
Prior art keywords
sample
microwave
trough
measurement area
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11708788A
Other languages
Japanese (ja)
Inventor
Fumio Tomita
富田 文雄
Fumio Nakano
文雄 中野
Koichi Kato
公一 加藤
Hiroshi Fujita
浩史 藤田
Toshiharu Matsushita
松下 年治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kiko Co Ltd
Original Assignee
Kawasaki Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kiko Co Ltd filed Critical Kawasaki Kiko Co Ltd
Priority to JP11708788A priority Critical patent/JPH01287450A/en
Publication of JPH01287450A publication Critical patent/JPH01287450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-reliability value by conveying a sample in a measurement area continuously while vibrating the sample, and detecting the weight of the sample passing through the measurement area and the attenuation quantity of microwave energy by the sample plural times and calculating the water content. CONSTITUTION:When a vibrator 17 is vibrated, a trough 14 is vibrated repeatedly and slantingly to above as shown by an arrow (u) according to the elasticity and inclination of a slanting leaf spring 16 and the sample which is supplied from a supply port 19 to this trough 14 is conveyed continuously while swung upward. Simultaneously with the conveyance of the sample, a microwave is sent to the measurement area from a transmitting horn 1 and then received by a receiving horn 2 so that the microwave passes through the sample on the trough 14 and the trough 14. The energy of the microwave that the receiving horn 2 receives is microwave energy after attenuation and transmitted to a detection processor. Further, the weight of the sample from a load cell 5 provided to a rack 15 is transmitted to the detection processor. The detection processor calculated the water content from the attenuation quantity and weight which are already known to obtain the high-reliability measured value.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は水分によるマイクロ波の吸収を利用した含水
率測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for measuring moisture content using absorption of microwaves by moisture.

従来技術 水分によるマイクロ波の吸収を利用した含水率測定方法
・装置は多数存する。多くは発信されたマイクロ波が受
信器への伝播路中に存在する水分から受けたlEeを検
出し測定するものである。このうち試料の水分によるマ
イクロ波エネルギーの減衰量を検出するものについて、
試料とマイクロ波との関連について態様別に2.3を例
示すれば特開昭55−132938号公報(漏洩型)、
特開昭56−92435号公報(透過型)、特開昭59
−87346号公報〈反射型)などをあげられる。
BACKGROUND OF THE INVENTION There are many methods and devices for measuring moisture content that utilize absorption of microwaves by moisture. In many cases, the 1Ee received by the emitted microwave from moisture present in the propagation path to the receiver is detected and measured. Among these, those that detect the amount of attenuation of microwave energy due to moisture in the sample,
Examples of 2.3 regarding the relationship between the sample and microwaves are JP-A-55-132938 (leak type);
JP-A No. 56-92435 (transmission type), JP-A No. 59-Sho.
-87346 (reflective type), etc.

これらは試料の重量や検出時の温度あるいは周辺機材か
らのマイクロ波の反射などによる検出値の誤差を補償す
る手段・機構を協えているが、いずれもマイクロ波が照
射される範囲(測定域)には常時均等に試料が存在する
ことを原則としている。
These devices have means and mechanisms to compensate for errors in detected values due to the weight of the sample, the temperature at the time of detection, or the reflection of microwaves from surrounding equipment. The principle is that there are always evenly distributed samples.

しかし、産業機器に適用されるマイク1コ波による測定
装置では試料自体や試料供給の態様によって試料が測定
域へ常に均等に配置されるとは限らず、測定域において
平面的にあるいは厚み方向ですくなからず試料の偏在が
生じている。例えば産業機器本体から自動的に小さなベ
ルトでシンブル試料を測定域に供給する機構では、サン
プル取出し時の量にムラがあったり、供給位置が一定し
ないことで前記の偏在が生じる。そして、この偏在は、
空中の伝播路におけるマイクロ波の電位が通常、測定域
の中央部分で高いことと相俟って、含水率算出の基礎と
なる検出値に大きな変動を与え、測定結果に誤差を発生
する一つの原因となっている。
However, in measurement devices using a single microphone wave applied to industrial equipment, the sample is not always evenly distributed in the measurement area due to the sample itself or the way the sample is supplied, Uneven distribution of samples is occurring. For example, in a mechanism in which a thimble sample is automatically supplied from an industrial equipment main body to a measurement area using a small belt, the above-mentioned uneven distribution occurs due to unevenness in the amount of sample taken out or uneven supply position. And this uneven distribution is
Coupled with the fact that the potential of microwaves in the air propagation path is usually high in the center of the measurement area, this causes large fluctuations in the detected value, which is the basis for calculating the moisture content, and is one of the causes of errors in the measurement results. It is the cause.

第4図(イ)はマイクロ波の伝播路(空気中)途中にマ
イクロ波吸収体dを種々の位置に配置して検出した受信
側電圧を示す実験結果で、前記の偏在による測定結果の
変動状況を表ずものである。
Figure 4 (a) shows the experimental results showing the voltage on the receiving side detected by placing the microwave absorber d at various positions in the middle of the microwave propagation path (in the air). It represents the situation.

この実験は同図(ロ)に示すように、間隔を取り対向し
て配置した発信ホーンaと受信ホー25間のマイクロ波
伝播路に、これを横断してアクリル樹脂の平板Cを載置
し、その上面を測定域の範囲内において同図(ハ)のよ
うにC1〜C9に区画し、同じ吸収体dを前記区画の一
つに(れぞれ載置してゆき、それぞれの場合の受信ホー
ンbにおける検出電圧を、吸収体dを配置した位置と対
応さ住て示したものである。
In this experiment, as shown in the same figure (b), an acrylic resin flat plate C was placed across the microwave propagation path between the transmitting horn a and the receiving horn 25, which were arranged facing each other with a gap between them. , the upper surface of the measurement area is divided into C1 to C9 as shown in the same figure (c), and the same absorber d is placed in one of the divisions (respectively, and the The detected voltage at the receiving horn b is shown in correspondence with the position where the absorber d is placed.

なお、前記の吸収体dはウレタンフA−ムを基礎成分と
した市販の吸収体シート(ECCO8ORB・・・商品
名、ブレースジャパン(株))を矩形に切取ったもので
ある。また、マイクロ波の使用周波数は9.45Gl−
1z、アクリル樹脂板は板厚9.9mm<1/2・λ/
【「丁 ・・・λ:真空中のマイク1]波の波長、εニ
アクリル樹脂板の誘電率、μ:同透磁率)の半波長板、
前記吸収体dを載置しない場合の検出電圧(基準電圧)
は4゜80vであった。さらに、数値は3回の検出結果
の平均値であり、()内は前記の基準電圧との差である
The above-mentioned absorbent body d is a commercially available absorbent sheet (ECCO8ORB, trade name, Brace Japan Co., Ltd.) having urethane foam A-me as a basic component, which is cut into a rectangular shape. Also, the frequency used for microwave is 9.45Gl-
1z, acrylic resin plate thickness 9.9mm<1/2・λ/
[Ding...λ: Microphone 1 in vacuum] Wave wavelength, ε dielectric constant of acrylic resin plate, μ: magnetic permeability) half-wave plate,
Detection voltage (reference voltage) when the absorber d is not placed
was 4°80v. Furthermore, the numerical value is the average value of the detection results of three times, and the value in parentheses is the difference from the above-mentioned reference voltage.

このように同じ測定域の範囲内にあっても吸収体dの位
置(試料の偏在)によって検出値が異なる。
In this way, even within the same measurement range, the detected values differ depending on the position of the absorber d (uneven distribution of the sample).

そのうえ、凝集しやすい多水分の粉体や流動性に欠ける
粒状体あるいは不定形小片の集合体(木チップ、たばこ
葉、茶菓など)が試料である場合は、厚み方向の偏在が
激しく、たまたま隆起部分を検出して突出した測定値を
得てしまう危険があり、さらに、この様な試料は厚み方
向ばかりでなく、平面的にも偏在しがちで、しかも、特
に平面的な偏在はベルトの上部に配置したスクレーバー
やローラーで試料上面を掻き均らしたり押圧する程度で
は解消しない場合が多い。したがって、これをそのまま
連続して測定域に供給すると、マイクロ波の電位が高い
中央部の昂が時間的に変化するので、測定の都度、種々
の補正手段を作動させる必要がある。
In addition, when the sample is a highly watery powder that easily aggregates, a granular material lacking in fluidity, or an aggregate of irregularly shaped pieces (wood chips, tobacco leaves, tea confectionery, etc.), the uneven distribution in the thickness direction is severe, and bumps may occur. There is a risk of detecting a part and obtaining a protruding measurement value.Furthermore, such samples tend to be unevenly distributed not only in the thickness direction but also in the plane, and especially in the upper part of the belt. In many cases, the problem cannot be resolved by simply scraping or pressing the top surface of the sample with a scraper or roller placed on the surface. Therefore, if this is continuously supplied to the measurement area as it is, the amplitude at the center where the microwave potential is high will change over time, so it is necessary to operate various correction means each time a measurement is made.

一般に産業機器における含水率測定装置からの出力は産
業機器本体の作動に連動させており、前記従来のように
測定回数ごとに誤差をともない変動する値が検出される
と機器本体に与える影響が大きく、また、希望する製品
を得られない。
Generally, the output from a moisture content measuring device in industrial equipment is linked to the operation of the industrial equipment itself, and if a value that fluctuates with an error every measurement is detected as in the conventional method, it will have a large effect on the equipment itself. , and you can't get the product you want.

発明が解決しようとする課題 この発明は、試料の偏在を解消し、突出した検出値によ
る測定結果への影響を緩和できる測定方法の提供を課題
とする。
Problems to be Solved by the Invention It is an object of the present invention to provide a measurement method that can eliminate uneven distribution of a sample and alleviate the influence of prominent detected values on measurement results.

課題を解決するための手段 マイクロ波の伝播路途中に試料を配置し、該試料による
マイクロ波エネルギーの減衰量を検出して試料の含水率
を測定する方法を基本とする。
Means for Solving the Problems The basic method is to place a sample in the middle of the microwave propagation path, detect the amount of attenuation of microwave energy by the sample, and measure the water content of the sample.

測定域に供給する試料を振動させつつ連続して搬送する
Continuously transport the sample supplied to the measurement area while vibrating it.

測定域を通過する試料の重量と試料による前記の減衰量
を共に複数回検出する。
Both the weight of the sample passing through the measurement area and the amount of attenuation caused by the sample are detected multiple times.

得た検出値から以知の減衰量・重量・含水率相関式に基
づぎ含水率を亦出する。
From the detected value obtained, the water content is estimated based on the known attenuation/weight/moisture content correlation formula.

作  用 試料を振動させつつ連続して測定域を搬送する過程は、
測定域に供給する試料の厚み方向および平面的な偏在を
解消する。
The process of continuously transporting the working sample through the measurement area while vibrating it is as follows:
Eliminate uneven distribution of the sample supplied to the measurement area in the thickness direction and in the plane.

測定域を通過する試料の重量と該試料によるマイクロ波
の減衰lを共に複数回検出する過程は、ヱ料の含水率を
正確に算出するためのデータを提供する。
The process of detecting both the weight of the sample passing through the measuring zone and the microwave attenuation l by the sample multiple times provides data for accurately calculating the water content of the raw material.

実施例 第1図は本発明を実施する測定装置の1例をブロック図
的に示したものである。
Embodiment FIG. 1 is a block diagram showing an example of a measuring device for carrying out the present invention.

図において、発信ホーン1(発信アンテナ)と受信ホー
ン2(受信アンテナ)とは上下に間隔を取って対向配置
され、前記間隔をマイクロ波の伝播径路3としている。
In the figure, a transmitting horn 1 (transmitting antenna) and a receiving horn 2 (receiving antenna) are vertically disposed facing each other with an interval therebetween, and the interval is used as a microwave propagation path 3.

伝播路3には試料の搬送路を形成する振動コンベア装置
4が配置され、この装置は0−ドセル5を備える。
A vibrating conveyor device 4 is arranged in the propagation path 3 and forms a transport path for the sample, and this device is equipped with an O-docel 5 .

発信ホーン1の基部にはガンダイオードを主体とし9.
45GHzのマイクロ波を発生するマイクロ波発信器6
が接続される。
9. The base of the transmitting horn 1 mainly includes a Gunn diode.
Microwave oscillator 6 that generates 45 GHz microwaves
is connected.

電源回路7は通常のもので、100■または200Vの
交流電源から15vと9vの2本の直流電源を得、マイ
クし1波発信器6に供給するものである。
The power supply circuit 7 is a conventional one, which obtains two DC power supplies of 15V and 9V from an AC power supply of 100V or 200V, and supplies the microphone to the one-wave oscillator 6.

受信ホーン2にはマイクロ波受信器8.受信回路10.
検出値処理装置11が接続され、検出値処理装置11に
は表示装置12や産業機器を測定値に対応させて駆動す
るためのドライバー13が接続されている。
The receiving horn 2 includes a microwave receiver 8. Receiving circuit 10.
A detected value processing device 11 is connected, and a driver 13 for driving a display device 12 and industrial equipment in accordance with measured values is connected to the detected value processing device 11.

マイクロ波受信器8は検出ダイオードを主体とし、受信
回路10は、マイクロ波受信器8がら送られる電圧値を
対数変換するとともに増幅して、後に処理しやすい値に
するもので、検出処理装置B11はいわゆるパソコンを
利用している。
The microwave receiver 8 is mainly composed of a detection diode, and the reception circuit 10 logarithmically converts and amplifies the voltage value sent from the microwave receiver 8 to a value that can be easily processed later. uses what is called a personal computer.

受信回路9は、ロードセル5がら送られてくる電圧値を
増幅して検出値処理装置allに送るものである。
The receiving circuit 9 amplifies the voltage value sent from the load cell 5 and sends it to the detected value processing device all.

振動コンベア装置4は第2,3図に示すように、トラフ
(1)14を架台15に、左右両側の前後に設けた傾斜
板バネ16を介して支持した構造でパイブレーク17が
接続されている。トラフ14はポリプロピレン材料(板
厚1mm)を一体成形したもので測定域に相当する個所
には孔が設けられ、その部分に発泡スチロール板(発泡
倍率1o)がとりつけられている。なお、トラフ14の
素材番ニアクリル樹脂など硬質でマイクロ波の吸収およ
び反射の少ない合成樹脂であればよい。架台15は第3
図のようにマイクロ波の伝播路3に相当する個所が切抜
かれた枠体で、前記のロードセル5が配置されている。
As shown in FIGS. 2 and 3, the vibrating conveyor device 4 has a structure in which a trough (1) 14 is supported on a pedestal 15 via inclined plate springs 16 provided at the front and rear sides on both left and right sides, and a pie break 17 is connected. There is. The trough 14 is integrally molded from polypropylene material (plate thickness: 1 mm), and a hole is provided at a location corresponding to the measurement area, and a foamed polystyrene plate (foaming ratio: 1o) is attached to the hole. The material of the trough 14 may be any synthetic resin, such as acrylic resin, which is hard and has low absorption and reflection of microwaves. The pedestal 15 is the third
As shown in the figure, the load cell 5 is placed in a frame body in which a portion corresponding to the microwave propagation path 3 is cut out.

ロードセル5はトラフ14を通過する試料18のMmを
計量するためのものでその検出値は受信回路9を介して
検出値処理装置11に接続されている。符号19は試料
18の供給口である。
The load cell 5 is for measuring Mm of the sample 18 passing through the trough 14, and its detected value is connected to the detected value processing device 11 via the receiving circuit 9. Reference numeral 19 is a supply port for the sample 18.

バイブレータ17を駆動するとトラフ14が傾斜板バネ
16の弾性と傾斜方向により、矢印U方向へ斜め上方に
繰返し振動され、供給口19がらこのi〜ラフ14に供
給された試料は上方に揺上げられつつ連続的に前進する
。この場合に、供給口19からトラフ14上に供給され
た試料18は当初、厚みに凹凸があったり、平面的な配
置に偏在が存するが搬送される間に、パイブレーク17
がらの強力な振動によってこれらの偏在は消失し、試料
はトラフ14の流路いっばいに均一に配置されるように
なる。
When the vibrator 17 is driven, the trough 14 is repeatedly vibrated diagonally upward in the direction of arrow U due to the elasticity and inclination direction of the inclined plate spring 16, and the sample supplied to the rough 14 from this i to the supply port 19 is shaken upward. move forward continuously. In this case, the sample 18 supplied from the supply port 19 onto the trough 14 initially has unevenness in thickness or is unevenly distributed in a planar arrangement, but during transportation, the pie break 17
The strong vibration of the glass eliminates these uneven distributions, and the sample becomes uniformly distributed throughout the flow path of the trough 14.

この様な振動による均一・化は、茶菓や木片チップのよ
うに、−片毎に弾性を呈する小片の集合体を均一化する
場合に特に適している。
Such homogenization by vibration is particularly suitable for homogenizing aggregates of small pieces, such as tea cakes and wood chips, where each piece exhibits elasticity.

トラフ14における流路は試料の搬送路L(第5図)で
あり、この搬送路りに対しマイクロ波が照射される範囲
が測定14tsである。
The flow path in the trough 14 is a sample transport path L (FIG. 5), and the range of microwave irradiation with respect to this transport path is 14ts.

試料の搬送と同時に、測定域Sには発信ボーン1 から
9.45GHz (7)TEIOモーt’を主体トスる
マイクロ波が発射され、トラフ14上の試料および該ト
ラフを透過する形で受信ホーン2に受信される。受信ホ
ーン2が受けるマイクロ波のエネルギーは、途中トラフ
14上の試料が保有する水分に吸収されたり、伝播路の
機器による反射・吸収で減衰した後のマイクロ波エネル
ギーであり、これをマイクロ波受信器8で電圧に変換し
て検出値とし、検出処理装置11に伝達する。なお、前
記減衰エネルギーのうち伝播路の機器による反射・吸収
によるものは一定しており、しかも、わずかである。
Simultaneously with the transport of the sample, a microwave of 9.45 GHz (7) that mainly tosses the TEIO motor is emitted from the transmitting bone 1 to the measurement area S, and is transmitted through the sample on the trough 14 and the receiving horn. 2 received. The microwave energy received by the receiving horn 2 is the microwave energy that has been absorbed by the moisture contained in the sample on the trough 14 on the way or attenuated by reflection and absorption by equipment in the propagation path. The detector 8 converts the detected value into a voltage and transmits it to the detection processing device 11. Note that the amount of attenuation energy due to reflection and absorption by equipment in the propagation path is constant and is small.

また、架台15に設けたロードセル5がらはその時々の
試料@けが検出値処理装置11に伝達されている。そし
て、検出処理装置11は前記の受信マイクロ波エネルギ
ーの検出値と試料1徂を必要とするタイミングで取りだ
し処理するようになっている。
Further, the load cell 5 provided on the mount 15 is transmitted to the sample @ injury detection value processing device 11 at each time. Then, the detection processing device 11 extracts and processes the detected value of the received microwave energy and one side of the sample at the required timing.

すなわち、試料18は振動を受けて平坦化され、均一に
分布して測定tIUSを通過し、その際、ff1faと
受信マイクロ波エネルギーが検出される。
That is, the sample 18 is flattened by vibration and passes through the measurement tIUS in a uniform distribution, during which ff1fa and the received microwave energy are detected.

検出値処理装置11においては例えば、第6図フローチ
ャートに示す処理が行なわれる。
In the detected value processing device 11, for example, the processing shown in the flowchart of FIG. 6 is performed.

このチャートは製茶工程中の茶菓を試料として、該試料
の受信マイクロ波エネルギーとその都度の試料Inを1
/20秒毎に取出して検出値M1゜Wlとし、これらを
それぞれに60秒ごとにまとめてそれぞれの値MとWと
し、さらにこれらから次の数式に基づき試料の含水率G
を算出するものである。
This chart takes tea confectionery as a sample during the tea manufacturing process, and calculates the received microwave energy of the sample and the sample In each time.
/ taken out every 20 seconds to obtain the detected value M1゜Wl, these are summarized every 60 seconds to obtain the respective values M and W, and from these, the water content G of the sample is determined based on the following formula.
is calculated.

G=72.17XM/W−0,17 この数式は信頼性が高い全乾法により得た該試料の含水
率と、同試料によるマイクロ波エネルギー減衰囲の値を
実験的に多数揃え、これらを統計的に処理して得た既知
の、減衰間・ff1fl・含水率相関式である。
G = 72.17 This is a known correlation between attenuation, ff1fl, and water content obtained through statistical processing.

検出値処理装置a11は処理作動の当初ステップS1で
レジスタW、Mをクリアし、レジスタm01WOにトラ
フ14に試料が何もない状態での検出値(電圧mo)と
1コードセル出力値(重量wo)を基準値として入力し
、さらにタイマをt=60(秒)に設定し、初期化する
。ステップ2でタイマをリセット後スタートさせる。
The detected value processing device a11 clears the registers W and M in step S1 at the beginning of the processing operation, and stores the detected value (voltage mo) with no sample in the trough 14 and the 1-code cell output value (weight wo) in the register m01WO. ) as the reference value, and further set the timer to t=60 (seconds) to initialize it. In step 2, reset and start the timer.

ステップs3.s4において1/20秒ごとの試料重量
k・(wl−wo)とマイクロ波エネルギーの減衰12
1 (mo−ml)をレジスタWとレジスタMに加算す
る。なお、WlはレジスタW1に入力される重量の検出
値、mlはレジスタm1に入力される受信マイクロ波エ
ネルギーの検出値であり、検出値W1と検出値m1はほ
ぼ同時にタイミングを合わせて取りこまれる。また、k
は、定数で測定域の面積(S)と試料流路の面積(L)
との比、k=s/Lである。
Step s3. Attenuation of sample weight k・(wl-wo) and microwave energy every 1/20 seconds in s4
1 (mo-ml) is added to register W and register M. Note that Wl is the detected value of weight input to register W1, ml is the detected value of received microwave energy input to register m1, and detected value W1 and detected value m1 are taken in at almost the same time. . Also, k
are constants and are the area of the measurement region (S) and the area of the sample flow path (L)
The ratio of k=s/L.

ステップS5において今回のサイクルが60秒を経過し
たかを判断し、経過していなければステップS3に戻り
前記試料tfflと減衰間の入力を繰返し、これらの値
をそれぞれに蓄積する。60秒を経過するとステップS
6に移り含水率Gが算出され、その結果はCRTなど表
示装置12あるいはドライバー13に伝達される。
In step S5, it is determined whether 60 seconds have elapsed in the current cycle, and if 60 seconds have not elapsed, the process returns to step S3 and repeats the input between the sample tffl and the attenuation, and accumulates these values for each. After 60 seconds, step S
6, the water content G is calculated, and the result is transmitted to the display device 12 such as a CRT or the driver 13.

ステップS7では累積データW、Mがクリアされ、ステ
ップS8で初期化の必要があるかが判断され、無い場合
はステップS2に戻り、タイマをリセット後再スタート
させて前記の処理を繰返す。
In step S7, the accumulated data W and M are cleared, and in step S8, it is determined whether initialization is necessary. If not, the process returns to step S2, the timer is reset and then restarted, and the above process is repeated.

これにより、算出された含水率Gが1分間毎に出力され
る。初期化の必要がある場合、例えば、試料の一部がト
ラフ14に付着して残留し、試料が何も無い状態での検
出値(電圧mQ、重予WO)が経時的に変化してしまう
場合には、一定時間経過毎にステップS1に戻り基準値
を変更する。
As a result, the calculated moisture content G is output every minute. When initialization is necessary, for example, a part of the sample adheres to and remains on the trough 14, and the detected values (voltage mQ, heavy weight WO) in a state where there is no sample change over time. In this case, the process returns to step S1 every predetermined time period and changes the reference value.

前記の70−チャートによる処理で採用している1/2
0秒、60秒という時間間隔は検出値処理装置11の能
力や産業機器の応答能力などによって長くなることがあ
る。一般には一回の含水率Gが複数回の検出値W1とm
lの累積値をもとに算出されるようにすればよい。
1/2 adopted in the processing using the 70-chart above
The time intervals of 0 seconds and 60 seconds may become longer depending on the capability of the detected value processing device 11, the response capability of industrial equipment, etc. Generally, one moisture content G is determined by multiple detection values W1 and m.
It may be calculated based on the cumulative value of l.

なお、検出値W1とmlの検出間隔(回数/時1!i1
)は必ずしも一致さけなくても、例えば、検出値wl、
mlの累積値をそれぞれの検出回数で割って求めた平均
値W、雨をもとにすれば、上記相関式から試料含水率を
算出することができる。ただし、W、Mを求めるための
時間間隔(本実施例では60秒)は、互いに一致させた
ほうがよい。
Note that the detection interval between detection value W1 and ml (number of times/hour 1!i1
) do not necessarily have to match, for example, the detected value wl,
The sample moisture content can be calculated from the above correlation formula based on the average value W obtained by dividing the cumulative value of ml by the number of detections and the rain. However, it is better to make the time intervals (60 seconds in this embodiment) for determining W and M the same.

複数回に検出される試料の重FAW1と受信マイクロ波
エネルギーの検出値m1は、この他にも様々に処理し利
用することが可能である。例えば前記の数式におけるW
、Mに前記重量および減衰間の累積値ではなく、この累
積値を検出回数で除した平均値を利用するどか、あるい
は前記減衰門と試料型aそれぞれの正規分布における中
央部分の累積値を用いるなどの手段を取ることができる
The heavy FAW1 of the sample detected multiple times and the detected value m1 of the received microwave energy can be processed and used in various other ways. For example, W in the above formula
, instead of using the cumulative value between the weight and attenuation as M, use the average value obtained by dividing this cumulative value by the number of detections, or use the cumulative value of the central part of the normal distribution for each of the attenuation gate and sample type a. You can take measures such as

発明の効果 測定域における搬送試料に厚み方向および平面的な偏在
がなく、複数回の検出値が安定しており、検出値の大き
な変動に基づく撹乱がないから、信頼性の高い測定値を
得られる。
Effects of the invention: The transported sample in the measurement area is not unevenly distributed in the thickness direction or in the plane, the detected values are stable multiple times, and there is no disturbance due to large fluctuations in the detected values, so highly reliable measured values can be obtained. It will be done.

特に、従来困難とされた茶菓や本チップなど不定形小片
の集合体の含水率を精度高く測定することができる。
In particular, it is possible to accurately measure the moisture content of aggregates of irregularly shaped pieces such as tea confectionery and book chips, which has been difficult in the past.

【図面の簡単な説明】 第1図はブロック図的に表した実施例装置、第2図は一
部の正面図、第3図は一部の側面図、第4図(イ) (
ロ)(ハ)は説明のために示す図、第5図は平面図、第
6図は一実施例におけるフローチャートである。 1・・・発信ホーン、2・・・受信ホーン、3・・・伝
播径路、4・・・振動コンベア装置、5・・・ロードセ
ル、6・・・マイクロ波発振器、7・・・電源回路、8
・・・マイクロ波受信器、9・・・ロードセル受信回路
、10・・・マイクロ波受信回路、11・・・検出値処
理装置、12・・・表示装置、13・・・ドライバー、
14・・・トラフ、15・・・架台、16・・・傾斜板
バネ、17・・・バイブレータ、18・・・試料、19
・・・試料供給口。 (ほか2名) 第1図 第 2 図 第 4 口
[Brief Description of the Drawings] Fig. 1 is a block diagram of an embodiment of the device, Fig. 2 is a partial front view, Fig. 3 is a partial side view, and Fig. 4 (A) (
B) (C) are diagrams shown for explanation, FIG. 5 is a plan view, and FIG. 6 is a flowchart in one embodiment. DESCRIPTION OF SYMBOLS 1... Transmission horn, 2... Receiving horn, 3... Propagation path, 4... Vibration conveyor device, 5... Load cell, 6... Microwave oscillator, 7... Power supply circuit, 8
...Microwave receiver, 9...Load cell receiving circuit, 10...Microwave receiving circuit, 11...Detected value processing device, 12...Display device, 13...Driver,
14... Trough, 15... Frame, 16... Inclined plate spring, 17... Vibrator, 18... Sample, 19
...Sample supply port. (2 others) Figure 1 Figure 2 Figure 4 Exit

Claims (1)

【特許請求の範囲】[Claims]  マイクロ波の伝播路途中に試料を配置し、該試料によ
るマイクロ波エネルギーの減衰量を検出して試料の含水
率を測定する方法であって、試料を振動させつつ連続し
て測定域を搬送し、かつ、測定域を通過する試料の重量
と試料による前記の減衰量を共に複数回検出し、その値
から既知の減衰量・重量・含水率相関式に基づき含水率
を算出することを特徴としたマイクロ波による含水率測
定方法。
This is a method for measuring the moisture content of a sample by placing a sample in the middle of the microwave propagation path and detecting the amount of attenuation of microwave energy by the sample, in which the sample is continuously transported through the measurement area while vibrating. , and is characterized in that both the weight of the sample passing through the measurement area and the amount of attenuation due to the sample are detected multiple times, and the moisture content is calculated from the detected values based on a known attenuation amount/weight/moisture content correlation formula. Moisture content measurement method using microwave.
JP11708788A 1988-05-16 1988-05-16 Water content measuring method using microwave Pending JPH01287450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11708788A JPH01287450A (en) 1988-05-16 1988-05-16 Water content measuring method using microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11708788A JPH01287450A (en) 1988-05-16 1988-05-16 Water content measuring method using microwave

Publications (1)

Publication Number Publication Date
JPH01287450A true JPH01287450A (en) 1989-11-20

Family

ID=14703070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11708788A Pending JPH01287450A (en) 1988-05-16 1988-05-16 Water content measuring method using microwave

Country Status (1)

Country Link
JP (1) JPH01287450A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301152A (en) * 1988-05-30 1989-12-05 Kawasaki Kiko Kk Water content measuring method for indeterminate-shape small-piece gathering body
JPH01312448A (en) * 1988-06-10 1989-12-18 Kawasaki Kiko Kk Apparatus for measuring moisture content using microwave
CN105424727A (en) * 2014-09-12 2016-03-23 航天信息股份有限公司 Method and apparatus for testing whether grain water content exceed standard by using microwave in online manner
CN105466956A (en) * 2014-09-12 2016-04-06 航天信息股份有限公司 Method and apparatus for detecting water content in grain by using microwave signal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301152A (en) * 1988-05-30 1989-12-05 Kawasaki Kiko Kk Water content measuring method for indeterminate-shape small-piece gathering body
JPH01312448A (en) * 1988-06-10 1989-12-18 Kawasaki Kiko Kk Apparatus for measuring moisture content using microwave
CN105424727A (en) * 2014-09-12 2016-03-23 航天信息股份有限公司 Method and apparatus for testing whether grain water content exceed standard by using microwave in online manner
CN105466956A (en) * 2014-09-12 2016-04-06 航天信息股份有限公司 Method and apparatus for detecting water content in grain by using microwave signal
CN105466956B (en) * 2014-09-12 2020-02-18 航天信息股份有限公司 Method and device for detecting moisture content in grain by using microwave signal

Similar Documents

Publication Publication Date Title
Walde et al. Microwave drying and grinding characteristics of wheat (Triticum aestivum)
March et al. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors
JPS5589744A (en) Liquid density measuring method of ultrasonic wave and its unit
NO20035320D0 (en) Apparatus and method for microwave detection of at least one physical parameter of a substance
CA2149352A1 (en) Ultrasonic Material Level Measurement
WO2004029600A1 (en) Analysis of variable-depth sample using a sweeping microwave signal
JPH01287450A (en) Water content measuring method using microwave
Rodriguez Mondal et al. Liquid chromatography− tandem mass spectrometry (LC− MS/MS) method extension to quantify simultaneously melamine and cyanuric acid in egg powder and soy protein in addition to milk products
DK1106085T3 (en) Plants for coating products with a powdered material
Noh et al. Dielectric properties of rice at frequencies from 50 Hz to 12 GHz
Penttilä et al. Estimates on the intake of food additives in Finland.
ES8606795A1 (en) Method for applying a liquefiable material onto a substrate conveyed in form of a web
CA1228399A (en) Water moisture measuring instrument and method
CA2033533A1 (en) Apparatus and method for detecting inhomogeneities in semi-plastic substances through ultrasound
JPH01301152A (en) Water content measuring method for indeterminate-shape small-piece gathering body
JPH0245740A (en) Water measuring instrument using microwave
CZ20003056A3 (en) Oven arrangement for finish of foodstuff products
Nelson Frequency and moisture dependence of the dielectric properties of chopped pecans
KR20040026646A (en) Vibrating funnel fingers for distribution of seasoning onto discrete lanes
JP2001124706A (en) Method and device for measuring water
JPH0734001B2 (en) Microwave water content measuring device
Nomura et al. Measurement of acoustic properties of liquids using SH-type surface acoustic waves
FR2385451A1 (en) Bulk cutlery sorting appts. - has hopper containing guide plate with necked portion aligning cutlery falling onto vibratory conveyor
Kondoh et al. SH-SAW taste sensor based on acoustoelectric interaction
JP5591167B2 (en) Measuring method of water content