JPH01286702A - Readhesively controlling method for inverter electric vehicle at slipping/sliding time - Google Patents

Readhesively controlling method for inverter electric vehicle at slipping/sliding time

Info

Publication number
JPH01286702A
JPH01286702A JP11477688A JP11477688A JPH01286702A JP H01286702 A JPH01286702 A JP H01286702A JP 11477688 A JP11477688 A JP 11477688A JP 11477688 A JP11477688 A JP 11477688A JP H01286702 A JPH01286702 A JP H01286702A
Authority
JP
Japan
Prior art keywords
frequency
speed
slip
slipping
skidding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11477688A
Other languages
Japanese (ja)
Inventor
Kosuke Yuya
油谷 浩助
Masahisa Yabe
矢部 允久
Takeo Sonoki
園木 武雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
East Japan Railway Co
Original Assignee
Railway Technical Research Institute
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, East Japan Railway Co filed Critical Railway Technical Research Institute
Priority to JP11477688A priority Critical patent/JPH01286702A/en
Publication of JPH01286702A publication Critical patent/JPH01286702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To readhesively control an inverter electric vehicle at the time of finely slipping/sliding by detecting the slip/slide by the compared result of the speed of each drive wheels with a reference speed calculated from the acceleration/deceleration of an electric train. CONSTITUTION:A reference speed calculator 6n outputs a reference speed 2 and a rotating frequency 21 on the basis of an output of an accelerometer 4 and rotating frequency signals f1-f4 of drive wheels 3a-3d. A slip/slide detector 16 outputs a slip/slide detection signal 17 when the speed differences v1- f4 between the speeds v1-v4 of the wheels 3a-3d obtained by the signals f1-f4 and the speed 2 are predetermined value or more. A subtractor 19 normally outputs a reference slip frequency and a slip frequency reduced by a predetermined amount from a reference slip frequency during a period in which the signal 17 is outputting. An adder 23 adds a rotating frequency 21 and a slip frequency 20, and outputs an inverter frequency command 24.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘導電動機を用いたインバータ電気車の動輪
と軌道面に発生する空転・滑走時における利用粘着係数
を高めせしめる再粘着制御方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a readhesion control method for increasing the coefficient of adhesion during slipping and skidding that occurs on the driving wheels and track surfaces of an inverter electric vehicle using an induction motor. It is something.

〔従来の技術〕[Conventional technology]

まず、第4図〜第5図を参照しながら従来のインバータ
電気車の空転・滑走時の再粘着制御手段を説明する。第
4図において、lは電気車の車体、2は軌道、3a〜3
dはそれぞれ誘導電動機の動輪である。11〜44は各
動輪の回転周波数を検出する回転周波数検出器である。
First, with reference to FIGS. 4 and 5, a conventional re-adhesion control means when an inverter electric vehicle is idling or skidding will be explained. In Fig. 4, l is the body of the electric car, 2 is the track, and 3a to 3
d is the driving wheel of the induction motor. Reference numerals 11 to 44 are rotational frequency detectors that detect the rotational frequency of each driving wheel.

7およびfI〜r4は各動輪の各回転周波数の出力であ
る。6゛は各動輪の各回転周波数を入力し、カ行中は各
回転周波数の最小値を動輪の基準周波数とする。また、
回生中は各動輪の最大値を動輪の基準周波数とする比較
回路である。10°は各動輪の各回転周波数の変化量(
微分値a r7a t)を算出する回路である。この各
回転周波数の変化量の出力を半導体素子であるダイオー
ドの論理和によって変化量・の最大値を検出して13°
に出力している。
7 and fI to r4 are outputs of each rotation frequency of each driving wheel. 6. Input each rotational frequency of each driving wheel, and during the process, set the minimum value of each rotational frequency as the reference frequency of the driving wheel. Also,
During regeneration, the comparison circuit uses the maximum value of each driving wheel as the reference frequency of the driving wheels. 10° is the amount of change in each rotational frequency of each driving wheel (
This circuit calculates the differential value a r7a t). The output of the amount of change in each rotational frequency is detected by the OR of diodes, which are semiconductor elements, to detect the maximum value of the amount of change.
It is output to.

この変化量の最大値と14゛の空転・滑走の渣知怒度設
定器の出力である15’  との比較を16で行い、設
定値以上ならば空転・滑走と判断し17に検知信号を出
力する。°18は電気車の応荷重に対応した誘導電動機
のすべり周波数の標準パターンである。19は空転・滑
走検知信号が出力されている期間中すべり周波数の標準
パターンを絞り込む減算器である。この減算結果を誘導
電動機のすべり周波数(fs )として、空転・滑走時
は誘導電動機の電流を制御して再粘着を図っている。
The maximum value of this change is compared with 15', which is the output of the 14° slipping/sliding edge setting device, and if it is greater than the set value, it is judged as slipping/sliding and a detection signal is sent to 17. Output. °18 is a standard pattern of the slip frequency of an induction motor that corresponds to the variable load of an electric vehicle. Reference numeral 19 denotes a subtracter that narrows down the standard pattern of the slip frequency during the period when the slip/skid detection signal is output. The result of this subtraction is used as the slip frequency (fs) of the induction motor, and the current of the induction motor is controlled during slipping or skidding to achieve readhesion.

21は各動輪の各回転周波数より得た動輪の基準周波数
(f、)の出力であり、さきのすべり周波数とを23で
加算するものである。24は23の加算器の出力であり
、インバータ周波数(f r、1v−r、I ±rm)
としている0式中(+)はカ行、(−)は回生時を示す
21 is the output of the reference frequency (f,) of the driving wheels obtained from each rotational frequency of each driving wheel, and is added to the previous slip frequency by 23. 24 is the output of the adder 23, and the inverter frequency (f r, 1v-r, I ±rm)
In the formula 0, the (+) indicates the ka line, and the (-) indicates the time of regeneration.

従来のインバータ電気車の空転・滑走時の再粘着制御手
段は上記のように構成され、第5図に示すような再粘着
制御方法である。第5図は各動輪が同時に空転し、大き
さも同じ場合について説明する。第5図において、7は
各動輪軸の各回転周波数を示す、13°は各回転周波数
の変化量(加速度)の最大値を示す、15゛は空転検知
感度の設定レベルである。17は空転検知信号である。
The conventional readhesion control means when an inverter electric vehicle is idling or skidding is constructed as described above, and is a readhesion control method as shown in FIG. FIG. 5 explains the case where each driving wheel idles at the same time and has the same size. In FIG. 5, 7 indicates each rotational frequency of each driving wheel shaft, 13° indicates the maximum value of the amount of change (acceleration) of each rotational frequency, and 15° indicates the setting level of the slip detection sensitivity. 17 is an idle detection signal.

20は誘導電動機のすべり周波数(f、)であり、空転
が発生し検知感度以上になり空転を検知すると20のす
べり周波数をE点に示すように絞り込み、空転している
動輪を再粘着させるように作用する。しかし、空転検知
信号が空転検知感度レベル以上の期間中だけ出力する。
20 is the slip frequency (f,) of the induction motor, and when slipping occurs and the detection sensitivity is exceeded and slipping is detected, the slip frequency of 20 is narrowed down as shown at point E, and the slipping wheel is made to re-stick. It acts on However, the wheel slip detection signal is output only during the period when the wheel slip detection sensitivity level is higher than the wheel slip detection sensitivity level.

また、検知信号は各回転周波数が減速に向うと消磁され
てしまう。
Furthermore, the detection signals are demagnetized when each rotational frequency tends to decelerate.

このためすべり周波数はもとの値に回復する。従って、
各動輪は再粘着することができず、7に示すように空転
が!I続する結果となる。
Therefore, the slip frequency recovers to its original value. Therefore,
Each driving wheel cannot be re-adhesive, and as shown in 7, it spins around! This results in a continuation.

このように各動輪の各回転周波数の変化量の大きさで検
知する手段では、微少空転(微少滑走)が発生した場合
検知に至らず長時間継続する。このため、第5図の各回
転周波数に空転が発生しなければ破線上を走行するもの
と仮定すると、第4図の軌道と各動輪に当たえる損傷が
大きくなる。また、全動輪に空転・滑走が発生すると、
電気車のインバータを制御する第4図のインバータ周波
数(f+、v)は、第4図の基準周波数(f、)が、空
転の場合は増大し、滑走の場合は減少する方向に作用す
るため結果的には、全動輪の空転・滑走が助長されると
いう欠点がある。
In this way, with the means for detecting based on the amount of change in each rotational frequency of each driving wheel, when a slight slip (slight slip) occurs, it is not detected and continues for a long time. Therefore, if it is assumed that the vehicle travels on the broken line unless idling occurs at each rotational frequency in FIG. 5, the damage caused by hitting the track and each driving wheel in FIG. 4 will be large. Also, if all driving wheels spin or skid,
The inverter frequency (f+, v) in Figure 4 that controls the inverter of the electric car is because the reference frequency (f,) in Figure 4 increases in the case of slipping and decreases in the case of skidding. As a result, there is a disadvantage that all the driving wheels are encouraged to spin and slide.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来のインバータ電気車における空転・滑
走時の再粘着制御手段すなわち、第4図の各動輪(3a
)〜(3d)に、取付けられた回転周波数検出器(11
)〜(44)から得られる各回転周波数(7)の(fl
)〜(【4)の変化量(微分値)の大きさによる空転・
滑走の検知方式では、検知感度(15’)に至らない微
少な空転・滑走が発生した場合第5図の(7)に示す破
線上すなわち、空転の発生がないとした時の基線と各動
輪との速度差を増す傾向となる。また、空転および滑走
を検知した場合の検知信号は第5図の(17)に示すよ
うに、再粘着以前に消磁するため、すべり周波数(20
)は−旦絞り込まれるが直ちにもとの値まで回復する。
In the conventional inverter electric vehicle as described above, readhesion control means at the time of slipping and skidding, that is, each driving wheel (3a
) to (3d), the rotational frequency detector (11
) to (44) of each rotational frequency (7) obtained from (fl
) to (([4)] Due to the magnitude of the change (differential value)
In the skid detection method, if a slight slip or skid occurs that does not reach the detection sensitivity (15'), the distance between the base line and each driving wheel is on the broken line shown in (7) in Figure 5, that is, when no slip occurs. This tends to increase the speed difference. In addition, as shown in (17) in Figure 5, the detection signal when slipping or skidding is detected is demagnetized before re-adhesion, so the slip frequency (20
) is narrowed down once, but immediately recovers to its original value.

このため、空転・滑走をした動輪は、再粘着する事がで
きずある速度差を持ったまま°の状態が継続し、動輪と
軌道間の粘着力が大きくなった時のみしか再粘着は期待
できない、軌道と動輪間の粘着係数が著しく低下し、4
個の動輪が同時に空転および滑走をした場合は、第4図
の動輪の基準周波数(21)の(rx)が空転時は増大
、滑走時は減小する方向に作用するためインバータ電気
車の制御が正常に動作できないという問題があった。
For this reason, the driving wheels that have spun or skid are unable to re-adhere, and the state of ° continues with a certain speed difference, and re-adhesion is only expected when the adhesion between the driving wheels and the track increases. No, the coefficient of adhesion between the track and the driving wheels will decrease significantly, and the
When two driving wheels are idling and skidding at the same time, the reference frequency (21) (rx) of the driving wheels in Fig. 4 increases when idling and decreases when skidding, so the inverter electric vehicle is controlled. There was a problem that it could not work properly.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記欠点を除去するものであってインバータ電
気車の空転・滑走時の再粘着制御方法は同一車体内に取
付けた加速度計より演算した基準速度と各動輪の速度と
の相対速度差を検出し、その速度差の値がある値(例え
ば2km/h)以上になると空転・滑走として検知し、
速やかに誘導電動機のすべり周波数を一定量絞り込み、
誘導電動機に流れる電流を制御し再粘着を促進させる。
The present invention eliminates the above-mentioned drawbacks, and a method for controlling readhesion when an inverter electric vehicle is idling or skidding is based on the relative speed difference between the reference speed calculated from an accelerometer installed in the same vehicle body and the speed of each driving wheel. When the speed difference exceeds a certain value (for example, 2 km/h), it is detected as slipping or skidding.
Immediately narrow down the slip frequency of the induction motor by a certain amount,
Controls the current flowing through the induction motor to promote readhesion.

また、検知信号は完全再粘着するまで継続させ再空転・
再滑走の防止対策を行い動輪と軌道間の利用粘着係数を
高めせしめる再粘着制御方法を得ることを目的とするも
のである。
In addition, the detection signal continues until complete re-adhesion occurs, and the
The purpose of this invention is to obtain a re-adhesion control method that takes measures to prevent re-sliding and increases the available adhesion coefficient between the driving wheels and the track.

〔作用〕[Effect]

この発明においては、基準速度は加速度計を用いて列車
の加減速度より演算しているため、空転・滑走に関係な
く算出できるため空転・滑走時において各動輪の速度と
の相対速度により、空転・滑走を検知することができる
ことから、微少空転・微少滑走の時点で再粘着制御が可
能となる。また、この基準速度を動輪の基準周波数に換
算して誘導電動機の回転子周波数とすれば、電気車のイ
ンバータを空転・滑走時においても安定した制御が可能
となる。    ゛ 〔実施例〕 この発明の一実施例について図面を参照しながら説明す
る。まず、第1図において横軸に時間(t)縦軸に電気
車のカ行時における加速度計の出力(5)の(α)とこ
の加速度計の出力(5)の(α)を読み取りマイクロプ
ロセンサーにより演)E(α×サンプリング時間)し基
準速度(12)の(V、)とを示している。基準速度(
12)の(VS )はサンプリング毎に入力される加速
度計の出力(5)の(α)より演算して積算するように
している。加速度計の出力(5)の(A)点は列車が上
り勾配に入り加速度計の出力(5)の(α)が減少し、
これに伴い基準速度(12)の(Vs )が緩やかに制
御されている状態を示している。また、加速度計の出力
(5)のB点は惰行時の状態を示している。惰行時の基
準速度(12)の(V、)は勾配変化等による加(m)
速度の変化に応じて制御されるようにしている。このよ
うに第1図の基準速度(12)の(V、)は、電気車の
動輪の回転周波数の代わりに第2図の加速度計(4)を
用いているため空転・滑走に関係なく列車の基準速度が
検出できる0次に、この基準速度(V、)によるインバ
ータ電気車の空転・滑走時の再粘着制御方法について説
明すると、第2図に示すように(1)は車体、(2)は
軌道、(3a)(3b)(3c)(3d)は誘導電動機
の動輪である。各動輪の速度検出は各動輪(3a)、〜
(3d)に取付けられた回転周波数検出器(11)(2
2)  (33)  (44)の回転周波数出力(7)
の(r+ )<fl )Cf2 )<14 )によって
いる、(4)は基準速度(12)の(V、)および基準
周波数(21)の(f、I)を得るための加速度計であ
る。(5)は加速度計(4)の出力である。(6)は加
速度計(4)の出力(5)を入力し、カ行・回生中の基
準速度(12)の(Vs )および基準周波数(21)
の(fN)を演算する回路である。また、惰行中は各動
輪(3a)〜(3d)の回転周波数出力(7)の(f、
)〜(f4)を入力し、基準速度(12)の(V、)お
よび各動輪(3a)〜(3d)の動輪径等の補正を行っ
ている。(8)は各動輪(3a)〜(3d)の回転周波
数(7)の(fl)〜(r、)を入力し、各動輪(3a
)〜(3d)の速度(V+)”’(V、)の演算を行っ
ている。(9)は各動輪(3a) 〜(3d)(D速度
出力(v+ ) 〜(V4 )である、(10)は(6
)の出力である基準速度(12)の(V、)と各動輪(
3a) 〜(3d)の速度出力(9)の(■1)〜(V
、)とを比較し相対速度差を検出する。カ行時の速度差
(Δ■)は各動輪速度(9)の(vl)〜(v4)から
基準速度(12)の(V、)を減じて検出している。
In this invention, the reference speed is calculated from the acceleration/deceleration of the train using an accelerometer, so it can be calculated regardless of whether the train is slipping or skidding. Since skidding can be detected, re-adhesion control is possible at the point of slight slippage or slight skidding. Further, if this reference speed is converted to the reference frequency of the driving wheels and used as the rotor frequency of the induction motor, stable control of the inverter of the electric vehicle is possible even when the electric vehicle is idling or skidding. [Embodiment] An embodiment of the present invention will be described with reference to the drawings. First, in Figure 1, the horizontal axis is time (t), and the vertical axis is the output (5) (α) of the accelerometer when the electric car is moving, and the (α) of this accelerometer output (5). (V, ) of the reference speed (12) is calculated by the pro-sensor (α×sampling time). Reference speed (
(VS) of 12) is calculated and integrated from (α) of the output (5) of the accelerometer that is input every sampling. At point (A) of the accelerometer output (5), the train enters an uphill slope and (α) of the accelerometer output (5) decreases.
This shows a state in which (Vs) of the reference speed (12) is gently controlled. Further, point B of the output (5) of the accelerometer indicates the state during coasting. (V,) of the reference speed (12) during coasting is the addition (m) due to gradient changes, etc.
It is controlled according to changes in speed. In this way, the reference speed (12) (V,) in Figure 1 uses the accelerometer (4) in Figure 2 instead of the rotational frequency of the electric car's driving wheels, so the Next, we will explain the re-adhesion control method when an inverter electric vehicle slips or skids using this reference speed (V,). As shown in Figure 2, (1) is the vehicle body, (2) ) is the track, and (3a), (3b), (3c), and (3d) are the driving wheels of the induction motor. The speed of each driving wheel is detected by each driving wheel (3a), ~
Rotational frequency detector (11) (2) attached to (3d)
2) Rotational frequency output of (33) (44) (7)
(r+)<fl)Cf2)<14), (4) is an accelerometer to obtain (V, ) of the reference velocity (12) and (f, I) of the reference frequency (21). (5) is the output of the accelerometer (4). (6) inputs the output (5) of the accelerometer (4), and calculates the (Vs) of the reference speed (12) and the reference frequency (21) during car travel and regeneration.
This is a circuit that calculates (fN). Also, during coasting, (f,
) to (f4) are input, and corrections are made to (V, ) of the reference speed (12) and the diameters of the driving wheels (3a) to (3d). (8) inputs (fl) to (r,) of the rotational frequency (7) of each driving wheel (3a) to (3d), and
) ~ (3d) speed (V+)'' (V, ) is calculated. (9) is each driving wheel (3a) ~ (3d) (D speed output (v+) ~ (V4), (10) is (6
) of the reference speed (12) which is the output of (V, ) and each driving wheel (
3a) ~ (3d) Speed output (9) (■1) ~ (V
, ) to detect the relative speed difference. The speed difference (Δ■) during traveling is detected by subtracting (V,) of the reference speed (12) from each of the driving wheel speeds (9) (vl) to (v4).

回生時の速度差(ΔV)は基準速度(12)の(Vs 
)から動輪速度(9)の(vl)〜(■4)を減じて検
出している。(13)は(1o)で比較演算された速度
差(ΔVl )〜(ΔVa)の出力である。(14)は
空転・滑走検知の速度差感度の設定器である。(15)
は感度設定器(14)の出力である。(16)は空転・
滑走の検知回路であり、(13)の各動輪(3a) 〜
(3d)の速度差(ΔV+)〜(ΔV4 )と空転・滑
走の検知感度(例えば2 k m / h )とを比較
して検知感度以上なら空転・滑走と判定し検知信号(1
7)を出力する。検知信号(17)は各動輪(3a)〜
(3d)が再粘着すなわち速度差(ΔVl )〜(ΔV
4)の値が零になるまで継続するようにしている。(1
8)は電気車の応荷量に対応したすべり周波数の標準パ
ターン(r□)である、(19)は空転および滑走検知
信号(17)が出力されている期間中(18)のすべり
周波数の標準パターン((sr)を一定量絞り込む減算
器である。
The speed difference (ΔV) during regeneration is (Vs
) is detected by subtracting (vl) to (■4) of driving wheel speed (9). (13) is the output of the speed differences (ΔVl) to (ΔVa) that were compared and calculated in (1o). (14) is a speed difference sensitivity setting device for detecting slipping and skidding. (15)
is the output of the sensitivity setter (14). (16) is idle/
This is a skid detection circuit, and each driving wheel (3a) in (13)
Compare the speed difference (ΔV+) to (ΔV4) in (3d) with the detection sensitivity for slipping/sliding (for example, 2 km/h), and if the detection sensitivity is higher than the detection sensitivity, it is determined that the vehicle is slipping/sliding, and the detection signal (1
7) is output. The detection signal (17) is transmitted from each driving wheel (3a) to
(3d) is readhesion, that is, velocity difference (ΔVl) ~ (ΔV
The process continues until the value of 4) becomes zero. (1
8) is the standard pattern (r□) of the slip frequency corresponding to the load response of the electric vehicle. (19) is the slip frequency pattern (18) during the period when the slipping and skidding detection signal (17) is output. This is a subtracter that narrows down the standard pattern ((sr) by a certain amount.

(20)は減算器(19)の出力を誘導電動機のすべり
周波数(f、)としている、このすべり周波数(20)
の(f、)によって、空転・滑走時は誘導電動機に流れ
る電流を一定量絞り込み、再粘着を促進させる。また、
すべり周波数(20)の(f、)はカ行時はプラス(+
)に、回生時はマイナス(−)に作用するようにしてい
る。
(20) is the output of the subtractor (19) as the slip frequency (f, ) of the induction motor, and this slip frequency (20)
(f,) reduces the current flowing to the induction motor by a certain amount during slipping/sliding to promote readhesion. Also,
(f,) of the slip frequency (20) is positive (+
), and has a negative (-) effect during regeneration.

(21)は基準速度演算回路(6)の基準速度を動輪の
基準周波数に換真して誘導電動機の回転子周波数とした
出力(fM)である、(23)は加算器である。(21
)の基準周波数すなわち回転子周波数(r9)と(20
)のすべり周波数(f、)を加算して(24)のインバ
ータ周波数(fINV ) −(fx )  ±(f、
)としている、(−は回生時を示す)、このインバータ
周波数(r +、1w>で電気車のインバータを制御I
することにより、空転および滑走時においても(21)
の基準周波数すなわち回転子周波数がしっかりしており
安定した制御が可能となる。第3図により実施例を具体
的に説明すると次のようになる。なお、説明は原理的に
4個の動輪(3a)〜(3d)が同時に大きさも同じ空
転をした場合を示す、(12)は加速度計より得た第2
図(L2)の基準速度(V 5)(9)は第2図の各動
輪(3a)〜(3d)の速度(9)の(vl)〜(v4
)を示す、(20)はすべり周波数(f、)である、(
13)は基準速度(12)の(V$)と(9)の各動輪
速度が空転したことにより生じた第2図(13)の速度
差(ΔV) ” (Vt ) 〜(V4 )   (V
t )を示している。(15)は空転検知感度のレベル
である。(17)は速度差(ΔV)が、空転検知レベル
(15)以上になり検知信号を出力した状態を示す、こ
の検知信号(17)は動輪速度(9)の(■、)〜(v
4)が基準゛速度(12)の(V s)になるまで、す
なわち再粘着点まで継続するようにしている。検知信号
(17)によって、すべり周波数(20)は0点に示す
ように一定量絞り込み、誘導電動機に流れる電流を減少
させて再粘着を図っている。動輪速度(9)のD点は、
本発明による再粘着制御方法によって得られる再粘着点
を示す、上記実施例では、各動輪の摩耗差によって動輪
径差を生じるので、各動輪径の補正は惰行中に行うよう
にしている。第2図(14)の空転・滑走検知回路の検
知レベルはあらかじめ決められた値、または任意に変え
られるようにしておくことが必要である。また、加速度
計(4)の出力(5)は、カ行、回生、前、後進によっ
て極性が変わるので外部信号によって常に同一方向(プ
ラス)にする配慮が必要である。この発明は上記構成を
とったことにより、従来の各動輪の回転周波数を比較し
た基準速度から基準周波数とし、電気車のインバータを
制御、また、各動輪の回転周波数の変化率による空転・
滑走を検知する方法を取らず加速度計を用いて確実な基
準速度および基準周波数を演算し、また、基準速度と各
動輪速度との相対速度差により空転・滑走を検知する方
法により、インバータ電気車の空転・滑走時における再
粘着対策を早期に行い利用粘着係数を高め安定した制御
が可能である。
(21) is an output (fM) which is the rotor frequency of the induction motor by converting the reference speed of the reference speed calculation circuit (6) into the reference frequency of the driving wheels. (23) is an adder. (21
), that is, the rotor frequency (r9) and (20
) is added to the inverter frequency (fINV) - (fx) ±(f,
), (- indicates regeneration), the inverter of the electric car is controlled at this inverter frequency (r +, 1w>).
By doing so, even when idling or sliding (21)
The reference frequency, that is, the rotor frequency, is stable and stable control is possible. The embodiment will be explained in detail with reference to FIG. 3 as follows. The explanation basically shows the case where four driving wheels (3a) to (3d) spin at the same time with the same size. (12) is the second wheel obtained from the accelerometer.
The reference speed (V 5) (9) in Figure (L2) is (vl) to (v4) of the speed (9) of each driving wheel (3a) to (3d) in Figure 2.
), (20) is the slip frequency (f, ), (
13) is the speed difference (ΔV) in Fig. 2 (13) caused by the idling of the reference speed (12) (V$) and the driving wheel speed (9) ” (Vt ) ~ (V4) (V
t) is shown. (15) is the level of wheel slip detection sensitivity. (17) indicates a state in which the speed difference (ΔV) exceeds the slip detection level (15) and a detection signal is output.
4) is continued until it reaches the reference speed (12) (Vs), that is, until the readhesion point. Based on the detection signal (17), the slip frequency (20) is narrowed down by a certain amount as shown at the 0 point, and the current flowing through the induction motor is reduced to achieve readhesion. Point D of the driving wheel speed (9) is
In the above-mentioned embodiment showing the readhesion point obtained by the readhesion control method according to the present invention, the difference in the diameter of each drive wheel is caused by the difference in wear between the drive wheels, so the correction of the diameter of each drive wheel is performed during coasting. It is necessary that the detection level of the slipping/skidding detection circuit shown in FIG. 2 (14) be a predetermined value or can be changed arbitrarily. Furthermore, since the polarity of the output (5) of the accelerometer (4) changes depending on whether the vehicle is moving forward, regenerating, forward, or backward, it is necessary to take care that the output (5) is always set in the same direction (positive) using an external signal. By adopting the above-mentioned configuration, this invention uses the reference speed compared with the conventional rotational frequency of each driving wheel as a reference frequency, controls the inverter of an electric vehicle, and also prevents slipping and
By using an accelerometer to calculate a reliable reference speed and reference frequency without using a method to detect skidding, and by detecting slipping and skidding based on the relative speed difference between the reference speed and the speed of each driving wheel, inverter electric vehicles Measures to prevent re-adhesion during slipping or skidding can be taken early to increase the available adhesion coefficient and enable stable control.

〔発明の効果〕〔Effect of the invention〕

この発明は、上記実施例により説明したように、加速度
計を用いて基準速度を演算し、各動輪に取りつけられた
回転周波数検出器から得られる回転周波数より求めた各
動輪速度との比較により、空転・滑走を検知し、インバ
ータ電気車の再粘着制御を行うことにより最大粘着力を
得ることができることから、空転・滑走時における乗り
心地力1改善される。また、基準速度の検出に加速度計
を用いているため勾配変化についても対応できる効果が
ある。
As explained in the above embodiment, this invention calculates a reference speed using an accelerometer, and compares it with the speed of each driving wheel determined from the rotational frequency obtained from the rotational frequency detector attached to each driving wheel. Since the maximum adhesion force can be obtained by detecting slipping or skidding and performing re-adhesion control of the inverter electric vehicle, the ride comfort during slipping or skidding can be improved by 1. Furthermore, since an accelerometer is used to detect the reference speed, it has the advantage of being able to cope with gradient changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の原理を示す説明図。 第2図は本発明の一実施例を示す電気車の側面図と回路
図、第3図は本発明の一実施例を示す再粘着Ha左方法
説明図、第4図は従来の電気車の再粘着制御手段を示す
電気車の側面図と回路図、第5図は従来の電気車の再粘
着制御手段の説明図である。 (1)・・・・・車体 (2)−・・・軌道面 (3a
)〜(3d)・・・・−各動輪 (4)・・−・−加速
度計 (5)・・・・・加速度計の出力   (6)・
・−・−基準速度演算回路(6°)−・・・−基準周波
数比較回路 (7)・・・・一回転周波数 (8)−・
・−速度演夏回路 (9)−・・−・動輪速度(10)
・−・・−速度差検出回路 (10’)・〜・回転周波
数の変化量検出回路 (12)、  (■t)・−・−
・基準速度 (13)・−・・・速度差の出力 (13
°)・・−・一回転周波数の変化量出力 (14)・−
・−速度差検知感度の設定器 (14°)・・・・・変
化量検知感度の設定器 (15’) −速度差検知感度
 (15°)・・・−・変化量の検知感度 (16)−
・・・・空転および滑走検知 (17)・−・・−空転
および滑走検知信号 (18)・・・−すべり周波数の
標準パターン (19)・−・・減算器 (20)−・
・・−すべり周波数 (21)・・−・・動輪の基準周
波数 (23)・・・・・比較器 (24)・−・−・
インバータ周波数 (11)、(22)、(33)。 (44)・・・−各動輪の回転周波数検出器 (α)・
・−・・加速度 (f、)〜(f4)・−・・・各軸の
回転周波数(vl)〜(■4)−・・・・各動輪速度 
(ΔV+ )〜(ΔV4)・−・各動輪の速度差 (1
)・−・・−時間(A)・・・・−上り勾配時の加速度
針の出力 (B)・・・・・惰行時の加速度計の出力 
(C)・−・−・すべり周波数の一定量絞り込み (D
)−・・・・再粘着点 (E)・・・−・すべり周波数
の絞り込み 特許出願人 財団法人鉄道総合技術研究所第1図 第3図 ff14図
FIG. 1 is an explanatory diagram showing the principle of an embodiment of the present invention. Fig. 2 is a side view and circuit diagram of an electric car showing an embodiment of the present invention, Fig. 3 is an explanatory diagram of a re-adhesive Ha left method showing an embodiment of the invention, and Fig. 4 is a diagram of a conventional electric car. A side view and a circuit diagram of an electric vehicle showing the readhesion control means, and FIG. 5 is an explanatory diagram of the readhesion control means of the conventional electric vehicle. (1)...Car body (2)--Race surface (3a
)~(3d)...-Each driving wheel (4)...-Accelerometer (5)...Accelerometer output (6)-
・−・−Reference speed calculation circuit (6°)−−・Reference frequency comparison circuit (7)・・・・One rotation frequency (8)−・
・−Speed rendition circuit (9)−・・・Driving wheel speed (10)
・-・・−Speed difference detection circuit (10')・~・Rotational frequency change detection circuit (12), (■t)・−・−
・Reference speed (13) --- Output of speed difference (13
°)...- Output of change in frequency per rotation (14)...
-Setter for speed difference detection sensitivity (14°)...Setter for change detection sensitivity (15') -Speed difference detection sensitivity (15°)...Setter for change detection sensitivity (16) )−
...Slip and skid detection (17) ---Slip and skid detection signal (18) --- Standard pattern of slip frequency (19) --- Subtractor (20) ---
... - Slip frequency (21) ... Driving wheel reference frequency (23) ... Comparator (24) ...
Inverter frequency (11), (22), (33). (44)...-Rotational frequency detector for each driving wheel (α)・
---Acceleration (f,) ~ (f4) ---Rotational frequency of each axis (vl) ~ (■4) --- Speed of each driving wheel
(ΔV+)~(ΔV4)・−・Speed difference between each driving wheel (1
)・・・・・Time (A)・・・・・−Output of the accelerometer needle during uphill slope (B)・・・・Output of the accelerometer during coasting
(C)・−・−・Narrowing down the slip frequency by a certain amount (D
)--Re-adhesion point (E)--Narrowing down the slip frequency Patent applicant Railway Technology Research Institute Figure 1 Figure 3 ff14 Figure

Claims (1)

【特許請求の範囲】[Claims] 同一車体内に取付けた加速度計より列車の基準速度およ
び誘導電動機の回転子周波数としての基準周波数を算出
し、空転・滑走時は、この基準速度と同一車体内の動力
伝達軸の速度とを比較演算を行い、その相対速度差の大
きさにより、空転・滑走を検知し、電気車の応荷重に対
応した誘導電動機のすべり周波数を再粘着点まで制御す
ると共に、基準周波数を用いて電気車のインバータを制
御することにより、動輪と軌道間の最大粘着力を得るこ
とを特徴とするインバータ電気車の空転・滑走時の再粘
着制御方法。
The standard speed of the train and the reference frequency as the rotor frequency of the induction motor are calculated from the accelerometer installed in the same car body, and when the train is slipping or skidding, this reference speed is compared with the speed of the power transmission shaft in the same car body. The calculation is performed, and based on the magnitude of the relative speed difference, slipping or skidding is detected, and the slip frequency of the induction motor corresponding to the variable load of the electric car is controlled to the re-adhesion point, and the reference frequency is used to control the slipping frequency of the electric car. A readhesion control method for an inverter electric vehicle when it is idling or skidding, which is characterized by obtaining the maximum adhesion force between driving wheels and tracks by controlling an inverter.
JP11477688A 1988-05-13 1988-05-13 Readhesively controlling method for inverter electric vehicle at slipping/sliding time Pending JPH01286702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11477688A JPH01286702A (en) 1988-05-13 1988-05-13 Readhesively controlling method for inverter electric vehicle at slipping/sliding time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11477688A JPH01286702A (en) 1988-05-13 1988-05-13 Readhesively controlling method for inverter electric vehicle at slipping/sliding time

Publications (1)

Publication Number Publication Date
JPH01286702A true JPH01286702A (en) 1989-11-17

Family

ID=14646401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11477688A Pending JPH01286702A (en) 1988-05-13 1988-05-13 Readhesively controlling method for inverter electric vehicle at slipping/sliding time

Country Status (1)

Country Link
JP (1) JPH01286702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317501A (en) * 1991-04-16 1992-11-09 Mitsubishi Electric Corp Controller for ac electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317501A (en) * 1991-04-16 1992-11-09 Mitsubishi Electric Corp Controller for ac electric vehicle

Similar Documents

Publication Publication Date Title
US6208097B1 (en) Traction vehicle adhesion control system without ground speed measurement
US6152546A (en) Traction vehicle/wheel slip and slide control
JPH088728B2 (en) Electric vehicle readhesion control device
EP2161157B1 (en) Controller for electric vehicle
EP0078655A2 (en) Wheel slip control system
JP4621377B2 (en) Electric vehicle control device
JPH01286702A (en) Readhesively controlling method for inverter electric vehicle at slipping/sliding time
JP5063274B2 (en) Electric vehicle control device
JPH01255402A (en) Method of controlling electric vehicle
JPH0736641B2 (en) Electric vehicle control device
JPS6260402A (en) Control method of re-adhesion of electric rolling stock
JP2713897B2 (en) Electric car control device
WO2023002524A1 (en) Abnormality detection device and abnormality detection method
JPH0390808A (en) Road surface slope detector
JPH0213201A (en) High adhesion controller for electric vehicle
JPH06153326A (en) Brake controller
JPH07322406A (en) Controller for electric car
JP2897023B2 (en) Vehicle speed control device
JP4171557B2 (en) Electric vehicle control device
JPH0454801A (en) Controller for electric vehicle
JPS63140607A (en) Train control system
JPH04138003A (en) Controller for electric motor vehicle
JPS6216003A (en) Controller for electric rolling stock
JPS61236306A (en) Controller of electric railcar
JPH0374103A (en) Slip detector for electric vehicle