JPH01285919A - Semiconductor light guide type polarizing element - Google Patents

Semiconductor light guide type polarizing element

Info

Publication number
JPH01285919A
JPH01285919A JP11629888A JP11629888A JPH01285919A JP H01285919 A JPH01285919 A JP H01285919A JP 11629888 A JP11629888 A JP 11629888A JP 11629888 A JP11629888 A JP 11629888A JP H01285919 A JPH01285919 A JP H01285919A
Authority
JP
Japan
Prior art keywords
optical
mode
interferometric
optical waveguide
intensity modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11629888A
Other languages
Japanese (ja)
Other versions
JP2717210B2 (en
Inventor
Hiroaki Takeuchi
博昭 竹内
Kunishige Oe
尾江 邦重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11629888A priority Critical patent/JP2717210B2/en
Publication of JPH01285919A publication Critical patent/JPH01285919A/en
Application granted granted Critical
Publication of JP2717210B2 publication Critical patent/JP2717210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To enable the selective transmission of either TE or TM polarization mode by constituting the polarizing element of light guides which can select the polarization mode to be transmitted by voltage impression and have two-dimensional light confinement. CONSTITUTION:The circularly polarized light in which the TE mode of the polarization direction from A parallel with the (100) face and the TM mode of the polarization direction perpendicular to the (100) face coexist is assumed to enter the polarizing element. The phase of only the TE mode of the TE and TM modes propagating in the light guides can be changed when a voltage is impressed through electrodes 3 and 8 to one light guide of the two parallel light guides constituting the 1st interference type optical intensity modulator between B and C, in the direction perpendicular to the (100) face. The phase of the TM mode does not change at all at this time. The polarizing element is constituted by longitudinally connecting the two interference type optical intensity modulators constituted by the semiconductor light guides having the two-dimensional confinement and, therefore, the selective transmission of the polarization of either TE or TM by the voltage to be impressed to the electrodes is enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信、光信号処理に適用可能な偏波面選択
性を有する半導体光導波路型偏光素子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor optical waveguide type polarizing element having polarization plane selectivity applicable to optical communications and optical signal processing.

(従来の技術〕 従来、この種の導波路型偏光素子として金属タラッディ
ング偏光子がある。この金属タラッディング偏光子は光
導波路表面に直接金属をクラツデイングすることによっ
て、TMモードを吸収しTEモードのみを透過するとい
う特徴をもっている。
(Prior Art) Conventionally, there is a metal cladding polarizer as this type of waveguide type polarizing element.This metal cladding polarizer absorbs the TM mode and converts it into the TE mode by cladding metal directly on the surface of the optical waveguide. It has the characteristic of only transmitting light.

この従来例としては、文献(Y、 Suematsu、
 M。
As a conventional example of this, there is a literature (Y, Suematsu,
M.

Hakuta、 K、 Furuya、 K、 Chi
ba、 and R,Hasumtらにより ^ppl
、 Phys、 I、ett、、 vol、 21+ 
No、ら、 pp。
Hakuta, K., Furuya, K., Chi.
ba, and R, Hasumt et al. ^ppl
, Phys, I,ett,, vol, 21+
No, et al., pp.

291−293.5ept、 1972)に記載された
ものがある。
291-293.5ept, 1972).

このような従来例を第4図に基づいて説明する。Such a conventional example will be explained based on FIG. 4.

第4図は従来例の構成図である。基板11の上にそれよ
り屈折率の大きい薄膜12を設け、光導波層とする。薄
膜■2の一部には金属(アルミニウム)膜13が設けら
れている。光はプリズム14によりA→B−1C−Dの
ように伝搬し、BC間を伝搬する間に7Mモードのみが
減衰し、DからはTEモードだけが出射する。
FIG. 4 is a configuration diagram of a conventional example. A thin film 12 having a higher refractive index is provided on the substrate 11 to serve as an optical waveguide layer. A metal (aluminum) film 13 is provided on a part of the thin film (2). The light propagates in the direction of A→B-1C-D through the prism 14, and only the 7M mode is attenuated while propagating between BC, and only the TE mode is emitted from D.

(発明が解決しようとする課題) 第4図に示すような従来例では、TEモードだけを透過
することができるが、TEあるいはTMいずれかの偏波
モードを選択的に透過することはできない。また、先導
波層12は1次元的な光閉じ込めを持つだけで、光が光
導波層12を伝搬する間に広がるため、信号光の強度が
減衰する。従って、光信号処理等を目的とした導波路型
素子として従来例を適用することはできない。
(Problems to be Solved by the Invention) In the conventional example shown in FIG. 4, only the TE mode can be transmitted, but it is not possible to selectively transmit either the TE or TM polarization mode. Further, the leading wave layer 12 only has one-dimensional optical confinement, and the light spreads while propagating through the optical waveguide layer 12, so that the intensity of the signal light is attenuated. Therefore, the conventional example cannot be applied as a waveguide type element for purposes such as optical signal processing.

導波路型素子を用いて光信号処理を行う場合、導波路型
素子はTEあるいはTMのいずれかの偏光に対してのみ
動作することが多く、したがってTEと7Mモードのい
ずれかを選択することが要求される。本発明は上記の要
望に沿うため提案されたもので、TEと7Mモードをい
ずれかを選択的に除去し、一方の偏波モードのみを選択
的に透過する半導体光導波路型偏光素子を提供すること
を目的とする。
When performing optical signal processing using a waveguide type device, the waveguide type device often operates only for either TE or TM polarization, and therefore it is difficult to select either TE or 7M mode. required. The present invention was proposed in order to meet the above-mentioned demands, and provides a semiconductor optical waveguide type polarizing element that selectively removes either the TE or 7M mode and selectively transmits only one polarization mode. The purpose is to

(課題を解決するための手段) 上記の目的を達成するため、本発明は2次元的な光閉じ
込めを有する1本の半導体光導波路を2本に分岐した後
、再び1本にすることによって構成される干渉型光強度
変調器を、縦列に2個以上接続する半導体光導波路型素
子であって、縦列に接続される2個以上の干渉型光強度
変調器は、その干渉型光強度変調器を構成する光導波路
の方向が、半導体の(100)面内で(OT 1 )方
位あるいは(011)方位と平行である第1の干渉型光
強度変調器と、前記第1の干渉型光強度変調器とのなす
角度の大きさが45度である第2の干渉型光強度変調器
とに区別され、前記第1の干渉型光強度変調器を構成す
る半導体光導波路には・′v:′)光導波路を中心にし
て(100)方向に互いに対向する電極が設けられ、前
記第1の干渉型光強度変調器とのなす角度の大きさが4
5度である第2の干渉型光強度変調器を構成する半導体
光導波路には、光導波路を中心にして前記第1の干渉型
光強度変調器を構成する半導体光導波路に設けられた、
互いに対向する電極の方向と直角をなす方向に、互いに
対向する電極が設けられることを特徴とする半導体光導
波路型偏光素子を発明の要旨とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention is constructed by branching one semiconductor optical waveguide having two-dimensional optical confinement into two and then making it into one again. A semiconductor optical waveguide device in which two or more interferometric light intensity modulators connected in series are connected in series, and the two or more interferometric light intensity modulators connected in series are a first interferometric light intensity modulator in which the direction of the optical waveguide constituting the optical waveguide is parallel to the (OT 1 ) direction or the (011) direction in the (100) plane of the semiconductor; The semiconductor optical waveguide constituting the first interferometric optical intensity modulator is distinguished from the second interferometric optical intensity modulator whose angle with the modulator is 45 degrees. ') Electrodes are provided that face each other in the (100) direction with the optical waveguide at the center, and the size of the angle formed with the first interferometric optical intensity modulator is 4.
The semiconductor optical waveguide constituting the second interferometric light intensity modulator having an angle of 5 degrees is provided with a semiconductor optical waveguide constituting the first interferometric light intensity modulator centered on the optical waveguide.
The gist of the invention is a semiconductor optical waveguide type polarizing element characterized in that electrodes facing each other are provided in a direction perpendicular to the direction of the electrodes facing each other.

しかして、本発明は導波路型素子を用いた光信号処理を
有効に行うために、電圧を印加することによってTEあ
るいはTMの偏波モードのいずれか一方だけを選択的に
透過することを最も主要な特徴とする。従来の導波路型
偏光子では、透過する偏波モードは予め定められており
、任意の偏波モードだけを選択的に透過することは不可
能であった。一方、本発明においては、電圧印加により
透過する偏波モードを選択できる点が従来の技術とは著
しく異なる。更に従来技術の金属タラッディング偏光子
は1次元的な光閉し込めしか持たず、光導波路素子へ応
用することは困難である。一方、本発明の偏光素子は2
次元的な光閉じ込めを持つ半導体光導波路によって構成
されており、光導波路素子として光集積回路への応用も
十分可能である。
Therefore, in order to effectively perform optical signal processing using a waveguide type element, the present invention proposes the most effective method of selectively transmitting only either the TE or TM polarization mode by applying a voltage. Main characteristics. In conventional waveguide type polarizers, the polarization mode to be transmitted is determined in advance, and it is impossible to selectively transmit only an arbitrary polarization mode. On the other hand, the present invention is significantly different from the conventional technology in that the polarization mode to be transmitted can be selected by applying a voltage. Furthermore, the metal cladding polarizers of the prior art have only one-dimensional light confinement, and are difficult to apply to optical waveguide devices. On the other hand, the polarizing element of the present invention has 2
It is composed of a semiconductor optical waveguide with dimensional optical confinement, and can be applied to optical integrated circuits as an optical waveguide element.

(作用) 本発明は2次元的な光閉じ込めを存する半導体光導波路
によって構成される2つの干渉型光強度変調器を縦列接
続して構成されているので、電極に印加する電圧によっ
てTEあるいはTMのいずれかの偏波モードを選択的に
透過させることができる。
(Function) Since the present invention is constructed by connecting two interferometric optical intensity modulators constructed of semiconductor optical waveguides with two-dimensional optical confinement in cascade, the TE or TM can be adjusted depending on the voltage applied to the electrodes. Either polarization mode can be selectively transmitted.

次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行いうろことは言うまでも
ない。
Next, examples of the present invention will be described. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

(実施例) 第1図は本発明の半導体光導波路型偏光素子の実施例を
示す。この図において信号光は2次元的な光間し込めを
有する半導体光導波路中をA−+B→C−+D−+E−
+Fと伝搬する。四角形PQR3はGaAsあるいはI
nP等の43mの対称性をもつジンクブレンド型半導体
結晶の(100)面であり、PQとR3とは<011>
に垂直なへき開面であり、QRとSPは〈0丁1〉に垂
直なへき開面である。■と2はそれぞれ光導波路の上と
光導波路の両側に設けられた電極を表す。
(Example) FIG. 1 shows an example of the semiconductor optical waveguide type polarizing element of the present invention. In this figure, signal light travels through a semiconductor optical waveguide with a two-dimensional optical convergence from A-+B to C-+D-+E-.
It propagates as +F. Square PQR3 is GaAs or I
It is the (100) plane of a zinc blend semiconductor crystal with a symmetry of 43m such as nP, and PQ and R3 are <011>
The cleavage plane is perpendicular to , and QR and SP are the cleavage planes perpendicular to <0-1>. 2 and 2 represent electrodes provided on the optical waveguide and on both sides of the optical waveguide, respectively.

BとCの間は1本の光導波路を2本の直線光導波路に分
岐した後、再び1本に戻す第1の干渉型光強度変調器を
形成している。BC間の光導波路の長さはいずれの経路
をとっても等しい。AとBとCで構成される直線はPQ
に平行すなわち〈01■〉方向の直線となる。DE間は
BC間と同一の第2の干渉型光強度変調器である。BC
間とDE間の第1及び第2の干渉型光強度変調器は互い
に角度θを形成するように、光導波路CDを介して滑ら
かに接続される。光導波路EFは、SPと平行なへき開
面QRから信号光を出射させるために滑らかな曲線を形
成する。la、lbは第1の干渉型光強度変調器の電極
、2a、2bは第2の干渉型光強度変調器の電極を示す
The space between B and C forms a first interference type optical intensity modulator that branches one optical waveguide into two straight optical waveguides and then returns them to one straight optical waveguide. The length of the optical waveguide between BCs is the same regardless of the path. The straight line composed of A, B, and C is PQ
It becomes a straight line parallel to , that is, in the <01■> direction. The second interferometric optical intensity modulator between DE and BC is the same as that between BC. B.C.
The first and second interferometric optical intensity modulators between DE and DE are smoothly connected via an optical waveguide CD so as to form an angle θ with each other. The optical waveguide EF forms a smooth curve in order to emit the signal light from the cleavage plane QR parallel to SP. la and lb indicate electrodes of the first interferometric light intensity modulator, and 2a and 2b indicate electrodes of the second interferometric light intensity modulator.

第2.第3図はそれぞれBC間(第1)とDE間(第2
)の干渉型光強度変調器のに−L及びM−Nに沿う断面
図である。第2図及び第3図において、4は(100)
面をもつ半導体基板、6は半導体基板4上のエピタキシ
ャル成長した膜であり、5はエピタキシャル膜6の中に
形成され、かつ膜6より大きな屈折率を有する半導体光
導波路である。7と9と10とは夫々電極8又は11と
オーミック接合を得るための高キ+リア濃度領域である
と同時に、領域7は光導波路5に(100)面と垂直方
向に電圧を印加し、領域9と10とは光導波路5に(1
00)面と平行方向に電圧を印加する働きをもつ。3と
8と11とはオーミック電極である。
Second. Figure 3 shows the distance between BC (1st) and DE (2nd), respectively.
) is a sectional view taken along lines -L and MN of the interferometric optical intensity modulator of FIG. In Figures 2 and 3, 4 is (100)
6 is a film epitaxially grown on the semiconductor substrate 4; 5 is a semiconductor optical waveguide formed in the epitaxial film 6 and having a larger refractive index than the film 6; 7, 9, and 10 are high chelia concentration regions for obtaining ohmic contact with the electrodes 8 or 11, respectively, and at the same time, the region 7 applies a voltage to the optical waveguide 5 in a direction perpendicular to the (100) plane. Regions 9 and 10 are located in the optical waveguide 5 (1
00) has the function of applying voltage in a direction parallel to the plane. 3, 8, and 11 are ohmic electrodes.

次に動作について説明する。Next, the operation will be explained.

第1図のAから偏波方向が(100)面と平行なTEと
偏波方向が(100)面と垂直な7Mモードの混在した
楕円偏光が入射するとする。BC間の第1の干渉型光強
度変調器を構成する2本の平行な光導波路のうちの一方
の光導波路に(100)面と垂直方向に第2図の電極3
と8を介して電圧を印加すると、光導波路を伝搬するT
Eと7Mモードのうちの、TEモードだけの位相を変化
させることができる。このとき7Mモードの位相はまっ
たく変化しない。印加する電圧を適当に選ぶことによっ
てTEモードの位相変化量を半波長分すなわちπとする
ことができ、この場合TEモードはCにおいて、第1の
干渉型光強度変調器の他方の光導波路を伝搬してきたT
Eモードと逆相となり、C以降の光導波路を伝搬するT
Eモードの光強度は消滅する。次にBC間とDE間との
第1及び第2の干渉型光強度変調器のなす角度θが±4
5度となるように製作された第1図の実施例において、
DE間の第2の干渉型光強度変調器を構成する2本の平
行な光導波路のうちの一方の光導波路に(100)面と
平行方向に第3図の電極11を介して電圧を印加すると
、光導波路を伝搬するTEと7Mモードのうちの7Mモ
ードだけの位相を変化させることができる。
Assume that elliptically polarized light in which a TE mode whose polarization direction is parallel to the (100) plane and a 7M mode whose polarization direction is perpendicular to the (100) plane is incident from A in FIG. The electrode 3 in FIG. 2 is attached to one of the two parallel optical waveguides constituting the first interferometric optical intensity modulator between BC in a direction perpendicular to the (100) plane.
When a voltage is applied through and 8, T
Of the E and 7M modes, the phase of only the TE mode can be changed. At this time, the phase of the 7M mode does not change at all. By appropriately selecting the applied voltage, the amount of phase change in the TE mode can be set to half a wavelength, that is, π. In this case, the TE mode changes the other optical waveguide of the first interferometric optical intensity modulator at C. T that has been propagated
T which has the opposite phase to E mode and propagates in the optical waveguide after C
The light intensity of E mode disappears. Next, the angle θ formed by the first and second interferometric optical intensity modulators between BC and DE is ±4.
In the embodiment of FIG. 1, which is made to be 5 degrees,
A voltage is applied to one of the two parallel optical waveguides constituting the second interferometric optical intensity modulator between the DEs in a direction parallel to the (100) plane via the electrode 11 in FIG. Then, it is possible to change the phase of only the 7M mode among the TE and 7M modes propagating through the optical waveguide.

印加する電圧を適当に選ぶことによって、7Mモードの
位相変化量をπとすることができ、Eにおいて他方の光
導波路を伝搬してきた7Mモードと逆相の関係にできる
。したがって、E以降の光導波路を伝搬する7Mモード
の光強度は消滅する。
By appropriately selecting the voltage to be applied, the amount of phase change of the 7M mode can be set to π, and it can be made to have an opposite phase relationship with the 7M mode propagating through the other optical waveguide at E. Therefore, the light intensity of the 7M mode propagating through the optical waveguide after E disappears.

この場合にはTEモードの伝搬光はDE間では何らの位
相変化も受けない。
In this case, the TE mode propagating light does not undergo any phase change between the DEs.

このようなTEと7Mモードに対する変調特性を有する
2つの干渉型光強度変調器を縦列に接続した第1図の実
施例においては、TF、と7Mモードの混在する信号光
をAから入力し、BC間の干渉型光強度変調器の一方の
光導波路に適当な電圧を印加し、さらにDE間の干渉型
光強度変調器には電圧を印加しない場合にはFから7M
モードのみを出力させることができる。また、BC間の
干渉型光強度変調器には電圧を印加せず、DE間の干渉
型光強度変調器の一方の光導波路に適当な電圧を印加す
る場合にはFからTEモードのみを出力させることがで
きる。
In the embodiment shown in FIG. 1 in which two interferometric optical intensity modulators having such modulation characteristics for TE and 7M modes are connected in series, signal light in which TF and 7M modes are mixed is input from A, If an appropriate voltage is applied to one of the optical waveguides of the interferometric optical intensity modulator between BC and no voltage is applied to the interferometric optical intensity modulator between DE, F to 7M.
Only the mode can be output. In addition, if no voltage is applied to the interferometric optical intensity modulator between BC and an appropriate voltage is applied to one optical waveguide of the interferometric optical intensity modulator between DE, only the TE mode is output from F. can be done.

この結果から明らかなように、2次元的な光閉じ込めを
有する半導体光導波路によって構成される2つの干渉型
光強度変調器を縦列接続した本発明の偏光素子は、電極
に印加する電圧によってTEあるいはTMいずれかの偏
波モードを選択的に透過させることができるという特長
を有する。
As is clear from this result, the polarizing element of the present invention, in which two interferometric optical intensity modulators constituted by semiconductor optical waveguides having two-dimensional optical confinement are connected in series, can be used to achieve TE or It has the feature of being able to selectively transmit any TM polarization mode.

(発明の効果) 軟土のように本発明による半導体偏光素子は、透過させ
る偏光モードを電圧印加呻vり選択でき、かつ2次元的
な光閉じ込めを有する光導波路によって構成されるため
に、光通信あるいは光信号処理を目的とした光導波路型
素子としての応用が可能である効果を有する。
(Effects of the Invention) Like soft soil, the semiconductor polarizing element according to the present invention allows the polarization mode to be transmitted to be selected by applying a voltage, and since it is constituted by an optical waveguide having two-dimensional optical confinement, It has the effect that it can be applied as an optical waveguide type element for the purpose of communication or optical signal processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体光導波路型偏光素子の実施例、
第2図及び第3図は第1図においてに−L及びM−N線
に沿う断面図、第4図は従来例を示す。 1.2・・・・変調用電極 3.8.11・・電極 4・・・・・・半導体基板 5・・・・・・光導波路 6・・・・・・光導波路5より屈折率の小さいエピタキ
シャル成長膜 7.9.10・・高キヤリア濃度領域 第2図 第3図 第4図 3.8.11−m−電極 4− 半導体を坂
FIG. 1 shows an embodiment of the semiconductor optical waveguide type polarizing element of the present invention.
2 and 3 are sectional views taken along lines -L and MN in FIG. 1, and FIG. 4 shows a conventional example. 1.2... Modulation electrode 3.8.11... Electrode 4... Semiconductor substrate 5... Optical waveguide 6... Optical waveguide 5 has a refractive index. Small epitaxial growth film 7.9.10...High carrier concentration region Fig. 2 Fig. 3 Fig. 4 Fig. 4 3.8.

Claims (1)

【特許請求の範囲】 2次元的な光閉じ込めを有する1本の半導体光導波路を
2本に分岐した後、再び1本にすることによって構成さ
れる干渉型光強度変調器を、縦列に2個以上接続する半
導体光導波路型素子であって、縦列に接続される2個以
上の干渉型光強度変調器は、その干渉型光強度変調器を
構成する光導波路の方向が、半導体の{100}面内で
〔o@1@1〕方位あるいは〔011〕方位と平行であ
る第1の干渉型光強度変調器と、前記第1の干渉型光強
度変調器とのなす角度の大きさが45度である第2の干
渉型光強度変調器とに区別され、前記第1の干渉型光強
度変調器を構成する半導体光導波路には、その光導波路
を中心にして〔100〕方向に互いに対向する電極が設
けられ、前記第1の干渉型光強度変調器とのなす角度の
大きさが45度である第2の干渉型光強度変調器を構成
する半導体光導波路には、光導波路を中心にして前記第
1の干渉型光強度変調器を構成する半導体光導波路に設
けられた、互いに対向する電極の方向と直角をなす方向
に、互いに対向する電極が設けられることを特徴とする
半導体光導波路型偏光素子。
[Claims] Two interferometric optical intensity modulators arranged in tandem are constructed by branching one semiconductor optical waveguide with two-dimensional optical confinement into two and then recombining it into one. In the semiconductor optical waveguide type devices connected above, two or more interferometric optical intensity modulators connected in series are such that the direction of the optical waveguides constituting the interferometric optical intensity modulators is {100} of the semiconductor. The size of the angle formed between the first interferometric light intensity modulator and the first interferometric light intensity modulator that is parallel to the [o@1@1] direction or [011] direction in the plane is 45 The semiconductor optical waveguides constituting the first interferometric optical intensity modulator are arranged opposite to each other in the [100] direction with the optical waveguide as the center. The semiconductor optical waveguide constituting the second interferometric optical intensity modulator is provided with an electrode that forms an angle of 45 degrees with the first interferometric optical intensity modulator. and a semiconductor optical waveguide constituting the first interferometric light intensity modulator, wherein mutually opposing electrodes are provided in a direction perpendicular to the direction of the mutually opposing electrodes. Wave path type polarizing element.
JP11629888A 1988-05-13 1988-05-13 Semiconductor optical waveguide polarization element Expired - Fee Related JP2717210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11629888A JP2717210B2 (en) 1988-05-13 1988-05-13 Semiconductor optical waveguide polarization element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11629888A JP2717210B2 (en) 1988-05-13 1988-05-13 Semiconductor optical waveguide polarization element

Publications (2)

Publication Number Publication Date
JPH01285919A true JPH01285919A (en) 1989-11-16
JP2717210B2 JP2717210B2 (en) 1998-02-18

Family

ID=14683562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11629888A Expired - Fee Related JP2717210B2 (en) 1988-05-13 1988-05-13 Semiconductor optical waveguide polarization element

Country Status (1)

Country Link
JP (1) JP2717210B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318986A (en) * 1994-05-25 1995-12-08 Nec Corp Waveguide type optical switch
JP2007133287A (en) * 2005-11-14 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexer/demultiplexer
JP2007134480A (en) * 2005-11-10 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Tunable light source
JP2007133286A (en) * 2005-11-14 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexer/demultiplexer
JP2008282937A (en) * 2007-05-10 2008-11-20 Nippon Telegr & Teleph Corp <Ntt> Tunable light source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318986A (en) * 1994-05-25 1995-12-08 Nec Corp Waveguide type optical switch
JP2007134480A (en) * 2005-11-10 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Tunable light source
JP2007133287A (en) * 2005-11-14 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexer/demultiplexer
JP2007133286A (en) * 2005-11-14 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexer/demultiplexer
JP2008282937A (en) * 2007-05-10 2008-11-20 Nippon Telegr & Teleph Corp <Ntt> Tunable light source

Also Published As

Publication number Publication date
JP2717210B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
EP0817988B1 (en) Polarization-insensitive, electro-optic modulator
US8396337B2 (en) Ring resonator based optical isolator and circulator
EP0938000A2 (en) Optical waveguide branch with reflector
JP2017129834A (en) Optical waveguide element and optical modulator using the same
US20050196092A1 (en) Optical modulator and communications system
JPH02292887A (en) Integrated optical isolator
JPH01285919A (en) Semiconductor light guide type polarizing element
US5351320A (en) Optical modulator depressing optical feedback and optical modulating element and channel optical waveguide used therefore
JP6379703B2 (en) Optical waveguide polarizer
JPH01287623A (en) Optical waveguide type semiconductor polarization beam splitter
JPH04328720A (en) Waveguide type optical device
Khalfallah et al. A GaAlAs-GaAs integrated coherence modulator
JPH0422245B2 (en)
JP2635986B2 (en) Optical waveguide switch
JPH04204524A (en) Light modulator
JPH0553157A (en) Optical control device
JPS62284331A (en) Optical modulator
JPH04311918A (en) Light wave guide passage device
JP2786669B2 (en) Semiconductor optical switch
JP2687923B2 (en) Optical nonreciprocal circuit and manufacturing method thereof
JP3130131B2 (en) Optical isolator
Materna et al. Design of a GaAlAs travelling wave Mach-Zehnder electro-optic modulator
RU2120649C1 (en) Method of commutation and modulation of unidirectional distributively-coupled waves ( versions ) and device for its realization
JPH0820651B2 (en) Optical waveguide switch
JPH01285923A (en) Semiconductor light guide type optical switch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees