JPH01285912A - Illuminating optical device for stereomicroscope - Google Patents

Illuminating optical device for stereomicroscope

Info

Publication number
JPH01285912A
JPH01285912A JP63116725A JP11672588A JPH01285912A JP H01285912 A JPH01285912 A JP H01285912A JP 63116725 A JP63116725 A JP 63116725A JP 11672588 A JP11672588 A JP 11672588A JP H01285912 A JPH01285912 A JP H01285912A
Authority
JP
Japan
Prior art keywords
light source
stereomicroscope
source image
light
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63116725A
Other languages
Japanese (ja)
Other versions
JP2512876B2 (en
Inventor
Hideo Hirose
秀男 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP63116725A priority Critical patent/JP2512876B2/en
Publication of JPH01285912A publication Critical patent/JPH01285912A/en
Application granted granted Critical
Publication of JP2512876B2 publication Critical patent/JP2512876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To deal with a change in intersection angles while making effective utilization of the luminous flux of a light source so that Kohler's illumination is always maintained by constituting the optical device in such a manner that the two light source images formed by light source image forming means and beam splitting means are made approximately conjugate with the respective incident pupils of condenser lenses. CONSTITUTION:Two reflecting means 51, 52 having the functions to intersect the optical axes of the respective luminous fluxes bisected by the beam splitting means 4 via the light source image forming lens 3 with each other at the center of the visual field on a sample surface and to reflect and turn the same so as to align the axes to the centers of the respective incident pupils 18 of the stereomicroscope are disposed. The device is so constituted that the two light source images formed by the light source image forming means 3 and the beam splitting means 4 are made approximately conjugate with the respective incident pupils P of the stereomicroscope with respect to the condenser lenses. The Kohler's illumination making the effective utilization of the luminous flux of the light source is thereby executed. The Kohler's illumination can be maintained as well even at the time of exchanging objective lenses.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に実体顕微鏡のケーラー照明光学装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates in particular to a Köhler illumination optical device for a stereomicroscope.

〔従来の技術〕[Conventional technology]

従来におけるこの種の照明装置は、例えば特開昭60−
112011号公報等で開示されている。
Conventional lighting devices of this type are disclosed in, for example, Japanese Patent Application Laid-open No. 1986-
This is disclosed in JP-A No. 112011 and the like.

そこで、この公報で開示された装置の概略構成図を示す
第5図を参照しながら、この照明装置の光学系を説明す
る。
Therefore, the optical system of this illumination device will be explained with reference to FIG. 5, which shows a schematic configuration diagram of the device disclosed in this publication.

照明光学系は、光源1、コレクターレンズ2、コレクタ
ーレンズ2の光軸に左右対称に配置されタ一対の光源像
形成レンズ201.202 、このコレクターレンズ2
と共軸となるように配置されたコンデンサーレンズ7と
がそれぞれ順に設けられた構成から成っている。
The illumination optical system includes a light source 1, a collector lens 2, and a pair of light source image forming lenses 201 and 202, which are arranged symmetrically about the optical axis of the collector lens 2.
and a condenser lens 7 arranged coaxially with the condenser lens 7, respectively.

一方、観察光学系は、ステージガラス8、文・j物しン
ズ9、この対物レンズ9の光軸に左右対称に配置された
変倍光学系M (101〜121.102〜122)、
イメージローチータブリズム+3] 、132 、接眼
レンズ141.142とが順に設けられた構成から成っ
ている。
On the other hand, the observation optical system includes a stage glass 8, an object lens 9, a variable magnification optical system M (101 to 121, 102 to 122) arranged symmetrically about the optical axis of this objective lens 9,
It consists of a configuration in which image loch tabrhythm +3], 132, and eyepiece lenses 141 and 142 are provided in this order.

そして、照明光学系及び観察光学系により実体顕微鏡の
光学系が構成されている。
The illumination optical system and observation optical system constitute an optical system of the stereomicroscope.

このような構成を持つ従来の照明光学系においては、こ
の光l8X1から供給された光束がスう一−ジガラス上
に結像するように、コレクターレンズ2とコンデンサー
レンズ7とを配置し、実体顕微鏡の一対の入射瞳Pの中
心に入射する適切な・対の光線を選択して、各々の光線
上に光源像形成レンズ201.202を配置している。
In a conventional illumination optical system having such a configuration, the collector lens 2 and the condenser lens 7 are arranged so that the light flux supplied from the light beam 18X1 is imaged on the stereo microscope. An appropriate pair of light rays incident on the center of a pair of entrance pupils P are selected, and light source imaging lenses 201 and 202 are placed on each light ray.

すると、光源像形成レンズ20+ 、202とコンデン
サーレンズ7との光路間に一対の光源像1.、 、l、
□が形成される。
Then, a pair of light source images 1. , ,l,
□ is formed.

そして、この一対の光源像形成レンズ201.2(12
の中心を通過した各々の主光線をスう−−ジガソス10
の試料面の視野の中心で交差さ−Uて、:Iンデンサー
レンズ7とステージガラス8とに関して、この光源像■
8、■1□と実体顕微鏡の一対の入射瞳Pとがそれぞれ
共役となるように、光源像形成レンズ201.202の
位置を決定することによって、実体顕微鏡の各々の入射
瞳Pに光源像1z 、I+□を再結像させることができ
る。
Then, this pair of light source image forming lenses 201.2 (12
Let each chief ray pass through the center of - Jigasos 10
With respect to the indenser lens 7 and stage glass 8, this light source image ■
8. By determining the positions of the light source image forming lenses 201 and 202 so that ■1□ and the pair of entrance pupils P of the stereomicroscope are each conjugate, a light source image 1z is formed on each entrance pupil P of the stereomicroscope. , I+□ can be reimaged.

したがって、このような照明光学系の構成によって実質
的にケーラー照明が実現されている。
Therefore, Koehler illumination is substantially realized by such a configuration of the illumination optical system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記で述べた従来の技術では必ずしも光源光
束の有効利用を図ったものではなかった。
However, the conventional techniques described above do not necessarily aim to effectively utilize the luminous flux of the light source.

つまり、第6図に示すように、コレクターレンズ2の光
軸に対称に一対の光源像形成レンズ201.202が配
置されており、この場合、光tA1から供給された光束
一部、つまり各々の光源像形成レンズ201.202に
入射した光束のみが各々の観察光学系に導かれる。その
ため、光源光束を有効に利用することが基本的に不可能
である。
That is, as shown in FIG. 6, a pair of light source image forming lenses 201 and 202 are arranged symmetrically about the optical axis of the collector lens 2, and in this case, a portion of the light flux supplied from the light tA1, that is, each Only the light beams incident on the light source image forming lenses 201 and 202 are guided to each observation optical system. Therefore, it is basically impossible to effectively utilize the light source luminous flux.

しかも、光源像形成レンズ201.202の有効径は観
察光学系にお&Jる低倍率状態の観察視野領域(以下観
察領域と略称する。)の径と比べると小さくならざるを
得なく、適切な照明を行うことが難しい。したがって、
低倍率状態における観察領域全体を照明光束が満たしな
がら、照明光学系をある程度コンパクトにするには、光
源像形成レンズ201.202の結像倍率を小さくして
、コンデンサーレンズ7のFナンバーを小さくする必要
がある。すると、収差が大きく発生して、照明ムラの原
因となる。そして、特に、実体顕微鏡においては光源光
束がコンデンサーレンズ7に斜入射するために、収差が
顕著に発生ずるために、非対称な照明ムラの発生の原因
となる。
Furthermore, the effective diameter of the light source image forming lenses 201 and 202 must be smaller than the diameter of the observation field area (hereinafter referred to as observation area) in a low magnification state that is included in the observation optical system. Difficult to do lighting. therefore,
In order to make the illumination optical system somewhat compact while the illumination light beam fills the entire observation area in a low magnification state, the imaging magnification of the light source image forming lenses 201 and 202 is made small, and the F number of the condenser lens 7 is made small. There is a need. As a result, large aberrations occur, causing uneven illumination. In particular, in a stereomicroscope, the light beam from the light source obliquely enters the condenser lens 7, which causes significant aberrations, which causes asymmetric illumination unevenness.

したがって、従来の実体顕微鏡の照明では、原理的に照
明ムラが発生し易く、また光ffi+員失が多いという
問題を包含している。
Therefore, in the illumination of a conventional stereoscopic microscope, in principle, illumination unevenness is likely to occur, and there are many problems in that the light ffi+ is often lost.

また、一対の光源像形成レンズ201.202により2
分割された光束の光軸を試料面の視野の中心に交差する
ように構成されているが、光源像形成レンズ201.2
02により2分割された光束の光軸と対物レンズ9の光
軸とのなす角θ(以下、交差角と略称する)はコレクタ
ーレンズ径で決定される。
Also, a pair of light source image forming lenses 201 and 202 provide two
The light source image forming lens 201.2 is configured so that the optical axis of the divided light beam intersects the center of the field of view of the sample surface.
The angle θ (hereinafter abbreviated as the intersection angle) between the optical axis of the light beam divided into two by 02 and the optical axis of the objective lens 9 is determined by the diameter of the collector lens.

そこで、第4図falに示すように、対物レンズ91の
焦点距離をf、一対の観察光学系の光軸間距離をlとす
ると、交差角はθ、 =tan ”’(7!/2f )
と表すことができ、この交差角θ1は、この式から明ら
かなように、対物レンズ91の焦点距離に依存する。そ
して、一般に、実体顕微鏡において必要とされる範囲内
での交差角は対物レンズの焦点距離に略反比例する。
Therefore, as shown in FIG. 4 fal, if the focal length of the objective lens 91 is f and the distance between the optical axes of the pair of observation optical systems is l, then the intersection angle is θ, = tan ''(7!/2f )
This intersection angle θ1 depends on the focal length of the objective lens 91, as is clear from this equation. Generally, the intersection angle within the range required in a stereomicroscope is approximately inversely proportional to the focal length of the objective lens.

例えば、第4図(blに示すように、観察倍率を2倍に
するために、焦点距離がf/2の対物レンズ92に交換
して変倍を行うと、この交差角θ2は、θ2#2θ1 
となり、θ1の交差角と比して約2倍と大きさとなる。
For example, as shown in FIG. 4 (bl), when changing the magnification by replacing the objective lens 92 with a focal length of f/2 in order to double the observation magnification, the intersection angle θ2 becomes θ2# 2θ1
This is approximately twice as large as the intersection angle of θ1.

そのため、ケーラー照明を維持するには約2倍の交差角
が必要とされる。
Therefore, approximately twice the crossing angle is required to maintain Kohler illumination.

ところが、上記に示した従来の技術における構成では、
コレクターレンズ径で交差角が決定されるために、対物
レンズの交換に対応した所望の交そのため、一対の光源
像形成レンズ201.202と対物レンズ9との光路間
に、拡散フィルターを配置して照明を行うか、あるいは
光源像形成レンズ201.202を交換する必要があっ
た。
However, in the configuration of the conventional technology shown above,
Since the intersection angle is determined by the diameter of the collector lens, a diffusion filter is placed between the optical paths of the pair of light source image forming lenses 201 and 202 and the objective lens 9 in order to achieve the desired intersection that corresponds to the exchange of the objective lens. It was necessary to perform illumination or replace the source imaging lenses 201, 202.

ところが、光を拡散させているために、照明光束の損失
が大きく、照明効率が著しく劣下するという問題がある
However, since the light is diffused, there is a problem in that the loss of illumination luminous flux is large and the illumination efficiency is significantly degraded.

したがって、本発明はこのような問題を全て解決して、
光源光束の有効利用を図りながら、対物レンズの交換に
よる交差角の変化に対応でき、常にケーラー照明を維持
できる実体顕微鏡の照明光学装置を提供することを目的
としている。
Therefore, the present invention solves all these problems and
It is an object of the present invention to provide an illumination optical device for a stereomicroscope that can cope with changes in the intersection angle due to exchange of objective lenses and can always maintain Koehler illumination while effectively utilizing the light source luminous flux.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は」二記の目的を達成するために、試r1面を所
定の角度を持つ2方向で照明するための光源光束の各々
の光源像を実体顕微鏡の各々の入射瞳位置またはその近
傍に再結像する実体顕微鏡の照明光学装置において、 第1A図に示すように、光源光束を供給する光源手段1
と、この光源手段1からの光源光束を略平行光束に変換
するコレクターレンズ2と、このコレクターレンズ2を
介した光束により光源像を形成する光源像形成手段3と
、この光源像を形成した光束を前記試料面に照明するコ
ンデンサーレンズ7とを有し、 光源像形成手段3とコンデンサーレンズ7との光路間に
、この光源像形成手段3を介した光束を2つの光束に分
割する光束分割手段4と、この2つの光束の光軸を試料
面上の視野の中心で交差させて実体顕微鏡の各々の入射
瞳の中心に合致するように反射転向させる機能を持つ2
つの反射手段とを配置し、前記光源像形成手段3と前記
光束分割手段4とにより形成される2つの光源像がコン
デンサーレンズ9に関して前記観察光学系の各々の入射
瞳と略共役となるように構成されたものである。
In order to achieve the objects stated in item 2, the present invention provides a light source image of each of the light source beams for illuminating the sample surface in two directions having a predetermined angle, at or near each entrance pupil position of the stereomicroscope. In the illumination optical device of a stereomicroscope that re-images, as shown in FIG. 1A, a light source means 1 for supplying a light source beam
, a collector lens 2 that converts the light source light flux from the light source means 1 into a substantially parallel light flux, a light source image forming means 3 that forms a light source image with the light flux passing through the collector lens 2, and a light flux that forms this light source image. a condenser lens 7 for illuminating the sample surface, and a beam splitting means for splitting the light beam passing through the light source image forming means 3 into two light beams between the optical path of the light source image forming means 3 and the condenser lens 7. 4, and 2 which has the function of reflecting and turning the optical axes of these two light beams so that they intersect at the center of the field of view on the sample surface and match the center of each entrance pupil of the stereomicroscope.
two reflecting means are arranged so that the two light source images formed by the light source image forming means 3 and the light beam splitting means 4 are substantially conjugate with each entrance pupil of the observation optical system with respect to the condenser lens 9. It is constructed.

〔作 用〕[For production]

本発明においては、光源像形成レンズ3を介し光束分割
手段4により2分割された各々の光束の光軸を試料面上
の視野の中心で交差させて実体顕微鏡の各々の入射瞳1
8の中心に合致するようGこ反射転向させる機能を持つ
2つの反射手段51.52を配置して、この光源像形成
手段3と光束分割手段4とにより形成される2つの光源
像がコンデンサーレンズに関して実体顕微鏡の各々の入
射瞳Pとが略共役となるように構成することによって、
光源光束の有効利用を図ったケーラー照明を行うことが
できる。
In the present invention, the optical axes of the respective light beams divided into two by the light beam splitting means 4 through the light source image forming lens 3 are made to intersect at the center of the field of view on the sample surface, so that each entrance pupil 1 of the stereomicroscope is divided into two parts.
The two light source images formed by the light source image forming means 3 and the light beam splitting means 4 are formed by a condenser lens. By configuring the stereomicroscope so that each entrance pupil P is approximately conjugate with respect to
It is possible to perform Kohler illumination that aims to effectively utilize the light source luminous flux.

そして、対物レンズの交換の際にも、光束分割手段を介
した各々の光束の光軸を試料面の視野の中心で交差する
ように、2つの反射手段を各々所定の位置へ配置するこ
とにより、ケーラー照明を維持することができる。
When replacing the objective lens, the two reflecting means are placed at predetermined positions so that the optical axes of the respective beams passing through the beam splitting means intersect at the center of the field of view on the sample surface. , Köhler illumination can be maintained.

また、コレクターレンズと光束分割手段よの光路間に、
光源像を変倍可能な光源像変倍光学系21を着脱可能に
構成することにより、変化光学系の変倍による入射瞳の
大きさの変化に対応できるように、適切な大きさに光源
像を変倍し、観察領域と照明領域とを略合致させること
ができる。そのため、ムラがなく効率良い照明を達成で
きると同時に、フレアー、ゴースト等も軽減することが
できる。
Also, between the optical path of the collector lens and the beam splitting means,
By removably configuring the light source image magnification optical system 21 that can change the magnification of the light source image, the light source image can be adjusted to an appropriate size so as to correspond to the change in the size of the entrance pupil due to the magnification change of the variable optical system. The observation area and the illumination area can be made to substantially match each other by changing the magnification of the image. Therefore, it is possible to achieve even and efficient illumination, and at the same time, flare, ghost, etc. can be reduced.

〔実施例〕〔Example〕

第1A図は本発明の第1実施例の概略構成図を示してお
り、以下この図を参照しながら本発明を詳述する。
FIG. 1A shows a schematic configuration diagram of a first embodiment of the present invention, and the present invention will be described in detail below with reference to this figure.

第1実施例における照明光学系は、光源側から順に、光
源手段である光源l、コレクターレンズ2、光源像形成
手段である光源像形成レンズ3、光束分割手段であるビ
ームスプリッタ−4、このビームスプリッタ−4の反射
方向に反射手段である反射部材51、またビームスプリ
ッタ−4の透過方向に反射部材6、反射手段である反射
部材52、そして、2つの反射手段51.52の反射方
向にコンデンサーレンズ7とがそれぞれ配置された構成
としている。
The illumination optical system in the first embodiment includes, in order from the light source side, a light source l as a light source means, a collector lens 2, a light source image forming lens 3 as a light source image forming means, a beam splitter 4 as a light beam splitting means, and a beam splitter 4 as a light beam splitting means. A reflecting member 51 as a reflecting means in the reflection direction of the beam splitter 4, a reflecting member 6 in the transmission direction of the beam splitter 4, a reflecting member 52 as a reflecting means, and a condenser in the reflecting direction of the two reflecting means 51 and 52. The lens 7 is arranged respectively.

一方、観察光学系は、このコンデンサーレンズ7の後方
にそれぞれステージガラス8、対物レンズ91が配置さ
れ、この対物レンズ91の光軸に対称に、変倍光学系M
(101−121,102〜122)、イメージローチ
ータブリズム+31 、132 、接眼レンズ141.
142とがそれぞれ配置された構成としている。
On the other hand, in the observation optical system, a stage glass 8 and an objective lens 91 are respectively arranged behind this condenser lens 7, and a variable magnification optical system M is arranged symmetrically to the optical axis of this objective lens 91.
(101-121, 102-122), Image Lochta Bism +31, 132, Eyepiece 141.
142 are arranged respectively.

この光源1から供給される光束は、二lレクターレンズ
2により略平行光束に変換され、光源像形成レンズ3を
通過するとビームスプリッタ−4により、コレクターレ
ンズ3の光軸に垂直な平面方向へ90°反射転向する反
射光束と透過光束とに2分割される。
The light flux supplied from the light source 1 is converted into a substantially parallel light flux by the 2l rectifier lens 2, and after passing through the light source image forming lens 3, the light flux is directed by the beam splitter 4 to a plane direction perpendicular to the optical axis of the collector lens 3. The light beam is divided into two parts: a reflected light beam that is reflected and turned, and a transmitted light beam.

そして、この反射光束は、反射部材51によりこの反射
光束の光軸を進行する光線がステージガラス8の試料面
の視野の中心に導かれるようにαの反射角で反射転向さ
れる。
Then, this reflected light beam is reflected and turned by the reflection member 51 at a reflection angle of α so that the light ray traveling along the optical axis of the reflected light beam is guided to the center of the visual field of the sample surface of the stage glass 8.

一方、透過光束は、反射部材6により約90°の適切な
角度で反射転向され、この反射光束は、反射手段52に
よりこの反射光束の光軸を進行する光= 11− 線が反射手段52によりカバーガラス8の試料面の視野
の中心に導かれるようにβの反射角で反射転向される。
On the other hand, the transmitted light beam is reflected and turned by the reflecting member 6 at an appropriate angle of about 90 degrees, and this reflected light beam is changed by the reflecting means 52 so that the light = 11- line traveling along the optical axis of this reflected light beam is reflected by the reflecting means 52. It is reflected and turned at a reflection angle of β so as to be guided to the center of the field of view of the sample surface of the cover glass 8.

ここで、光源1はコレクターレンズ2と光源像形成レン
ズ3に関して、2つの光源像■、い 11□と共役とな
っており、略光源像形成レンズ3の焦点位置でこの光源
像■1い ■1□が形成され実質的な2次光源となって
いる。
Here, the light source 1 is conjugate with two light source images 1 and 11 with respect to the collector lens 2 and the light source image forming lens 3, and the light source images 1 and 1 are approximately at the focal position of the light source image forming lens 3. 1□ is formed and serves as a substantial secondary light source.

このように、2つの反射手段51.52により反射転向
された2つの光束はコンデンサーレンズ7によってステ
ージガラス8に導かれ、ステージガラス上の試料面の観
察領域をそれぞれ所定の角度で均一に照明する。
In this way, the two light beams reflected by the two reflecting means 51 and 52 are guided to the stage glass 8 by the condenser lens 7, and uniformly illuminate the observation area of the sample surface on the stage glass at a predetermined angle. .

所定の角度で試料面を照明した各々の光束の光軸は実体
顕微鏡の入射瞳Pの中心と一致するように、所定の交差
角θ、で対物レンズ91に入射する。
The optical axis of each light beam illuminating the sample surface at a predetermined angle enters the objective lens 91 at a predetermined crossing angle θ so that it coincides with the center of the entrance pupil P of the stereomicroscope.

そして、ステージガラス8を通過した各々の光束は対物
レンズ91を通過すると各々の変倍光学系M(101〜
121.102〜122)へ導かれ、この変倍光学系中
に2次光源像■2い ■2□を形成する。
Then, each light beam that has passed through the stage glass 8 passes through the objective lens 91 and is then connected to each variable magnification optical system M (101 to 101).
121, 102 to 122), and forms secondary light source images (2) and (2) in this variable magnification optical system.

ここで、光源像r +い It□はコンデンサーレンズ
7とステージガラス8とに関し“C実体顕微鏡の一対の
入射瞳Pと実質的に共役となっており、したがって、こ
の2次光源像1□1.12□は実体顕微鏡の一対の入射
瞳Pに形成される。
Here, the light source image r .12□ are formed at a pair of entrance pupils P of the stereomicroscope.

そして、この変倍光学系M (101〜12+ 、 1
02〜122)を通過した光束は、イメージローチータ
ブリズム131.132、接眼レンズ141.142を
通過し、アイポイント(E、P、)へ導かれる したがって、このような構成により実質的にケーラー照
明を行うことができる。
Then, this variable magnification optical system M (101 to 12+, 1
02 to 122) passes through the image rotor beam 131.132, the eyepiece lens 141.142, and is guided to the eye point (E, P,). Therefore, with this configuration, the light flux is substantially the same as the Kohler beam. Lighting can be done.

また、観察領域の中心に位置する試料からの光束は、ス
テージガラス8から焦点距離位置に配置された対物レン
ズ91により平行光束に変換され、各々の変倍光学系M
、イメージローチータブリズム131.132を通過す
ることによって、その後方に物体像I。を形成する。そ
して、この物体像1゜を形成した光束は、接眼レンズ1
4] 、142を通過してアイポイント(Ii、++、
)へ導かれ、このアイポイン1−(E、P、)でこの物
体像I。の虚像を観察することができる。ここで、各々
の変倍光学系Mのレンズを各々の光軸に沿って移動させ
ることにより、低倍率域から光倍率域まで連続的に、こ
の物体像1oを変倍することができる。
Further, the light beam from the sample located at the center of the observation area is converted into a parallel light beam by an objective lens 91 placed at a focal distance position from the stage glass 8, and is converted into a parallel light beam by each variable magnification optical system M.
, the object image I behind it by passing through the image Rocheetahism 131,132. form. Then, the light beam that formed this object image of 1° passes through the eyepiece lens 1.
4], 142 and the eye point (Ii, ++,
), and this object image I at this eye point 1-(E, P,). You can observe the virtual image of By moving the lenses of each variable magnification optical system M along the respective optical axes, it is possible to continuously change the magnification of the object image 1o from the low magnification region to the optical magnification region.

ところで、前述の如く、例えば、観察倍率を2倍にする
ために、焦点距離f/2の対物レンズに交換すると、ケ
ーラー照明を行うには約2倍の大きさの交差角が必要と
なる。
By the way, as described above, for example, if the objective lens is replaced with an objective lens having a focal length of f/2 in order to double the observation magnification, an intersection angle approximately twice as large is required to perform Koehler illumination.

そこで、このような対応をとるために、先ず焦点距離が
小さい対物レンズ92に交換して、第1A図の点線で示
すような対物レンズ92の位置まで観察光学系全体を対
物レンズ92の光軸に沿って光源側へ移動させる。そし
て、この対物レンズ92の交換に連動して各々の反射手
段5I、52を、それぞれ所定の変位量Δ1、Δ2だけ
変位させ、点線で示すような位置に各々の反射手段51
.52を位置させる。
Therefore, in order to take such a measure, first replace the objective lens 92 with a smaller focal length, and move the entire observation optical system up to the position of the objective lens 92 as shown by the dotted line in FIG. 1A along the optical axis of the objective lens 92. along the direction towards the light source. Then, in conjunction with the replacement of the objective lens 92, each of the reflecting means 5I and 52 is displaced by a predetermined displacement amount Δ1 and Δ2, respectively, and each reflecting means 51 is moved to the position shown by the dotted line.
.. 52.

その後に、ビームスプリッタ−4により2分割された光
束の光軸がステージガラス8の試料面上の視野の中心に
交差して一対の入射瞳Pの中心に合致するように反射角
がそれぞれα−Δα、β−Δβとなるまで反射手段51
.52を揺動させれば良い。
Thereafter, the reflection angles are adjusted so that the optical axis of the beam split into two by the beam splitter 4 intersects the center of the field of view on the sample surface of the stage glass 8 and coincides with the center of the pair of entrance pupils P. Reflection means 51 until Δα, β−Δβ.
.. 52 should be swung.

すなわち、所望の交差角を得るためには、必要に応じて
反射手段51.52をそれぞれ所定の変位置だけ変位さ
せ、その後にビームスプリッタ−4により2分割された
光束の光軸がステージガラス8の試料面上の視野の中心
に交差して一対の入η・1瞳Pの中心に合致するように
反射手段51.52を揺動させれば良い。
That is, in order to obtain a desired intersection angle, the reflecting means 51 and 52 are respectively displaced by predetermined displacement positions as necessary, and then the optical axis of the beam split into two by the beam splitter 4 is aligned with the stage glass 8. The reflecting means 51 and 52 may be swung so as to intersect with the center of the field of view on the sample surface and coincide with the center of the pair of input η·1 pupils P.

したがって、このように構成すれば、対物レンズの交換
による変倍を行っても、常にケーラー照明を実現するこ
とができる。
Therefore, with this configuration, Koehler illumination can always be achieved even when changing the magnification by replacing the objective lens.

そして、具体的にこの第1実施例におりる制′4Jll
系を説明すると、第1B図のブロック図に示すように、
対物レンズの交換時に、この対物レンズの倍率を検出す
る検出手段25と、この検出信号に基づいて反射手段の
必要な移動量と反射角とを演算する演算手段26と、こ
の演算信号26に基づいて各々゛の反射手段を各々の所
定位置まで移動させる駆動手段27と、またこの演算信
号にも一ついて各々の反射手段を所定の反射角に揺動さ
ゼる揺動手段28と= 15− を有する構成にしている。
Specifically, the system in this first embodiment is '4Jll.
To explain the system, as shown in the block diagram of Figure 1B,
When replacing the objective lens, there is a detection means 25 for detecting the magnification of the objective lens, a calculation means 26 for calculating the necessary movement amount and reflection angle of the reflection means based on this detection signal, and a calculation means 26 for calculating the necessary movement amount and reflection angle of the reflection means based on this detection signal. a driving means 27 for moving each reflecting means to a predetermined position, and a swinging means 28 for swinging each reflecting means to a predetermined reflection angle in response to this calculation signal = 15- The structure has the following.

この検出手段25からの信号は、演算手段26に入力さ
れ、ここでビームスプリンター4により2分割された光
束の光軸がステージガラス8の試料面」二の視野の中心
に交差して観察光学系の一対の入射瞳の中心に合致させ
るために必要な移動量及び反射角を演算し、この必要移
動量及び反射角に対応した出力信号を出力する。この演
算手段26は対物レンズ交換によって反射部材51.5
2に必要な移動量及び反射角を予め記憶されたROM等
の素子を持つ構成とすることが望ましい。そして、客々
の反射手段51.52に設けられた2つの駆動モータを
有する駆動手段27は、演算手段23からの出力信号に
基づいて、駆動モータを駆動させ、反射部材51.52
を所定位置まで移動させる。その後、2つの駆動モータ
を有する揺動手段28は、再び演算手段23からの出力
信号に基づいてモーターを駆動させ、所定の反射角とな
るまで反射部材51.52を揺動させる。
The signal from the detection means 25 is input to the calculation means 26, where the optical axis of the beam split into two by the beam splinter 4 intersects the center of the field of view on the sample surface of the stage glass 8, and the observation optical system The amount of movement and angle of reflection required to match the centers of a pair of entrance pupils are calculated, and an output signal corresponding to the required amount of movement and angle of reflection is output. This calculating means 26 can be operated by changing the objective lens to reflect the reflecting member 51.5.
It is desirable to have a structure having an element such as a ROM in which the movement amount and reflection angle necessary for 2 are stored in advance. The drive means 27 having two drive motors provided in the reflection means 51.52 of each customer drives the drive motors based on the output signal from the calculation means 23, and
move it to the specified position. Thereafter, the swinging means 28 having two drive motors drives the motors again based on the output signal from the calculation means 23, and swings the reflecting members 51 and 52 until a predetermined reflection angle is reached.

したがって、このような構成により、対物レンズを交換
しても常に自動的にケーラー照明を行うことが可能であ
る。
Therefore, with such a configuration, even if the objective lens is replaced, Kohler illumination can always be performed automatically.

尚、第1実施例にお&Jる反射手段の移動にともなって
ビームスプリンター4とコンデン勺−レンズ7との光路
長が若干変化するので、一対の2次光源像の位置は、観
察光学系における一対の瞳装置から僅かに移動するが実
用上殆ど問題はなく、略ケーラー照明を維持することが
できる。
Incidentally, since the optical path length between the beam splinter 4 and the condenser lens 7 changes slightly with the movement of the reflecting means described in the first embodiment, the positions of the pair of secondary light source images may vary depending on the position of the pair of secondary light source images in the observation optical system. Although there is a slight movement from the pair of pupil devices, there is virtually no problem in practice, and approximately Koehler illumination can be maintained.

しかしながら、この瞳変動は、反射手段の移動に連動し
て、コレクターレンズ2あるいは光源像形成レンズ3等
を光軸に沿って移動さ−lることにより、抑えることが
可能となる。
However, this pupil variation can be suppressed by moving the collector lens 2, the light source image forming lens 3, etc. along the optical axis in conjunction with the movement of the reflecting means.

また、第2実施例においては、第2八図に示すように、
前述の第1実施例で述べた2つの反射手段の代わりに、
円板530.540上に、複数の反射部材531〜53
3.541〜543が各々設番ノられた2つの回転反射
手段53.54を有する構成としている。
Furthermore, in the second embodiment, as shown in FIG.
Instead of the two reflecting means mentioned in the first embodiment above,
A plurality of reflective members 531 to 53 are provided on the disks 530 and 540.
The structure includes two rotary reflecting means 53 and 54, each having a design number of 3.541 to 543.

この複数の反射部材は交換する対物レンズの数に対応す
るだけ設けられている。そして、この各々の反射部祠は
、反射部材531.541のように所定の位置にセット
された状態で、交換する対物レンズに必要とされる交差
角に反射転向できるように、円板の回転軸Oと所定距離
関係でこの円板の半径方向に対して斜設されている。
The plurality of reflecting members are provided in a number corresponding to the number of objective lenses to be replaced. Then, each of these reflection parts is rotated by the rotation of the disc so that it can be reflected and turned to the intersection angle required for the objective lens to be replaced while it is set in a predetermined position like the reflection members 531 and 541. It is disposed obliquely with respect to the radial direction of the disc at a predetermined distance from the axis O.

そして、この各々の反射部材が、ビームスプリッタ−に
より2分割された光束を所定の交差角で試料面に導くよ
うな位置にセットされる状態を確実に保持するために、
不図示ではあるがクリックストップ等を設けている。
In order to ensure that each of these reflecting members is set at a position where the beam split into two by the beam splitter is guided to the sample surface at a predetermined intersection angle,
Although not shown, a click stop or the like is provided.

そのため、この対物レンズの交換による変倍に応じて、
円板530.540をそれぞれ回転軸Oを中心に矢印方
向へ回転させ、所望の反射部材を所定位置に確実にセッ
トすることができる。
Therefore, depending on the magnification change by replacing this objective lens,
By rotating each of the discs 530 and 540 about the rotation axis O in the direction of the arrow, a desired reflecting member can be reliably set at a predetermined position.

そして、この第2実施例の構成による制御系は対物レン
ズの交換時に、この対物レンズの倍率を検出する検出手
段25と、この検出信号に基づいて所望の反射部材を所
定位置にセットされるまでの回転角を演算する演算手段
29と、この演算信号に基づいて円板530.540を
それぞれ回転軸0を中心に回転させ、所定位置に反射手
段を七ノドさせる回転手段30とを有する構成にしてい
る。
The control system having the configuration of the second embodiment includes a detection means 25 for detecting the magnification of the objective lens when replacing the objective lens, and a detection means 25 for detecting the magnification of the objective lens, and until a desired reflecting member is set at a predetermined position based on this detection signal. and a rotating means 30 which rotates the disks 530 and 540 respectively around the rotation axis 0 based on the calculation signal and moves the reflecting means to a predetermined position by seven steps. ing.

この検出手段25からの信号は、演算手段29に入力さ
れ、ここでビームスプリッタ−4により2分割された光
束の光軸がステージガラス8の試料面上の視野の中心に
交差して観察光学系の一対の入射瞳の中心に合致させる
ために必要な回転量を演算し、必要回転量に対応した出
力信号を出力する。
The signal from the detection means 25 is input to the calculation means 29, where the optical axis of the light beam split into two by the beam splitter 4 intersects the center of the field of view on the sample surface of the stage glass 8, and the observation optical system The amount of rotation required to match the centers of a pair of entrance pupils is calculated, and an output signal corresponding to the required amount of rotation is output.

この演算手段29は対物レンズ交換によって円板23.
24に必要な回転量を、第1実施例と同様に、予め記憶
されたROM等の素子を持つ構成とすることが望ましい
。そして、2つの駆動子−タを有する回転手段27は、
演算手段26からの出力信号に基づいてモータを駆動さ
せ、所望の反射部月が所定位置までセットされるまで、
円板530.540をそれぞれ回転軸0を中心に回転さ
せる。
This calculation means 29 is operated by a disk 23 by exchanging the objective lens.
As in the first embodiment, it is preferable to use a device such as a ROM in which the amount of rotation required for 24 is stored in advance. The rotating means 27 having two drive elements is
The motor is driven based on the output signal from the calculation means 26 until the desired reflective part is set at a predetermined position.
The disks 530 and 540 are each rotated around the rotation axis 0.

したがって、第2実施例においても第1実施例と同様に
、対物レンズを交換しても常に自動的にケーラー照明を
行うことが可能である。
Therefore, in the second embodiment, as in the first embodiment, Koehler illumination can always be performed automatically even if the objective lens is replaced.

尚、所望の反射部材を回転さ−lて所定の位置にセント
させることにより、第1実施例と同様に、ビームスプリ
ッタ−4とコンデンサーレンズ7との光路長が若干変化
するので、一対の2次光源像の位置は、観察光学系にお
ける一対の瞳位置から僅かに移動するが、実用上におい
て殆ど問題はない。
Note that by rotating a desired reflecting member and placing it in a predetermined position, the optical path length between the beam splitter 4 and the condenser lens 7 changes slightly, as in the first embodiment. Although the position of the secondary light source image moves slightly from the position of the pair of pupils in the observation optical system, there is almost no problem in practice.

しかし、各々の反射部材の反射面に適切な曲率を持たせ
ることにより、この瞳位置の変動を極めて良好に抑える
ことが可能である。
However, by providing the reflective surface of each reflective member with an appropriate curvature, it is possible to extremely effectively suppress this variation in pupil position.

また、試料面上での交差角の微調整は、円板530.5
40の回転を微動させれば良く、また所定の反射角にな
るように各反射部材を揺動させても良い。
In addition, fine adjustment of the intersection angle on the sample surface can be done using the disk 530.5.
40 may be slightly rotated, or each reflecting member may be oscillated so as to achieve a predetermined reflection angle.

また、各実施例における検出方法は対物レンズに検出用
マークを取り付けてこのマークを検出したり、対物レン
ズに刻印されている倍率の数字を検出したり、また人為
的操作により交換すべき対物レンズの倍率を指定する方
法等がある。
In addition, the detection method in each embodiment includes attaching a detection mark to the objective lens and detecting this mark, detecting the magnification number engraved on the objective lens, or manually changing the objective lens to be replaced. There are ways to specify the magnification.

また、高い観察倍率で試料を観察するために変倍光学系
の倍率を高くするにともなって、観察領域φが小さくな
る。そのため、この観察領域の変化に対応じて照明領域
φも変化していなければ、観察領域の明るさが極端に暗
(なり、しかも、フレアー、ゴースI・等が発生ずる。
Furthermore, as the magnification of the variable magnification optical system is increased in order to observe the sample at a high observation magnification, the observation area φ becomes smaller. Therefore, if the illumination area φ does not change in accordance with the change in the observation area, the brightness of the observation area will become extremely dark, and flare, ghost I, etc. will occur.

そのため、It′!1い観察倍率で試料を観察する時に
は、第3八図に示すように、第1実施例の構成における
光源像形成レンズ3とビームスプリッタ−4との光路間
に、各々の光源像1.い ■1□位置が不変となるよう
に、収斂性のレンズ群211と発散性のレンズ群212
とを有する光源像変倍光学系21を配置する。
Therefore, It'! When observing a sample at a magnification of 1.1, as shown in FIG. 38, each light source image 1. ■1□Convergent lens group 211 and diverging lens group 212 so that the position remains unchanged.
A light source image magnification changing optical system 21 is disposed.

以下、この光源像変倍光学系21の原理を、第3B図中
のtar及びfblとを対比しながら説明する。
The principle of this light source image magnification changing optical system 21 will be explained below while comparing tar and fbl in FIG. 3B.

ごの像変倍光学系21により各々の光源像18、++z
は変倍拡大され、それに伴って照明開口を大きくする。
Each light source image 18, ++z
is magnified and the illumination aperture is enlarged accordingly.

すると、この光源像変倍光学系21を通過した最周縁の
光線と光軸とのなず角がθ4くθ、となって小さくなる
ために、照明領域φを小さくすることができる。
Then, the angle of union between the outermost ray of light that has passed through the light source image magnification optical system 21 and the optical axis is reduced to θ4×θ, so that the illumination area φ can be made smaller.

したがって、変倍光学系Mにより高い観察イ1゛τ率に
変倍して試料を観察する際にも、照明領域と観察領域と
を略合致させることが可能となるので、照明効率を向上
させ、しかもフレアー、ゴース1〜等も軽減することが
できる。
Therefore, even when observing a sample by changing the magnification to a high observation ratio of 1゛τ using the variable magnification optical system M, it is possible to substantially match the illumination area and the observation area, improving the illumination efficiency. Moreover, flare, gose 1, etc. can also be reduced.

このように、光源像II+、■1□位置が不変となるよ
うに、光源像変倍光学系21を配置できる構成としてい
るために、光源像r、い r12を変倍しても、常にケ
ーラー照明を維持することができる。
In this way, since the light source image magnification optical system 21 is arranged so that the positions of the light source images II+ and ■1□ remain unchanged, even if the light source images r and r12 are magnified, the Kohler Lighting can be maintained.

尚、光源像変倍光学系21における群間隔を光軸に沿っ
て変化させて、光源像を連続的に変倍できる構成にし、
変倍による観察領域の変化に連動して照明領域も変化さ
せ、照明領域と観察領域とを常に合致させることも可能
である。
In addition, the group spacing in the light source image magnification optical system 21 is changed along the optical axis so that the light source image can be continuously variable in magnification.
It is also possible to change the illumination area in conjunction with the change in the observation area due to magnification change, so that the illumination area and the observation area always match.

また、この変倍光学系21は第2実施例においても有効
である。
Further, this variable magnification optical system 21 is also effective in the second embodiment.

さらに、言うまでもなく、本発明はこのような実施例に
限るものではない。
Furthermore, it goes without saying that the present invention is not limited to such embodiments.

〔発明の効果〕〔Effect of the invention〕

図りながら、対物レンズの交換による変(0の際にも常
にケーラー照明が実現でき、しかも変倍光学系により高
倍率にした状態においても観察の際にも、ムダのない照
明が実現できる。また、−1分な光量を確保できるため
、早いンヤノター速度が必要とされる生物を試料とした
場合にも十分対応することができる。さらに、高倍率観
察状態では、従来から観察領域の明るさが暗くなりがち
であったが、変倍光学系による変倍に応じて、照明領域
を変化させて、照明領域と観察領域とを合わ−lること
が可能となるために、明るさの変動が少なくでき、しか
もフレアー、ゴースト等を軽σ友するごとができる。ま
た、コレクターレンズを1〜遇した光源光束を全て有効
に利用できるため、光源像の倍率を上げても、低倍率状
態におりる視野が血保し易くなる。さらに、従来の照明
光学系のように、コレクターレンズを通jMLだ周辺部
の光源光束を照明光として利用せずに、コレクターレン
ズを通過した光源光束をビームスプリッタ−等で2つの
光束に分割して、この分割された光束全体を照明光とし
て利用しているために、収差補正上有利であり、照明ム
ラの発生を抑えることができる。
While changing the objective lens, Koehler illumination can always be achieved even when the objective lens is changed (0), and the variable magnification optical system allows for efficient illumination both at high magnification and during observation. Since it is possible to secure a light intensity of -1 minute, it is sufficient to handle biological samples that require a fast observation speed.Furthermore, in high magnification observation conditions, the brightness of the observation area has traditionally been low. However, since it is now possible to match the illumination area and the observation area by changing the illumination area according to the magnification change using the variable magnification optical system, the fluctuation in brightness has been reduced. In addition, it is possible to reduce flare, ghost, etc. Also, since all the light source light flux including the collector lens can be used effectively, even if the magnification of the light source image is increased, it will remain in a low magnification state. In addition, unlike conventional illumination optical systems, instead of using the peripheral light source light flux that passes through the collector lens as illumination light, the light source light flux that has passed through the collector lens is used as a beam splitter. Since the light beam is divided into two light beams such as -, and the entire divided light beam is used as illumination light, it is advantageous in correcting aberrations and can suppress the occurrence of uneven illumination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明の第1実施例における概略構成図、第
1B図は第1実施例におけるブロック図、第2A図は本
発明の第2実施例の反射手段における概略構成図、第2
B図は第2実施例におけるブロック図、第3A図は第1
実施例に光源像変倍光学系を配置した状態を示す図、第
38図ta+及び(blは光源像変倍光学系の原理を示
す図、第4図は対物レンズの交換にともなって交差角が
変化する原理を示す図、第5図は従来の実体顕微鏡の概
略構成図、第6図は第5図における矢示図である。 〔主要部分の説明〕
FIG. 1A is a schematic block diagram of the first embodiment of the present invention, FIG. 1B is a block diagram of the first embodiment, and FIG. 2A is a schematic block diagram of the reflecting means of the second embodiment of the present invention.
Figure B is a block diagram of the second embodiment, and Figure 3A is the block diagram of the first embodiment.
Figure 38 shows the arrangement of the light source image magnification optical system in the embodiment, Figure 38 (ta+ and (bl) is a diagram showing the principle of the light source image magnification optical system, and Figure 4 shows how the intersection angle changes as the objective lens is replaced. Fig. 5 is a schematic configuration diagram of a conventional stereoscopic microscope, and Fig. 6 is an arrow diagram in Fig. 5. [Explanation of main parts]

Claims (1)

【特許請求の範囲】 1)試料面を所定の角度を持つ2方向で照明するための
光源光束の各々の光源像を実体顕微鏡の各々の入射瞳位
置またはその近傍に再結像する実体顕微鏡の照明光学装
置において、 光源光束を供給する光源手段と、該光源手段からの光源
光束を略平行光束に変換するコレクターレンズと、該コ
レクターレンズを介した光束により前記光源像を形成す
る光源像形成手段と、前記光源像を形成した光束を前記
試料面に照明するコンデンサーレンズとを有し、 前記光源像形成手段とコンデンサーレンズとの光路間に
、前記光源像形成手段を介した光束を2つの光束に分割
する光束分割手段と、該2つの光束の光軸を前記試料面
上の視野の中心で交差させて前記実体顕微鏡の各々の入
射瞳の中心に合致するように反射転向させる機能を持つ
2つの反射手段とを配置し、 前記光源像形成手段と前記光束分割手段とにより形成さ
れる2つの光源像が前記コンデンサーレンズに関して前
記実体顕微鏡の各々の入射瞳と略共役となるように構成
することを特徴とする実体顕微鏡の照明光学装置。 2)前記2つの反射手段は、対物レンズの交換に応じて
、各々所定の位置に配置されるように構成することを特
徴とする請求項第1項記載の実体顕微鏡の照明光学装置
。 3)前記反射手段は、回転軸を中心に回転可能に設けら
れかつ該回転軸に対して各々所定位置関係となるように
設けられた複数の反射部材を有し、対物レンズの交換に
応じて前記回転軸を中心に回転させて所望の反射部材が
所定位置にセットされるように構成することを特徴とす
る請求項第1項記載の実体顕微鏡の照明光学装置。 4)前記実体顕微鏡の照明光学装置は、前記コレクター
レンズと前記光束分割手段との光路間に、収斂性のレン
ズ群と発散性のレンズ群とを有する光源像変倍光学系を
有することを特徴とする請求項第1項の実体顕微鏡の照
明光学装置。
[Claims] 1) A stereomicroscope that re-images each light source image of a light source beam for illuminating a sample surface in two directions with predetermined angles at or near each entrance pupil position of the stereomicroscope. The illumination optical device includes: a light source unit that supplies a light source beam; a collector lens that converts the light source beam from the light source unit into a substantially parallel beam; and a light source image forming unit that forms the light source image using the light beam that has passed through the collector lens. and a condenser lens for illuminating the sample surface with the light beam forming the light source image, and the light beam passing through the light source image forming means is divided into two light beams between the optical path of the light source image forming means and the condenser lens. a beam splitting means for dividing the two beams into two beams, and a function of reflecting and turning the two beams so that the optical axes of the two beams intersect at the center of the field of view on the sample surface and coincide with the center of each entrance pupil of the stereomicroscope. and two reflecting means arranged so that the two light source images formed by the light source image forming means and the light beam splitting means are substantially conjugate with each entrance pupil of the stereomicroscope with respect to the condenser lens. An illumination optical device for a stereomicroscope. 2) The illumination optical device for a stereomicroscope according to claim 1, wherein the two reflecting means are configured to be respectively arranged at predetermined positions in response to replacement of the objective lens. 3) The reflecting means has a plurality of reflecting members that are rotatably provided around a rotation axis and are each provided in a predetermined positional relationship with respect to the rotation axis, and the reflection means is rotatable around a rotation axis, and has a plurality of reflection members that are each provided in a predetermined positional relationship with respect to the rotation axis, and that 2. The illumination optical device for a stereomicroscope according to claim 1, wherein the illumination optical device for a stereomicroscope is configured so that a desired reflecting member is set at a predetermined position by rotating around the rotation axis. 4) The illumination optical device of the stereomicroscope is characterized by having a light source image magnification optical system having a convergent lens group and a diverging lens group between the optical path of the collector lens and the light beam splitting means. An illumination optical device for a stereomicroscope according to claim 1.
JP63116725A 1988-05-13 1988-05-13 Illumination optics for stereo microscopes Expired - Fee Related JP2512876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116725A JP2512876B2 (en) 1988-05-13 1988-05-13 Illumination optics for stereo microscopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116725A JP2512876B2 (en) 1988-05-13 1988-05-13 Illumination optics for stereo microscopes

Publications (2)

Publication Number Publication Date
JPH01285912A true JPH01285912A (en) 1989-11-16
JP2512876B2 JP2512876B2 (en) 1996-07-03

Family

ID=14694257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116725A Expired - Fee Related JP2512876B2 (en) 1988-05-13 1988-05-13 Illumination optics for stereo microscopes

Country Status (1)

Country Link
JP (1) JP2512876B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406461A (en) * 1991-02-15 1995-04-11 Leica Heerbrugg Ag (Schweiz) Illumination system for optical equipment with separate illuminating beam paths
JP4595151B2 (en) * 1999-12-28 2010-12-08 株式会社ニコン Stereo microscope and transmission illumination device
US9533363B2 (en) 2012-06-06 2017-01-03 Osg Corporation Indexable thread forming tap

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112011A (en) * 1983-11-22 1985-06-18 Olympus Optical Co Ltd Transmission lighting device of stereo-microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112011A (en) * 1983-11-22 1985-06-18 Olympus Optical Co Ltd Transmission lighting device of stereo-microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406461A (en) * 1991-02-15 1995-04-11 Leica Heerbrugg Ag (Schweiz) Illumination system for optical equipment with separate illuminating beam paths
JP4595151B2 (en) * 1999-12-28 2010-12-08 株式会社ニコン Stereo microscope and transmission illumination device
US9533363B2 (en) 2012-06-06 2017-01-03 Osg Corporation Indexable thread forming tap

Also Published As

Publication number Publication date
JP2512876B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
JPH0241604Y2 (en)
JPH08190056A (en) Optical observation device
EP0535218A1 (en) Illumination system and method for a high definition light microscope
US4412727A (en) Optical system for tiltable lens barrel of a microscope
JP5733539B2 (en) Scanning microscope
JPS59226317A (en) Illuminating device
US20030048530A1 (en) Microscope having a system for reflecting in illumination
JPH09152555A (en) Microscope optical system
JP3548916B2 (en) Stereo microscope
JPH1073769A (en) Observing device with oblique illumination
JPH08278448A (en) Lens barrel optical system
JP3523348B2 (en) Slit lamp microscope
JPH0314325B2 (en)
JPH01285912A (en) Illuminating optical device for stereomicroscope
JP3395351B2 (en) Lighting equipment for microscope
JPS60112016A (en) Optical apparatus for forming stereoscopic visible image
JP2966026B2 (en) microscope
WO2006057033A1 (en) Objective lens and condenser
JPS5990813A (en) Projection type microscope
JP3033857B2 (en) Stereo microscope
WO1995029419A1 (en) Illumination system and method for a high definition light microscope
JPH0523306A (en) Ophthalmologic machine
JPH063616A (en) Polygon scanner
JPH105244A (en) Microscope for operation
JP2712590B2 (en) Inverted microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees