JPH01285899A - Quantity measuring method of deteriorating constituent in deterioration solvent - Google Patents

Quantity measuring method of deteriorating constituent in deterioration solvent

Info

Publication number
JPH01285899A
JPH01285899A JP63113535A JP11353588A JPH01285899A JP H01285899 A JPH01285899 A JP H01285899A JP 63113535 A JP63113535 A JP 63113535A JP 11353588 A JP11353588 A JP 11353588A JP H01285899 A JPH01285899 A JP H01285899A
Authority
JP
Japan
Prior art keywords
degraded
solvent
solution
standard solution
mbp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63113535A
Other languages
Japanese (ja)
Inventor
Yuichi Shoji
裕一 東海林
Takako Minami
南 貴子
Masakazu Ota
正和 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63113535A priority Critical patent/JPH01285899A/en
Publication of JPH01285899A publication Critical patent/JPH01285899A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To contrive to improve the precision of deteriorating quantity measurement by making alkalinity of ion chromatography sample aqueous solution 20mM or less and using eluate containing sodium carbonate and sodium bydrogen carbonate of specific range pH. CONSTITUTION:Sample aqueous solution, for example, dibutyl phosphoric acid DBP and monobutyl phosphoric acid MBP are diluted by each 0.1M sodium hydroxide NaOH aqueous solution to agitate and ion chromatography IC analy sis DBP standard solution and MBP standard solution of 1000ppm are prepard. Further each standard solution is diluted by demineralized water and the like to prepare IC analysis DBP and MBP by each standard solution of 2-200ppm. Next separating column of IC is made general anion and organic acid specifica tion and elution liquid composition contains sodium carbonate and sodium hydrogencarbonate to change their mixing ratio and temperature in the range of pH 10.45-11.0 and proper elution composition is found. A calibuation curve is made by each standard solution prepared and an obtaining water phase is diluted by demineralized water to perform quantitative analysis after being separated by the use of the elution solution.

Description

【発明の詳細な説明】 [発明の目的」 (産業上の利用分野) 本梵明は、核燃利再望理工程で使用()で劣化した溶媒
中のトリブチルリン酸(以下T B Pと記す)劣化成
分を定量する方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to the use of tributyl phosphoric acid (hereinafter referred to as T B P) in a solvent that has been degraded during use in the nuclear refueling process. This invention relates to a method for quantifying degraded components.

(従来の技術) 原子力発電用燃料のウランやプル1〜ニウムの再処理プ
ロセスには、ビューレックス法とよばれる金属イオンの
溶媒抽出・精製方法が導入されている。この方法は使用
済燃料を硝酸で分解し、この分解液からウランまたはプ
ル1ヘニウムを有機溶媒で抽出するものである。この抽
出溶媒には〜I−B Pと希釈用ドデカンの混合溶媒を
使用するが、−1−BPは硝酸や放射性金属と接触する
と分解して、抽出効果を低下させるジブデルリン酸(D
BP)。
(Prior Art) A metal ion solvent extraction and purification method called the Burex method has been introduced into the reprocessing process of uranium and plu-1 to nium as fuel for nuclear power generation. In this method, spent fuel is decomposed with nitric acid, and uranium or pluhenium is extracted from the decomposed liquid using an organic solvent. A mixed solvent of ~IBP and dodecane for dilution is used as the extraction solvent, but -1-BP is mixed with dibderphosphate (D), which decomposes when it comes into contact with nitric acid or radioactive metals, reducing the extraction effect
BP).

モツプデルリン酸(MBP)、リン酸、ブチルアルコー
ル等を生成し、いわゆる劣化溶媒となる。
It produces mozupdel phosphoric acid (MBP), phosphoric acid, butyl alcohol, etc., and becomes a so-called degraded solvent.

この劣化溶媒の劣化の程度は上記各劣化成分を定量する
ことに」;って知ることかできる1、この定量法として
従来知られているのは、劣化溶媒をアルカリ性水溶液で
抽出処理し−で溶媒中の劣化物を水相側に移行させ、こ
れを定量分析する方法であり、この定量分析法として、
例えば、水相中の劣化各成分をリンモリブデン酸により
発色させて吸光!■測測定る方法や、水相中の劣化物を
イオンク[1ζ71〜グラフイーにか(すて定量分析す
る方法などかある3゜ を記のイAンク[1ン1〜グラフイーによる分析の場合
、溶離液としては炭酸すトリウムと炭酸水素−)−1〜
1戸ンムの混合液が使用されているが、このブ)W<−
<Jは劣化成分であるDBP、MBP、リン酸等がぞれ
ぞ゛れ別々に定量分析に付されるの(”、時間と手間か
かかる上、分析精度も充分ではない。特に、リン酸の分
析ではピークが出るのに時間がかかかり、そのため試料
中の不純物である硝酸に干渉されて分析か実質−ト困難
であるという問題かある、。
The degree of deterioration of this degraded solvent can be determined by quantifying each of the above-mentioned degraded components1.The conventional method for this quantitative determination is to extract the degraded solvent with an alkaline aqueous solution. This is a method of quantitatively analyzing degraded substances in the solvent by transferring them to the aqueous phase side.As this quantitative analysis method,
For example, each degraded component in the aqueous phase is colored with phosphomolybdic acid and absorbed! ■Is there a method to measure or quantitatively analyze degraded substances in the aqueous phase using an ion probe [1ζ71~Graphie?] As the eluent, thorium carbonate and hydrogen carbonate-)-1~
A mixed solution of 1 mm is used, but this B)W<-
<J is the deterioration components DBP, MBP, phosphoric acid, etc., which are each subjected to quantitative analysis separately (", it takes time and effort, and the analysis precision is not sufficient. In particular, phosphoric acid In this analysis, it takes a long time for a peak to appear, and the problem is that nitric acid, an impurity in the sample, interferes with the analysis, making analysis difficult.

(発明か解決しようとする課題) 本発明(よ上記情況に鑑みてなされたもので、上記劣化
溶媒中の王B P劣化各成分を同時に短時間で、かつ1
6度よく定接リ−ることを目的と1−るものである1、 [発明の構成1 (課題を解決するための手段) 上記目的はイオンク[171〜グラフイーの溶離液を改
良しかつ分析に供される試1′4のアルカリ濃度を調整
(〕て最最適量を見出したことによって達成された。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned circumstances, and is capable of simultaneously treating each of the BP deteriorating components in the deteriorating solvent in a short period of time, and
The purpose of the invention is to improve the eluent of Ionque [171~graphie] and analyze it. This was achieved by adjusting the alkali concentration of Test 1'4 to find the optimum amount.

すく【わら、本発明は、核燃料再処理玉押−C使用して
劣化した硝酸、1〜リブデルリン酸43よび炭化水素系
希釈剤を主成分と1−る溶媒をアルカリ性水溶液で処理
して前記溶媒中のl、 1ノ1チル1ノン酸劣化物を水
相に移行させ、この水相中の1−記劣化物成分をイオン
クロマ1へグラノィーにより定量する劣化溶媒中の劣化
成分の定量方法において、イΔンク[−171〜グラフ
イーに供する試料水溶液のアルカリ濃度を20mM以下
とし、かつイオンク[171〜グラフイーの溶離液とし
て炭酸)−1ヘリウムと炭酸水素す1〜リウムを含有す
る[1lH10,45へ、11.0の範囲の液を使用寸
−ることを特徴とする溶媒中劣化成分の定量方法に関す
る。
In the present invention, a solvent mainly composed of nitric acid, 1-Lybdell phosphoric acid 43 and a hydrocarbon diluent, which has been degraded by using nuclear fuel reprocessing condensation-C, is treated with an alkaline aqueous solution to obtain the solvent. In a method for quantifying degraded components in a degraded solvent, in which the 1-1-thyl 1-non acid degraded product is transferred to an aqueous phase, and the 1-1 degraded product component in this aqueous phase is quantified by Granoy to Ion Chroma 1. , Ink [-171 ~ The alkali concentration of the sample aqueous solution to be subjected to Graphie is 20 mM or less, and Ionk [171 ~ Carbonic acid as an eluent for Graphie] -1 Helium and hydrogen carbonate 1 to 1 Lithium [1lH10,45 The present invention relates to a method for quantifying degraded components in a solvent, characterized in that a liquid having a working size in the range of 11.0 is used.

(実施例) 本弁明の実施例を以下に説明づる。なd3実施例は模擬
劣化溶媒を作成し・−で行ったが、これに先専ら、濃度
既知の劣化成分溶液を用いて溶離液および試料液の条件
を検討した実験を示す。
(Example) An example of the present defense will be described below. In Example d3, a simulated degraded solvent was prepared and carried out in -. However, an experiment in which the conditions of the eluent and sample solution were examined exclusively using a degraded component solution with a known concentration will be shown.

■−r−13 P劣化物各成分の標準溶液の調製D B
 P特級試薬(DBP95%)、MBP試桑(MBP7
3%、DBP22%、リン酸5%)を、各々0.1M水
酸化す1ヘリウム(以下Na0H)水溶液で希釈して超
音波洗浄器で攪拌し、1000 ppmのDB[)標準
溶液、M B P標準溶液を調製する。さらに各標準液
を純水または10n+MのNa011水溶液で希釈して
1暗波洗浄器で攪拌) 、2〜200ppmのIC(イ
寸ンク■マドグラフィー)分析用DBPおよびMBP各
標準標準溶液媒: 10mM NaOH)を調製覆る。
■-r-13 Preparation of standard solutions of each component of P-degraded product D B
P special grade reagent (DBP95%), MBP reagent (MBP7
3% DBP, 22% DBP, 5% phosphoric acid) were each diluted with 0.1M sodium helium hydroxide (hereinafter referred to as NaOH) aqueous solution and stirred in an ultrasonic cleaner to prepare 1000 ppm DB[) standard solution, M B Prepare P standard solution. Furthermore, each standard solution was diluted with pure water or 10n+M Na011 aqueous solution and stirred in a dark wave washer), 2-200ppm IC (Isunku Madography) analysis DBP and MBP standard standard solution medium: 10mM Prepare NaOH) and cover.

ここてM B P標準溶液の正確なM B P濃度は[
M B f−)溌1f l = f標準液8磨] Xo
、7:W)Iテある。1ノンM標準溶液は、リン酸三す
1〜リウム(以下Na 3 PO4)特級試薬をリン酸
イオンで4〜2(1(l ppmになるJ、う10n+
HのNa1l水溶液に溶かして調製する、。
Here, the exact MBP concentration of the MBP standard solution is [
M B f-) 溌1fl = f standard solution 8 polish] Xo
, 7:W) I have it. The 1-Non M standard solution is made by adding trisium phosphate (hereinafter referred to as Na 3 PO 4 ) special grade reagent to 4 to 2 (1 (l ppm) J, 10 n+
Prepared by dissolving H in Na1 aqueous solution.

(ζ I(、、+、Z、Jφ炙化−聞分逝四の最適iW
l液組成の−5〜 抜足 次にICの分離カラムを、一般陰イオン・有機酸イオン
分析仕様とし、溶離液組成は炭酸すi〜リウム(Na2
CO3) ト、1m W水M f I〜’) ラム(N
aHCO3)またはNa011を、温度と混合比を変化
させて設定する。
(ζ I(, , +, Z, Jφ roasted − monbunjoshi's optimal iW
Next, the IC separation column was set to general anion/organic acid ion analysis specifications, and the eluent composition was -5 to 20% of the liquid composition.
CO3) g, 1 m W water M f I~') Ram (N
aHCO3) or Na011 by changing the temperature and mixing ratio.

これら種々の溶離液組成で、はじめに160 DI)m
MBP標準溶液をICで分析し、次に40 ppm1つ
BP標準溶液と60 ppmリン酸標準溶液の順に分析
して、それぞれのピークの検出時間とピーク高さを求め
、それぞれを比較して最適な溶離液組成を求めた。なお
、この分析には旧onex社製のIC−4000iを使
用した。ここで分離カラムは陰イオン用11PIc−A
s−1を、除去カラムは中空膜状のフフイバーサブレッ
リ−−を使用し、検出方法は電気電導率によった。結束
を第1図に示す。
With these various eluent compositions, initially 160 DI) m
Analyze the MBP standard solution with IC, then analyze one 40 ppm BP standard solution and 60 ppm phosphoric acid standard solution in that order to find the detection time and peak height of each peak, compare each and find the optimal one. The eluent composition was determined. Note that IC-4000i manufactured by the former Onex Corporation was used for this analysis. Here, the separation column is 11PIc-A for anions.
In s-1, a hollow membrane-like fiber sabrelli was used as the removal column, and the detection method was based on electrical conductivity. The binding is shown in Figure 1.

これによると、DBI)、MBP、リン酸が最短時間で
検出され、ピーク検出高さ(すなわら感度)が良好な組
成は、No、 9の[Na2 C0374mM+Nat
lCO31、5…H1であることがわかった。
According to this, the composition that allows DBI), MBP, and phosphoric acid to be detected in the shortest time and has a good peak detection height (i.e., sensitivity) is No. 9 [Na2C0374mM+Nat
It turned out to be lCO31,5...H1.

−〇 − 検出時間4J1、iff ttSIt液の1)1」とイ
オン強1宴、目的イΔンの分離カラム内の陰−rオン交
換樹脂に対する親11カどの相関関係で決まってくる。
-〇- It is determined by the correlation between the detection time 4J1, the 1)1'' of the if ttSIt solution, the ionic strength 1, and the parent 11 of the target ion against the anion-r ion exchange resin in the separation column.

NO9の場合p L−1<r口0.45 ”C゛あった
。また、DBPについて感度か良好なNo、 3へ−9
,11の場合の旧旧よ10.45=−11、0の範囲に
あった。
In the case of No. 9, p L-1 < r mouth 0.45 "C". Also, for No. 3, which has good sensitivity for DBP, -9
, 11, the old and old cases were in the range of 10.45=-11,0.

−1記〜05)の)容離液を用いてtlNOx+ 0.
05Mの劣化物水浴液を分析し、1lNO3の干渉がこ
の溶離液によるi C8(斤にとのJ、うに影響するか
調べlこ。このI CU−) f(=−t”を第2図に
不眠、この図かられかるように、従来(il′1Mに干
渉され−(出なかったリン酸イ、インのピークかこの実
験では明瞭に認められる6゜ 次に、■C調製り、た各標準溶液を分析して、検量線を
作成りると共に、検出限界値と繰り返し分析(、二おV
Jる精度を調べてみた。その結果、第3図に7Jkず番
犬化成分の検量線か得られた。
tlNOx+0.
Analyze the degraded product water bath solution of 05M and investigate whether the interference of 1lNO3 affects the iC8 (J, sea urchin) caused by this eluent. As can be seen from this figure, the peaks of phosphoric acid and in, which did not appear due to interference with IL'1M, were clearly observed in this experiment. Analyze each standard solution and create a calibration curve, as well as determine the detection limit value and repeat analysis (2
I investigated the accuracy of J. As a result, a calibration curve for the 7Jk Zundog component was obtained as shown in FIG.

この検量線は、同−標QL ?H液の2へ一3回の繰り
返し5′I)+、11における平均値をim度に対して
ブ1]ツ1〜L、、 /、−らの−Cある13検出限界
値【よ、D B Pの場合溶約2ppmから150pp
m程度、MBPではベースラインのドリフI〜に影響さ
れ2〜3ppmから200ppm、リン酸は検出時間が
遅くなだらかなピークとなるために低濃縮域では検出さ
れにくいという理由から、3ppmから250ppm前
後までが確認された。また分析値の再現性は高濃度域は
ど高く、40〜200ppmまでの誤差範囲が1〜5%
である。
This calibration curve is based on the same standard QL? Repeat 13 times for 2 to 5'I) +, 11 of H solution to the im degree, and calculate the -C detection limit value of -C for im degrees. In the case of D B P, melting range is from 2 ppm to 150 ppm.
For MBP, the range is from 2 to 3 ppm to 200 ppm due to the influence of the baseline drift I, and from 3 ppm to around 250 ppm because phosphoric acid is difficult to detect in the low concentration range due to the slow detection time and a gentle peak. was confirmed. In addition, the reproducibility of analytical values is very high in the high concentration range, with an error range of 1 to 5% from 40 to 200 ppm.
It is.

次に模擬劣化溶媒を作成し、前記No、 9の溶離液を
使用して抽出条件ヤ)IC分析に供する試料のアルカリ
a度について検討した。その実験を次に示す。
Next, a simulated degraded solvent was prepared, and using the eluent No. 9, the extraction conditions and a) alkalinity of the sample to be subjected to IC analysis were examined. The experiment is shown below.

まず、TBP30%、n−1−’デカン70%の組成の
有機溶媒に、濃度既知量のDBP、MBPおよびリン酸
を加えた模擬劣化溶媒を作り、アルカリ水で抽出および
定量する。これを劣化物のうち一番抽出され難いDBP
についてまず行なった。
First, a simulated degraded solvent is prepared by adding known concentrations of DBP, MBP, and phosphoric acid to an organic solvent having a composition of 30% TBP and 70% n-1-'decane, and is extracted and quantified with alkaline water. This is DBP, which is the most difficult to extract among degraded substances.
I did it first.

すなわち、上記有機溶媒中で10001’ll)mとな
るようにDBP特級試薬を添加して模擬劣化溶媒とし、
これを NaOH水溶液で抽出した。Na011水溶液
の濃度、該水溶液とイj機浴媒との混合比(有機溶媒/
″アルカリ水、振盪時間の3つのパラメーターの標/%
I条件を第1表の大枠内のにうに(NaOHO,51(
、体積比1.・1、」辰盛時間5分)設定じ、そのうち
1つのパラメーターを変化させた条件て゛それぞれ抽出
分離実験を11なった3、分離後、得られた水相を純水
−(−第1表に示す゛希釈イ8率に希釈し、IC(上記
■で設定した仕様)て定量分析し・た。この希釈tJ1
アルカリ水溶液の0++がDBP検出ピークに干渉して
し、ようためで、実験の結果アルカリ濃度2On+H以
−F、好ましくは10mHで好結果が得られた。
That is, DBP special grade reagent is added to the above organic solvent to give a concentration of 10001'll)m to simulate degraded solvent,
This was extracted with an aqueous NaOH solution. The concentration of the Na011 aqueous solution, the mixing ratio of the aqueous solution and the Ij bath medium (organic solvent/
``Standards/% of three parameters: alkaline water, shaking time
I conditions were set to sea urchin (NaOHO, 51 (
, volume ratio 1.・1. Extraction and separation experiments were conducted under the conditions of 11 minutes with one parameter changed. 3. After separation, the resulting aqueous phase was mixed with pure water (Table 1). It was diluted to the dilution ratio of 8 shown in ゛Dilution I and quantitatively analyzed using IC (specifications set in ① above).This dilution tJ1
Because the 0++ of the alkaline aqueous solution interferes with the DBP detection peak, good results were obtained in experiments at an alkali concentration of 2 On+H or more, preferably 10 mH.

但し、あJ、り希釈リ−ると劣化成分濃度も低下するの
(、検出誤差が出やすくなる。ここではすべて10mf
(とじた。分析した結果を第1表のθBP讃度の欄(3
二示す。
However, if it is diluted further, the concentration of degraded components will also decrease (and detection errors will occur easily.Here, all 10mf
(I closed it. The results of the analysis are shown in the θBP praise column (3) in Table 1.
Show two.

(以下 余白) 第   1   表 これによると、Na0fl水溶液濃度が0.1)1.該
水溶液と有機溶媒との混合比(O/A比)が1/2、振
盪時間が5分のとき、DBPの検出値が最も高くなると
考えられる。
(Hereinafter in the margin) Table 1 According to this, the concentration of Na0fl aqueous solution is 0.1)1. It is considered that the detected value of DBP is highest when the mixing ratio (O/A ratio) of the aqueous solution and the organic solvent is 1/2 and the shaking time is 5 minutes.

MBPおよびリン酸についても同様の条件で充分抽出さ
れていること(95〜99%)が確認された。
It was confirmed that MBP and phosphoric acid were also sufficiently extracted under the same conditions (95 to 99%).

以上の各実験により選定した溶離液条件(No、 9 
)、抽出条件および試料アルカリ濃度で、下記の劣化溶
媒をIC分析した。
Eluent conditions selected from the above experiments (No. 9)
), the following degraded solvent was subjected to IC analysis under the extraction conditions and sample alkali concentration.

硝酸接触後にT線を照射して劣化させた溶媒への適用 硝MMt牛の王1’3p30%およびn−ドデ゛カンフ
0%の組成のイ書幾溶媒に放射線を当ててT−B Pを
劣化さ−け、この劣化溶媒を前記条件で抽出処理し、こ
れを萌記条イ′1て分析()た。ブl析(ユ、まず抽出
された水相に苅し−Cその含有劣化成分を定量し、次に
既λ[1濶度の劣化成分を添7J[] した後、再び劣
化成分を定量して行なった。結果を第2表に示づ。第2
表中、添叩後の検出濃度の欄の()内の数値は先に検出
した濃度と添加a度とを加算したS1n値であり、各成
分とも実測値と大きな隔りはない。このことから、照射
劣化溶媒についても精度のよい分析かC′さることがわ
かる。
Application to solvents degraded by irradiation with T-rays after contact with nitric acid. The degraded solvent was extracted under the conditions described above and analyzed using Moeki. First, the extracted aqueous phase was soaked with C to quantify the contained deteriorating components, and then 7J of deteriorating components were added to the extracted aqueous phase, and the deteriorating components were again quantified. The results are shown in Table 2.
In the table, the numerical value in parentheses in the column of detected concentration after additional beating is the S1n value obtained by adding the previously detected concentration and the addition a degree, and there is no large difference from the actual measured value for each component. From this, it can be seen that C' is a highly accurate analysis even for irradiation-degraded solvents.

(以下 余白) 第   2   表 なお、本発明において、水相中の+1NO3m!SLか
0.514を越える場合には、NO3−イオンを選択的
に除去して劣化物の検出を妨害し・ないようイ【前処理
を施すことかで−きる。前処理としCは、rin酸−イ
Aンの特うタ試薬である二1へロン(1,4〜ジフェニ
ル−−■−ンドアニリノジヒドロ1〜リアゾール)をエ
タノールに溶解したものを加える方法等がある。次にこ
のIj法を示す。
(Hereinafter, blank space) Table 2 In addition, in the present invention, +1NO3m in the aqueous phase! If the SL exceeds 0.514, pretreatment can be performed to selectively remove NO3- ions and prevent them from interfering with the detection of degraded products. Pretreatment C is a method of adding a solution of 21-heron (1,4-diphenyl--■-ndanilinodihydro-1-lyazole), which is a special reagent for phosphoric acid, in ethanol. etc. Next, this Ij method will be shown.

10ppmのニド[]ンのエタノール溶液を作り、この
1mlを11000ppの硝酸イオンを含むρトイ8以
下の水25威に加えてよく振りまぜると、水溶液か薄い
黄色81fして、その中に白い針状結晶が生じる。
Make an ethanol solution of 10 ppm Nidon [], add 1 ml of this to 25 ml of water of ρ toy 8 or less containing 11,000 ppm of nitrate ions, and shake well. crystals are formed.

この結晶をガラスフィルターでン濾過し、ン戸液にNa
0flを加えて1)1」調製()たものを分析すると、
NO3−イオンが750〜800ppm程度検出された
ので、二)〜lンによって硝酸イオンか約200ppm
除去されたことがわかった。同様にNO3−″イオン量
が同じで1001)[)m(7) D B Pを含む水
に対してニトロン溶液を加え、ン)1過おJ、びpl−
1込理を施した場合も、D [3F’ Gま八−1算通
りの分析値となり、NO3−イオンの除去効果ら確かめ
られた。
The crystals were filtered through a glass filter, and the Na solution was added to the solution.
When 1) 1'' was prepared by adding 0fl and analyzed,
Since NO3- ions were detected at about 750 to 800 ppm, nitrate ions were detected at about 200 ppm.
Turns out it was removed. Similarly, when the amount of NO3-'' ions is the same, 1001) [) m (7) Add a nitrone solution to water containing D B P,
Even when the 1-inclusive treatment was applied, the analysis value was as calculated as D[3F'Gm8-1, and the effect of removing NO3- ions was confirmed.

なお、2L1〜Oンはベンセン、り[10ボルムにも溶
(Jるので、これらの溶液とNO3−イオンを含む水と
を接触し−C二1〜ロンを水側に移行させる方法もある
。また、二1〜[1ンと同様の効果をもつ試桑にジシク
ロへキシルフタル酸塩等がある。イ1!2にデバルタ合
金と硝酸を作用させてアンモニアを生成させても、劣化
物の定量に(よ問題ない。
Note that 2L1~O is also soluble in benzene and RI [10 vol, so there is also a method of bringing these solutions into contact with water containing NO3- ions and transferring -C21~ to the water side. In addition, dicyclohexyl phthalate is a test sample that has the same effect as 21-[1. Quantitatively (no problem.

[発明の効果] 以上説明したように、本発明にJ、れば、従来個別に定
量していたTBP劣化成分を、同時に、短時間で、かつ
精度よく定量分析することかできる。。
[Effects of the Invention] As explained above, according to the present invention, TBP deterioration components, which were conventionally quantified individually, can be quantitatively analyzed simultaneously, in a short time, and with high precision. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶離液組成ど溶離時間との関係を示1図、第2
図は本発明の一実施例にJ3けるIcft□−トを示寸
図、第3図は各劣化成分の検量線を示す図である。 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第2図 素 農(ppm) 第3図
Figure 1 shows the relationship between eluent composition and elution time.
The figure is a dimensional diagram of Icft□-t in J3 in one embodiment of the present invention, and FIG. 3 is a diagram showing calibration curves of each deterioration component. (8733) Agent: Yoshiaki Inomata, patent attorney (and others)
1 person) Figure 2: Agriculture (ppm) Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)核燃料再処理工程で使用して劣化した硝酸、トリ
ブチルリン酸および炭化水素系希釈剤を主成分とする溶
媒をアルカリ性水溶液で処理して前記溶媒中のトリブチ
ルリン酸劣化物を水相に移行させ、この水相中の上記劣
化物成分をイオンクロマトグラフィーにより定量する劣
化溶媒中の劣化成分の定量方法において、イオンクロマ
トグラフィーに供する試料水溶液のアルカリ濃度を20
mM以下とし、かつイオンクロマトグラフィーの溶離液
として炭酸ナトリウムと炭酸水素ナトリウムを含有する
pH10.45〜11.0の範囲の液を使用することを
特徴とする劣化溶媒中の劣化成分の定量方法。
(1) A solvent mainly composed of nitric acid, tributyl phosphate, and a hydrocarbon diluent that has deteriorated during the nuclear fuel reprocessing process is treated with an alkaline aqueous solution to convert the degraded tributyl phosphate in the solvent into the aqueous phase. In a method for quantifying degraded components in a degraded solvent in which the degraded components in the aqueous phase are determined by ion chromatography, the alkali concentration of the sample aqueous solution to be subjected to ion chromatography is
1. A method for quantifying degraded components in a degraded solvent, the method comprising using a solution containing sodium carbonate and sodium hydrogen carbonate and having a pH range of 10.45 to 11.0 as an eluent for ion chromatography.
JP63113535A 1988-05-12 1988-05-12 Quantity measuring method of deteriorating constituent in deterioration solvent Pending JPH01285899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113535A JPH01285899A (en) 1988-05-12 1988-05-12 Quantity measuring method of deteriorating constituent in deterioration solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113535A JPH01285899A (en) 1988-05-12 1988-05-12 Quantity measuring method of deteriorating constituent in deterioration solvent

Publications (1)

Publication Number Publication Date
JPH01285899A true JPH01285899A (en) 1989-11-16

Family

ID=14614786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113535A Pending JPH01285899A (en) 1988-05-12 1988-05-12 Quantity measuring method of deteriorating constituent in deterioration solvent

Country Status (1)

Country Link
JP (1) JPH01285899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214100A (en) * 1990-01-18 1991-09-19 Shimadzu Corp Managing method of nuclear fuel reprocessing process
EP0631290A1 (en) * 1993-06-24 1994-12-28 Hitachi, Ltd. Reprocessing plant and method of operating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618204A (en) * 1984-05-14 1986-01-14 サントレ−ド リミテイド Cutting tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618204A (en) * 1984-05-14 1986-01-14 サントレ−ド リミテイド Cutting tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214100A (en) * 1990-01-18 1991-09-19 Shimadzu Corp Managing method of nuclear fuel reprocessing process
EP0631290A1 (en) * 1993-06-24 1994-12-28 Hitachi, Ltd. Reprocessing plant and method of operating the same
EP0817207A1 (en) * 1993-06-24 1998-01-07 Hitachi, Ltd. Reprocessing plant and method for operating the same

Similar Documents

Publication Publication Date Title
CN103900990B (en) The method of plutonium and nitric acid content in Rapid Simultaneous Determination organic facies
Liang et al. Supramolecular solvent dispersive liquid–liquid microextraction based on solidification of floating drop and graphite furnace atomic absorption spectrometry for the determination of trace lead in food and water samples
Rastegarzadeh et al. Dispersive liquid–liquid microextraction for the microvolume spectrophotometric determination of bismuth in pharmaceutical and human serum samples
CN101334365A (en) Determination method for chloride ion content of temper rolling liquor for steel plate rolling
Schramel Determination of eight metals in the international biological standard by flameless atomic-absorption spectrometry
Kingston et al. Preconcentration of trace metals in environmental and biological samples by cation exchange resin filters for X-ray spectrometry
Fisher et al. Use of ion exchange resins for determination of uranium in ores and solutions
JPH01285899A (en) Quantity measuring method of deteriorating constituent in deterioration solvent
Ghaedi et al. A cloud point extraction procedure for preconcentration/flame atomic absorption spectrometric determination of silver, zinc, and lead at subtrace levels in environmental samples
Sherwood et al. New Technique for Analyzing Mixtures of Trace Metals
Fritz et al. Potentiometric titrations with (ethylenedinitrilo) tetraacetate. Use of masking agents to improve selectivity
Clinch et al. The extraction and absorptiometric determination of uranium as thiocyanate
Preetha et al. Preconcentration of uranium (VI) by solid phase extraction onto dicyclohexano-18-crown-6 embedded benzophenone
Seddon et al. Optical properties of dilute metal-solvent systems
JPS6031055A (en) Pre-processing of specimen
CN110491531A (en) Zirconium base body removes technique and the burnup measurement method using the technique
Weaver et al. Polarographic Determination of Sodium or Potassium in Various Materials
KR101984366B1 (en) Use of rare metals as key components
Guyon et al. Studies on the solvent extraction of thorium
Schreiber et al. Application of anion-exchange resin-loaded filters to the x-ray fluorescence determination of sulfate
Akhond et al. Reflection scanometry as a new detection technique in temperature-controlled ionic liquid-based dispersive liquid phase microextraction
CN112710747B (en) Method for setting value of chemical oxygen demand standard solution
Milner et al. Determination of Tetraethyllead in Gasoline by Titration with Ethylenediamine Tetraacetate
Kılınç Determination of trace Bi by ICP-OES after magnetic solid phase extraction with fullerene C 60 modified γ-Fe 2 O 3 superparamagnetic iron oxide nanoparticles
Mobarakeh et al. Determination of trace amounts of lead and manganese in water samples after simultaneous preconcentration onto modified amberlite XAD-4 resin