JPH01285883A - Microwave proximity switch - Google Patents

Microwave proximity switch

Info

Publication number
JPH01285883A
JPH01285883A JP11357388A JP11357388A JPH01285883A JP H01285883 A JPH01285883 A JP H01285883A JP 11357388 A JP11357388 A JP 11357388A JP 11357388 A JP11357388 A JP 11357388A JP H01285883 A JPH01285883 A JP H01285883A
Authority
JP
Japan
Prior art keywords
signal
microwave
output
circuit
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11357388A
Other languages
Japanese (ja)
Inventor
Koji Takinami
滝波 孝治
Masaaki Hotta
堀田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP11357388A priority Critical patent/JPH01285883A/en
Publication of JPH01285883A publication Critical patent/JPH01285883A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To certainly detect a stationary body even when said body is present at any position, by a method wherein a proximity switch is driven by a drive signal having two or more different voltage levels to transmit two or more difference frequencies and different phase differences are subject to level discrimination. CONSTITUTION:A drive signal having a waveform wherein different voltage levels V1, V2 appear alternately at a definite cycle is inputted to a microwayve oscillator 12 and also inputted to the input terminal of a differential amplifying circuit 16 as a reference signal. The oscillator 12 generates a microwave of frequency f1 at the time of voltage V1 and a microwave of frequency f2 at the time of voltage V2. Each of the microwaves is transmitted toward the detection region of a body 30 through a transmitter-receiver 14 and a mixer 13 mixes the microwave, which is returned from the body 30 and received by the transmitter-receiver 14, with the oscillation output of the oscillator 12. An amplifying circuit 15 amplifies the output of the mixer 13 to a reference signal. The differential amplifying circuit 16 amplifies the difference between the mixer signal inputted through the circuit 15 and the reference signal. A comparator 17 compares the output signal of the circuit 16 with voltage of a definite threshold value level and applies an H-level signal to an integrating circuit 18 when said output signal exceeds the threshold value level.

Description

【発明の詳細な説明】 発明の要約 少なくとも2つ以上の異なるレベルを持ち、これらのレ
ベルが一定周期で切換えられる電圧波形を用いて、VC
O特性をもつマイクロ波発振素rを駆動することにより
1少なくとも2つ以」二の異なる周波数のマイクロ波を
発生し、物体に向りて送波する。受波マイクロ波信号と
発振信号(送波信号)とをミキシングしてそれらの位相
差を検出することにより物体の有無を判定する。一方の
周波数の送、受波信号の位相がたとえ一致した場合であ
っても、他方の周波数の送、受波信号の位相は一致しな
いので、物体が静止している場合であってもその有無を
検知できる。
[Detailed Description of the Invention] Summary of the Invention A voltage waveform having at least two or more different levels and in which these levels are switched at a constant cycle is used to
By driving a microwave oscillation element r having O characteristics, one or more microwaves of two or more different frequencies are generated and transmitted toward an object. The presence or absence of an object is determined by mixing the received microwave signal and the oscillation signal (transmission signal) and detecting their phase difference. Even if the phases of the transmitted and received signals of one frequency match, the phases of the transmitted and received signals of the other frequency do not match, so even if the object is stationary, can be detected.

発明の背景 技術分野 この発明は、マイクロ波を使って、マイクロ波を反射す
る物体が近傍に有るか無いかを検出する反射型マイクロ
波近接スイッチに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective microwave proximity switch that uses microwaves to detect whether there is an object nearby that reflects microwaves.

従来技術とその問題点 磁気、電磁誘導、超盲波、光等を使って、工場等で製造
物の自゛無を検出する近接スイッチは。
Conventional technology and its problems Proximity switches use magnetism, electromagnetic induction, ultra-blind waves, light, etc. to detect the presence or absence of products in factories.

−ファクトリ・オートメーション、さらにはCIM(コ
ンビコータ統合生産)等の自動化の進展に伴い、最も基
本的なセンサとして、その重要さを増している。
- With the progress of automation such as factory automation and CIM (combicoater integrated manufacturing), its importance as the most basic sensor is increasing.

しかし、磁気、電磁誘導を利用した近接スイッチは、検
出距離か超音波、光等を使った近接スイッチに比べて短
く、また検出物体が磁性体。
However, proximity switches that use magnetism and electromagnetic induction have shorter detection distances than proximity switches that use ultrasonic waves, light, etc., and the detection object is magnetic.

金属等に限られるという欠点かある。一方、超音波を使
った近接スイッチでは、超音波振動子の機械的振動の残
響によりセン→ノ゛近傍の物体を検出することは困難で
、センサから10cm〜20 cttlの距離範囲内の
物体を検出することはできないという欠点がある。また
、光を使った近接スイッチ(光電スイッチ)では、検出
距離は他のタイプの近接スイッチに比べて長いが、光の
性質−Lガラスのような透明な物体や、つや消しの黒い
表面をもつ物体に対し、では反射光が得に<<、検出が
困難である。
The drawback is that it is limited to metals, etc. On the other hand, with proximity switches that use ultrasonic waves, it is difficult to detect objects near the sensor due to the reverberations of the mechanical vibrations of the ultrasonic transducer, and objects within a distance range of 10 cm to 20 cttl from the sensor are difficult to detect. The disadvantage is that it cannot be detected. In addition, proximity switches that use light (photoelectric switches) have a longer detection distance than other types of proximity switches, but due to the nature of light, they cannot detect objects that are transparent like glass or have a matte black surface. On the other hand, the reflected light is particularly difficult to detect.

さらにマイクロ波を用いた従来の近接スイッチは移動し
ている物体を検出することはi+J能であるが、静止物
体を確実に検出することはてきないという問題がある。
Furthermore, conventional proximity switches using microwaves have an i+J ability to detect moving objects, but there is a problem in that they cannot reliably detect stationary objects.

従来のマイクロ波近接スイッチは単一周波数の連続発振
マイクロ波信弓を送波し、物体からの反射波を受波する
ものであり、送波信号と受波信号とをlr1′合して位
相ホモダイシ検波により物体の有無を判定する。物体が
移動し、ている場合にはドプラ効果によって反射マイク
ロ波の周波数か変化するので検波出力を得ることができ
る。ところか物体か静111シていると送波信号と受波
信号の周波数が同一であるから、送波信号と受波信号の
位相か一致する位置にある物体については検波出力は零
となってしまう。
A conventional microwave proximity switch transmits a continuous oscillation microwave signal with a single frequency and receives the reflected wave from an object.The transmitted signal and the received signal are combined lr1' to determine the phase. The presence or absence of an object is determined by homodicy detection. If the object is moving, the frequency of the reflected microwave changes due to the Doppler effect, so a detection output can be obtained. On the other hand, if the object is stationary, the frequencies of the transmitting signal and receiving signal are the same, so for an object located at a position where the phases of the transmitting signal and receiving signal match, the detection output will be zero. Put it away.

発明の概要 発明の目的 この発明は、静止物体も確実に検出てきるマイクロ波近
接スイッチを提供することを目的とする。
SUMMARY OF THE INVENTION OBJECTS OF THE INVENTION An object of the present invention is to provide a microwave proximity switch that can reliably detect stationary objects.

発明の構成1作用および効果 この発明によるマイクロ波近接スイッチは、電圧によっ
て発振周波数か可変なマイクロ波発振手段を含むマイク
ロ波送波手段、少なくとも2以」二の異なる電圧レベル
をもち、これらの電圧レベルが一定の周期で周期的に切
換わる駆動信号を発生して−1,記発振手段に与える駆
動手段、上記発振手段による発振信号と受波信号とを混
合してその位相差を表わす信号を出力するミキシング手
段を含むマイクロ波受波手段、および−1−記ミキシン
グ手段の出力信号と1 マイクロ波反射物体が無い場合
の上記ミキシング手段出力に相当する基準信号とを比較
して、物体の有無を表わす信号を出力する物体検知手段
を備えていることを特徴とする。
Arrangement 1 of the Invention Functions and Effects The microwave proximity switch according to the present invention has a microwave transmitting means including a microwave oscillating means whose oscillation frequency is variable depending on the voltage, and has at least two or more different voltage levels. A drive means which generates a drive signal whose level changes periodically at a constant cycle and gives it to the oscillation means; The output signal of the microwave receiving means including the mixing means for outputting and the mixing means described in -1- is compared with the reference signal corresponding to the output of the mixing means in the case where there is no microwave reflecting object, and the presence or absence of the object is determined. The present invention is characterized in that it includes object detection means that outputs a signal representing .

この発明のマイクロ波近接スイッチによると。According to the microwave proximity switch of this invention.

マイクロ波発振手段を少なくとも2つ以上の異なる電圧
レベルをも一つ駆動信号で駆動することにより、少なく
とも2つ以上の異なる周波数のマイクロ波を周期的に時
分割で送波している。したがっテ、一方の周波数のマイ
クロ波の送波信号と受波信号(物体からの反射マイクロ
波)の位相が一致する位置にあったとしても、他方の周
波数のマイクロ波の送波信号と受波信号には位相差があ
り。
By driving the microwave oscillation means with at least two or more different voltage levels using a drive signal, microwaves of at least two or more different frequencies are periodically transmitted in a time-division manner. Therefore, even if the transmitted microwave signal of one frequency and the received signal (microwaves reflected from an object) are in a position where the phases match, the transmitted microwave signal and the received microwave signal of the other frequency There is a phase difference in the signal.

この位相差に基づいて物体を検知することか可能となる
。これにより静止物体がどの位置にあってもその検出を
確実に行なうことができる。
It becomes possible to detect objects based on this phase difference. This makes it possible to reliably detect a stationary object no matter where it is located.

また光に対して透明なガラスや光を反射しない黒色の表
面をもつ物体の検知も可能である。
It is also possible to detect objects with transparent glass or black surfaces that do not reflect light.

さらに、スイッチ近傍にデッド・ゾーンがなく距離Oa
mからの物体検出が可能であり、検出可能距離も比較的
長くとることができる。
Furthermore, there is no dead zone near the switch and the distance Oa
It is possible to detect objects from a distance of m, and the detectable distance can be relatively long.

実施例の説明 第1図はマイクロ波近接スイッチの電気的構成を示して
いる。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows the electrical configuration of a microwave proximity switch.

駆動回路11は、正のオフセット電圧をもち12つの異
なる電圧レベルV 、■ が一定周期で交互に現われる
波形の駆動信号を発生する。この駆動信号は、VCO(
電圧制御発振)特性をもつマイクロ波発振器12に与え
られるとともに、基準信号として差動増幅回路16の一
方の入力端子に入力する。この駆動信号(基準信号)の
波形の一例が第2図の左側に示されている。
The drive circuit 11 generates a drive signal having a waveform having a positive offset voltage and in which 12 different voltage levels V 1 and 2 appear alternately at a constant period. This drive signal is applied to the VCO (
The signal is applied to a microwave oscillator 12 having voltage controlled oscillation characteristics, and is also input to one input terminal of a differential amplifier circuit 16 as a reference signal. An example of the waveform of this drive signal (reference signal) is shown on the left side of FIG.

マイクロ波発振器12は、駆動信号が電圧■1のと;\
に周波IQ f  のマイクロ波を、電圧V2のときに
f とは異なる周波数f2のマイクロ波をそ才1それ発
!Vするもので、この発振マイクロ波は送受波器(アン
テナ、L−:、ズ等)14を経て物体30の検知領域に
向けて送波される。マイクロ波発振器はガン・ダイオー
ドを含む。
The microwave oscillator 12 has a drive signal of voltage ■1;
When the voltage is V2, a microwave with a frequency f2 different from f is emitted! This oscillated microwave is transmitted through a transducer (antenna, L-:, Z, etc.) 14 toward the detection area of the object 30. The microwave oscillator includes a Gunn diode.

ミキサ(ミキンング回路)13は、物体30から反射し
て房1gかつ送受波器14で受波されたマイクロ波(に
月(受波信号)を発振器12の発振出力(送波信号)と
混合するもので、ガン・ダイオードとアノード@fこ几
通に接続された2乗検波ダイオードを含む。このミキサ
ー3て得られる高周波成分はきわめて高い周波数(たと
えば数十G11z)をもつために減衰し、ミキサー3か
らは送波信号と受波信号の位相差を表わす信号成分のみ
が出力される。
A mixer (mixing circuit) 13 mixes the microwave (received signal) reflected from the object 30 and received by the transducer 14 with the oscillation output (transmitted signal) of the oscillator 12. It includes a Gunn diode and a square-law detection diode connected to the anode.The high frequency component obtained by this mixer 3 is attenuated because it has an extremely high frequency (for example, several tens of G11z), and the mixer 3 outputs only the signal component representing the phase difference between the transmitted signal and the received signal.

増幅回路15はミキサー3の出力を、上記基準信号のレ
ベルまで増幅するもので、オフセットの増幅率と振幅の
増幅率を独立に調整できるものである。物体か検知領域
内に存在しない場合のミキサ出力が第2図中央に描かれ
ている。増幅回路15はこのようなミキサ出力を、第2
図右側に示されるように、上述した基準信号と全く同じ
波形の信号に増幅するものである。物体が存在する場合
には、ミキサ出力には上記位相差成分が現われ、第2図
中央に図示のものと異なる波形のものとなるから増幅回
路15の出力も後述するように基準信号とは異なる波形
となる。増幅回路15の出力は差動増幅回路16の他方
の入力端子に入力する。
The amplifier circuit 15 amplifies the output of the mixer 3 to the level of the reference signal, and can independently adjust the offset amplification factor and amplitude amplification factor. The mixer output when no object is present within the detection area is depicted in the center of Figure 2. The amplifier circuit 15 converts such mixer output into a second
As shown on the right side of the figure, the signal is amplified to have exactly the same waveform as the reference signal mentioned above. If an object exists, the phase difference component mentioned above appears in the mixer output, and the waveform becomes different from that shown in the center of FIG. 2, so the output of the amplifier circuit 15 also differs from the reference signal as described later. It becomes a waveform. The output of the amplifier circuit 15 is input to the other input terminal of the differential amplifier circuit 16.

差動増幅回路■6は、増幅回路15を経て入力するミキ
サ出力と基準信号(」二連のように物体が存在しない場
合のミキサ出力に等しい)との差を増幅する働きをする
もので、差を絶対値化する絶対値回路を含む。差動増幅
回路16の出力信号はコンパレータ17に入力する。
The differential amplifier circuit 6 functions to amplify the difference between the mixer output inputted through the amplifier circuit 15 and the reference signal (equal to the mixer output when no object exists, such as in a double series). Includes an absolute value circuit that converts the difference into an absolute value. The output signal of the differential amplifier circuit 16 is input to a comparator 17.

コンパレータ17は、差動増幅回路16の出力信号を一
定のしきい値レベルの電圧と比較し、上記出力信号レベ
ルがこのしきい値レベルを超えたときにHレベルの信号
を発生ずる。コンパレータ17の出力は積分回路18に
与えられる。
Comparator 17 compares the output signal of differential amplifier circuit 16 with a voltage at a certain threshold level, and generates an H level signal when the output signal level exceeds this threshold level. The output of the comparator 17 is given to an integrating circuit 18.

積分回路18はコンパレータ17の出力がHレベルのと
きに急速に充電し、Lレベルのときにゆっくζコと放電
する回路である。出力回路19は1積分回路18の出力
から十分大きな出力電流または出力電圧をつくり出すも
ので、積分回路18の出力を所定のしきい値と比較する
コンパレータを含む。
The integrating circuit 18 is a circuit that rapidly charges when the output of the comparator 17 is at H level, and slowly discharges when it is at L level. The output circuit 19 generates a sufficiently large output current or output voltage from the output of the one integrating circuit 18, and includes a comparator that compares the output of the integrating circuit 18 with a predetermined threshold value.

第1図の回路では物体が存在しないときのミキサ13の
出力信号を増幅回路15によって駆動回路11の出力信
号に一致さゼーCいるが、駆動回路11の出力信号を加
■[シてミキサ13の出力信号(またはその増幅された
信号)に一致させるようにしてもよい。また差動増幅回
路16の出力を積分したのぢにコ〉・パレータにおいて
所定のしきい値と比較してオン、オフ信号を作成するよ
うにしてもよい。
In the circuit of FIG. 1, the output signal of the mixer 13 when no object is present is made to match the output signal of the drive circuit 11 by the amplifier circuit 15, but the output signal of the drive circuit 11 is added to the output signal of the mixer 13. (or its amplified signal). Alternatively, the output of the differential amplifier circuit 16 may be integrated and compared with a predetermined threshold value in a comparator to generate an on/off signal.

第3図は2つの周波数f  、f  て交互に発振した
マイクロ波を用いて静止物体を検出する原理を示すもの
である。第3図(A)は周波数f1のマイクロ波の送波
信号(実線で示す)と受波信号(破線で示す、物体30
からの反射波)との位相が一致している様子を示すもの
である。この周波数flについては、第3図(C)に示
すように、ミキサ出力(第3図および第4図ならびにそ
の説明においてミキサ出力とは増幅回路15で増幅され
たのちの出力を指す)は基準信号と一致してしまい。
FIG. 3 shows the principle of detecting a stationary object using microwaves alternately oscillated at two frequencies f 1 and f 2 . FIG. 3(A) shows a microwave transmission signal of frequency f1 (shown by a solid line) and a received signal (shown by a broken line) from an object 30.
This shows that the phase of the reflected wave from the Regarding this frequency fl, as shown in FIG. 3(C), the mixer output (in FIGS. 3 and 4 and their explanations, the mixer output refers to the output after being amplified by the amplifier circuit 15) is the standard. It matched the signal.

これらの差動出力は零となる。しかしながら1周波数f
1の送波信号と受波信号の位相が一致したとしても、こ
れと異なる周波数f2については。
These differential outputs become zero. However, one frequency f
Even if the phases of the transmitted signal and the received signal of 1 match, for a different frequency f2.

第3図(B)に示すように、送波信号(実線)と物体3
0からの反射波である受波信号(破線)の位相は同一と
なることはなく、第3図(C)に示すように、基準信号
とレベル差をもつミキサ出力が得られる。
As shown in Figure 3 (B), the transmitted signal (solid line) and the object 3
The phases of the received signal (broken line), which is a reflected wave from 0, are never the same, and as shown in FIG. 3(C), a mixer output having a level difference from the reference signal is obtained.

このようにしてまたとえ一方の周波数のマイクロ波にお
いて送波と受波が同一位相になっても。
In this way, even if the transmitting and receiving waves are in the same phase for microwaves of one frequency.

他方の周波数のマイクロ波においては物体が存在し2な
い場合のミキサ出力とは異なるミキサ出力か期待でき、
ミキサ出力が全体として基準信号と一致することはない
For microwaves of the other frequency, we can expect a mixer output that is different from the mixer output when there is no object.
The mixer output will never match the reference signal as a whole.

このようにして静止した検出物体30がいかなる位置に
あっても、ミキサ出力は第4図に示す(A) 、  (
B) 、  (C) 、  (D)の4通りのいずれか
となり、検知範囲内に物体30がある限り、基準信号と
完全に一致することはない。
No matter what position the stationary detection object 30 is in, the mixer output will be as shown in FIG. 4 (A), (
B), (C), and (D), and as long as the object 30 is within the detection range, it will never completely match the reference signal.

上述のように基準信号とミキサ出力との差が差動増幅回
路16で増幅された後、コンパレータ17に送られるが
、差動増幅回路16は絶対値回路を含むため第4図(A
)と(D)および(B)と(C)はそれぞれ同じ差動出
力か得られ、この出力は常に正の電圧値となる。第4図
(A)と(D)のミキサ出力については、コンパレータ
17出力は常にHレベル(物体を検出【、ている)の状
態となるが、第4図(B)と(C)に示すミキサ出力に
ついては第5図に示すように1 HレベルとLレベルと
を交互に繰り返す。(、か[、なから]−述したように
充放電の時定数が異なる積分回路18によって、積分回
路18の出力波形は常にある一定のレベル以上となる。
As mentioned above, the difference between the reference signal and the mixer output is amplified by the differential amplifier circuit 16 and then sent to the comparator 17. However, since the differential amplifier circuit 16 includes an absolute value circuit, the difference between the reference signal and the mixer output is
) and (D) and (B) and (C) each have the same differential output, and this output always has a positive voltage value. Regarding the mixer outputs in Figures 4(A) and (D), the comparator 17 output is always at the H level (object detected), but as shown in Figures 4(B) and (C). As for the mixer output, as shown in FIG. 5, 1H level and L level are alternately repeated. (, or [, from] - As described above, the output waveform of the integrating circuit 18 is always above a certain level due to the integrating circuit 18 having different charging and discharging time constants.

しまたがって、出力回路19に内包されたコンパレータ
によって検出aの出力を得ることが可能となる。
It becomes possible to obtain the output of the detection a by the comparator included in the output circuit 19.

このようにして、このマイクロ波近接スイッチでは1反
射型で、しかも静止物体の検出が可能となる。もちろん
移動物体の検出も可能である。
In this way, this microwave proximity switch is of the single-reflection type and is capable of detecting stationary objects. Of course, it is also possible to detect moving objects.

マイクロ波は、光に対して透明なガラスに対しても透明
にならず、また光をほとんど反射し、ないつや消しの表
面をもつ金属、樹脂等に対しても十分な反射波が得られ
るため1両者とも検出可能である。したがって、従来の
反射型の光電スイッチで検出が困難なこれらの物体も検
出が1−iJ能どなる。
Microwaves do not become transparent even on glass, which is transparent to light, and reflect almost no light, and sufficient reflected waves can be obtained even on metals, resins, etc. that have matte surfaces. Both are detectable. Therefore, these objects, which are difficult to detect with conventional reflective photoelectric switches, can be detected only by 1-iJ.

さらに−1−1述した検出原理からも明らかのように、
超音波近接スイッチのように近接にデッド・ゾーンが無
く、距離0釦からの物体検出が可能である。検出距離は
、デイバイスの能力によっても異なるが、 24Gtl
z 、駆動周波数50011z、出力5IIIWのマイ
クロ波を用いた場合、foci稈度の検出距離は十分可
能であり、磁気型、電磁誘導型近接スイッチの通常の最
大の検出距離である2cm程度より十分長い。
Furthermore, as is clear from the detection principle described in -1-1,
Unlike ultrasonic proximity switches, there is no dead zone in proximity, and objects can be detected from a distance of 0 button. The detection distance varies depending on the capability of the device, but is up to 24Gtl.
When using microwaves with a drive frequency of 50011z and an output of 5IIIW, the detection distance of foci culm is sufficiently possible and is sufficiently longer than the normal maximum detection distance of about 2 cm for magnetic type and electromagnetic induction type proximity switches. .

マイクロ波近接スイッチは物体表面の色や多少の凹凸に
も影響を受けることなく検出が可能であるとともに、マ
イクロ波はダンボール箱等を透過するので、ダンボール
箱内に物体が存在するかどうかの非破壊透視検査にも応
用可能である。
Microwave proximity switches can detect objects without being affected by the color or slight unevenness of the surface, and since microwaves pass through cardboard boxes, it is possible to detect whether or not there is an object inside the cardboard box. It can also be applied to destructive fluoroscopic inspection.

」二記実施例では、アナログ回路によってミキサ出力を
信号処理しているが、ミキサ出力をA/D変換した後、
ディジタル信号処理プロセッサまたはCPUによって、
アナログ信号処理回路と等価なディジタル信号処理を行
うこともできるのはいうまでもない。
In the second embodiment, the mixer output is signal-processed by an analog circuit, but after A/D conversion of the mixer output,
By a digital signal processing processor or CPU,
Needless to say, it is also possible to perform digital signal processing equivalent to analog signal processing circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例のマイクロ波近接スイッチの
電気的構成を示すブロック図である。 第2図は基準信号およびミキサ出力を増幅する様子を示
す波形図である。 第3図(A) 、  (B)はマイクロ波送波と受波の
位相関係を示すものであり、(C)は得られるミキサ出
力を示す波形図である。 第4図(A) 、 (B) 、 (C) 、 (D>は
種々のミキサ出力を・J々ず波形図である。 第5図はコンパレータと積分回路の出力波形の一例を示
す波形図である。 10・・・マイクロ波近接スイッチ。 ii・・・駆動回路。 12・・発振回路。 13・・・ミキサ。 16・・・差動増幅回路2 17・・・コンパレータ。 18・・・積分回路。 以」二 特許出願人  立石電機株式会社 代 理 人   弁理士 牛 久 健 司(外1名) 第3図 (A) (B) (C) 時間− 第4図 (A) (C)
FIG. 1 is a block diagram showing the electrical configuration of a microwave proximity switch according to an embodiment of the present invention. FIG. 2 is a waveform diagram showing how the reference signal and mixer output are amplified. 3(A) and 3(B) show the phase relationship between microwave transmission and reception, and FIG. 3(C) is a waveform diagram showing the mixer output obtained. Figures 4 (A), (B), (C), and (D> are waveform diagrams of various mixer outputs. Figure 5 is a waveform diagram showing an example of the output waveforms of the comparator and the integrating circuit. 10... Microwave proximity switch. ii... Drive circuit. 12... Oscillation circuit. 13... Mixer. 16... Differential amplifier circuit 2 17... Comparator. 18... Integral circuit. Patent applicant Tateishi Electric Co., Ltd. Agent Patent attorney Kenji Ushiku (and one other person) Figure 3 (A) (B) (C) Time - Figure 4 (A) (C)

Claims (1)

【特許請求の範囲】 電圧によって発振周波数が可変なマイクロ波発振手段を
含むマイクロ波送波手段、 少なくとも2以上の異なる電圧レベルをもち、これらの
電圧レベルが一定の周期で周期的に切換わる駆動信号を
発生して上記発振手段に与える駆動手段、 上記発振手段による発振信号と受波信号とを混合してそ
の位相差を表わす信号を出力するミキシング手段を含む
マイクロ波受波手段、および上記ミキシング手段の出力
信号と、マイクロ波反射物体が無い場合の上記ミキシン
グ手段出力に相当する基準信号とを比較して、物体の有
無を表わす信号を出力する物体検知手段、 を備えたマイクロ波近接スイッチ。
[Claims] Microwave transmission means including microwave oscillation means whose oscillation frequency is variable depending on voltage, and a drive having at least two or more different voltage levels, in which these voltage levels are periodically switched at a constant cycle. A microwave receiving means including a driving means for generating a signal and applying it to the oscillating means, a mixing means for mixing the oscillated signal by the oscillating means and a received signal and outputting a signal representing a phase difference thereof, and the mixing means. A microwave proximity switch comprising: object detection means for comparing the output signal of the means with a reference signal corresponding to the output of the mixing means when there is no microwave reflecting object, and outputting a signal indicating the presence or absence of the object.
JP11357388A 1988-05-12 1988-05-12 Microwave proximity switch Pending JPH01285883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11357388A JPH01285883A (en) 1988-05-12 1988-05-12 Microwave proximity switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11357388A JPH01285883A (en) 1988-05-12 1988-05-12 Microwave proximity switch

Publications (1)

Publication Number Publication Date
JPH01285883A true JPH01285883A (en) 1989-11-16

Family

ID=14615666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11357388A Pending JPH01285883A (en) 1988-05-12 1988-05-12 Microwave proximity switch

Country Status (1)

Country Link
JP (1) JPH01285883A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527017A (en) * 1991-07-19 1993-02-05 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Object detecting device
EP1033271A1 (en) * 1999-03-04 2000-09-06 Dynex Semiconductor Limited Microwave proximity sensor
JP2003207462A (en) * 2002-01-17 2003-07-25 Optex Co Ltd Microwave sensor
JP2014507347A (en) * 2010-12-22 2014-03-27 インベンテイオ・アクテイエンゲゼルシヤフト Device for moving people and / or objects
CN112099038A (en) * 2020-09-17 2020-12-18 上海波汇科技有限公司 Multi-object identification method and device based on FMCW laser radar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527017A (en) * 1991-07-19 1993-02-05 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Object detecting device
EP1033271A1 (en) * 1999-03-04 2000-09-06 Dynex Semiconductor Limited Microwave proximity sensor
JP2003207462A (en) * 2002-01-17 2003-07-25 Optex Co Ltd Microwave sensor
JP2014507347A (en) * 2010-12-22 2014-03-27 インベンテイオ・アクテイエンゲゼルシヤフト Device for moving people and / or objects
CN112099038A (en) * 2020-09-17 2020-12-18 上海波汇科技有限公司 Multi-object identification method and device based on FMCW laser radar
CN112099038B (en) * 2020-09-17 2023-11-10 上海波汇科技有限公司 Multi-object identification method and device based on FMCW laser radar

Similar Documents

Publication Publication Date Title
US6426716B1 (en) Modulated pulse doppler sensor
US7079030B2 (en) Microwave sensor
JPS59157581A (en) Fm/cw radar device
JPH08179036A (en) Radar device
EP0825455A3 (en) Failure determination device of radar apparatus
EP0742448A3 (en) Electromagnetic wave reflective type, low cost, active proximity sensor for harsh environments
JP2003139848A (en) Two-frequency type microwave sensor
JPH01285883A (en) Microwave proximity switch
JPS6238360A (en) Ultrasonic phase reflectoscope
CN111198368A (en) Biological detection method and biological detection radar
JPH01285884A (en) Microwave proximity switch
JPS60218086A (en) Distance measuring instrument
JP2762143B2 (en) Intermittent FM-CW radar device
JPH02223884A (en) Moving object detecting device
JP2006515424A (en) Compact microwave distance sensor with reduced power consumption by measuring power in an excited receive oscillator
US3725854A (en) System for detecting motion of a nearby target by continuous ultrasonic waves
JPS6361976A (en) Ultrasonic switch
JP2584482B2 (en) Speed measuring device built into data transmission equipment
JP2004177338A (en) Ranging device
JPH0395477A (en) Ultrasonic detector
JP2849417B2 (en) Ultrasonic detector
JPH0128915B2 (en)
RU1676352C (en) Parametric active sonar
RU2006877C1 (en) Device for determination and classification of objects according to their acoustic impedance
RU1815615C (en) Parametric acoustic locator