JPH01284541A - Heat-resistant vinyl chloride resin composition - Google Patents

Heat-resistant vinyl chloride resin composition

Info

Publication number
JPH01284541A
JPH01284541A JP11558288A JP11558288A JPH01284541A JP H01284541 A JPH01284541 A JP H01284541A JP 11558288 A JP11558288 A JP 11558288A JP 11558288 A JP11558288 A JP 11558288A JP H01284541 A JPH01284541 A JP H01284541A
Authority
JP
Japan
Prior art keywords
weight
parts
rubber
polymerization
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11558288A
Other languages
Japanese (ja)
Inventor
Yoshio Makino
牧野 吉夫
Kanya Takahashi
高橋 完也
Takeshi Nagai
健 永井
Yuichi Nakawaki
中脇 勇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP11558288A priority Critical patent/JPH01284541A/en
Publication of JPH01284541A publication Critical patent/JPH01284541A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a vinyl chloride resin composition improved in processability, heat resistance and impact resistance by mixing a vinyl chloride polymer with a specified rubber-modified resin comprising a rubber component, a vinyl aromatic monomer and an unsaturated carboxylic anhydride. CONSTITUTION:A rubber-modified resin is obtained by graftpolymerizing 100 pts.wt. monomer mixture comprising 60-95wt.% vinyl aromatic monomer and 40-5wt.% unsaturated dicarboxylic acid anhydride in the presence of 4-40 pts.wt. rubber component by a two-stage bulk polymerization process. In this graft polymerization, the proportion of the unsaturated dicarboxylic acid anhydride in the monomer mixture taking part in the polymerization is 2-11wt.% in the first stage before phase inversion and the one in the second stage after phase inversion is 12-45wt.%. 100 pts.wt. vinyl chloride polymer is mixed with 5-150 pts.wt. above rubber-modified resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパイプ、屋l1IItAなどの建材や家電用機
器部品、自動車部品、雑貨など、各種成形品の用途に有
用な耐熱性、耐衝撃性、成形性にすぐれた塩化ビニル系
樹脂組成物に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides heat resistance and impact resistance useful for various molded products such as pipes, building materials such as pipes, home appliance parts, automobile parts, and miscellaneous goods. , relates to a vinyl chloride resin composition with excellent moldability.

〔従来の技術〕[Conventional technology]

塩化ビニル系樹脂は、安価でかつすぐれた物理的、化学
的性質を有するため、種々の分野で幅広く利用されてい
るが、耐熱性と耐衝撃性に劣る欠点があり、そのふん便
用範囲に制限がある。
Vinyl chloride resin is widely used in various fields because it is inexpensive and has excellent physical and chemical properties, but it has the disadvantage of poor heat resistance and impact resistance, which limits the range of its use as a toilet. There is.

従来より、塩化ビニル系樹脂の耐熱性や耐衝撃性の改善
のために種々の試みがなされており、そのひとつとして
、塩化ビニル系樹脂に、ゴム成分の存在下で特定の単量
体混合物、たとえばビニル芳香族単量体と不飽和ジカル
ボン酸無水物とを含む単量体混合物などをグラフト重合
させてなるゴム変性樹脂をブレンドする方法が知られて
いる(特開昭57−162745号、同60−2487
58号、同61−14.3459号、同62−5744
6号などの各公報)。
In the past, various attempts have been made to improve the heat resistance and impact resistance of vinyl chloride resins, and one of them is to add a specific monomer mixture to vinyl chloride resins in the presence of a rubber component. For example, a method is known in which a rubber-modified resin is blended by graft polymerizing a monomer mixture containing a vinyl aromatic monomer and an unsaturated dicarboxylic acid anhydride (JP-A-57-162745, 60-2487
No. 58, No. 61-14.3459, No. 62-5744
Publications such as No. 6).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、上記公知の改良法では、耐熱性がなお不充分
であったり、耐衝撃性が不充分であったりして、塩化ビ
ニル系樹脂の用途の拡大を図るうえで耐熱性と耐衝撃性
との両特性を共に充分に満足できるものとはいえなかっ
た。
However, with the above-mentioned known improvement methods, heat resistance and impact resistance are still insufficient, and it is difficult to improve heat resistance and impact resistance in order to expand the use of vinyl chloride resins. It could not be said that both characteristics could be fully satisfied.

本発明は、上記の事情に鑑み、塩化ビニル系樹脂本来の
良好な加工性に加えて、耐熱性と耐衝撃性との両特性に
共にすぐれた塩化ビニル系樹脂組成物を提供することを
目的としている。
In view of the above circumstances, an object of the present invention is to provide a vinyl chloride resin composition that has excellent heat resistance and impact resistance, in addition to the good processability inherent to vinyl chloride resins. It is said that

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の目的を達成するために鋭意検討し
た結果、塩化ビニル系樹脂に特定のゴム変性樹脂をブレ
ンドすることにより、耐熱性、耐衝撃性および加工性の
いずれの特性にもすぐれた塩化ビニル系樹脂組成物が得
られることを知り、本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the present inventors have found that by blending a specific rubber-modified resin with a vinyl chloride resin, the properties of heat resistance, impact resistance, and processability can be improved. Having learned that an excellent vinyl chloride resin composition can be obtained, the present invention was completed.

すなわち、本発明は、 A)塩化ビニル系重合体100重量部に、B)ゴム成分
4〜40重量部の存在下、ビニル芳香族単量体60〜9
5重量%と不飽和ジカルボン酸無水物40〜5重量%と
からなる単量体混合物100重量部を、2段階塊状重合
法により、転相前の第1段階において重合に関与する単
量体混合物中の不飽和ジカルボン酸無水物の割合が2〜
11重量%の範囲、転相後の第2段階において上記同様
の不飽和ジカルホン酸無水物の割合が12〜45重量%
の範囲となるように、グラフト重合させて得られるゴム
変性樹脂5〜150重量部を、 配合したことを特徴とする耐熱性塩化ビニル系樹脂組成
物に係るものである。
That is, the present invention comprises: A) 100 parts by weight of a vinyl chloride polymer, B) 60 to 9 parts by weight of a vinyl aromatic monomer in the presence of 4 to 40 parts by weight of a rubber component.
100 parts by weight of a monomer mixture consisting of 5% by weight and 40 to 5% by weight of an unsaturated dicarboxylic anhydride are added to the monomer mixture participating in the polymerization in the first step before phase inversion by a two-step bulk polymerization method. The proportion of unsaturated dicarboxylic acid anhydride in
in the range of 11% by weight, and in the second stage after phase inversion, the proportion of the same unsaturated dicarphonic anhydride as above is 12 to 45% by weight.
This relates to a heat-resistant vinyl chloride resin composition characterized in that 5 to 150 parts by weight of a rubber-modified resin obtained by graft polymerization is blended so that

〔発明の構成・作用〕[Structure and operation of the invention]

本発明に用いられるA成分である塩化ビニル系樹脂とは
、塩化ビニルの単独重合体、塩化ビニルとエチレン、プ
ロピレン、酢酸ビニルなどとの共重合体、あるいは塩化
ビニルとビニルエーテル類、アクリル酸、メタクリル酸
のコニステル類、メタクリルアミド、アクリロニトリル
などの共重合体を含むものであり、塊状重合、懸濁重合
、乳化重合、溶液重合などいずれの製造方法によるもの
でもよい。重合度は特に限定されないが、一般には60
0〜2,500程度の重合度を有するものが好まLい。
The vinyl chloride resin that is component A used in the present invention is a homopolymer of vinyl chloride, a copolymer of vinyl chloride and ethylene, propylene, vinyl acetate, etc., or a polymer of vinyl chloride and vinyl ethers, acrylic acid, methacrylate, etc. It contains a copolymer of acid conisteres, methacrylamide, acrylonitrile, etc., and may be produced by any production method such as bulk polymerization, suspension polymerization, emulsion polymerization, or solution polymerization. The degree of polymerization is not particularly limited, but is generally 60.
L preferably has a degree of polymerization of about 0 to 2,500.

本発明に用いられるB成分であるゴム変性樹脂とは、ゴ
ム成分の存在下、ビニル□芳香族箪量体と不飽和ジカル
ボン酸無水物との単量体混合物を、2段階塊状重合法に
より、転相前の第1段階において重合に関与する上□記
事量体混合物中の不飽和ジカルボン酸無水物の割合が2
〜11重量%の範囲、特に好適には4〜10重量%の範
囲、転相後の第2段階において上記同様め不飽和ジカル
ボン“酸無水物の割合が12〜45重量%の□範囲、特
に好適には13〜35量量%の範囲となるように゛、グ
ラフト重合させて得られるものである。  :”すなわ
ち、ゴム成分の存在下で上記の単量体混合物を塊状重合
させる場合、重合の進行とともに重合系の粘度が次第に
上昇し、ある時点で上記粘度が急激に低下し、濁度も大
きくなる現象がみられる。これは重合系が転相したとき
の性状変化として知られるが、本発明ではかかる転相が
1じる前と後とで重合に関与する単量体混合物の共重合
比率を上記の如く変化させる、つまり2段階の塊状重合
法によって転相前の第1段階では単量体混合物中の不飽
和ジカルボン酸無水物の割合が少なく、転相後の第2段
階では上記割合が多くなるように、共重合比率を変化さ
せるようにしたものである。
The rubber-modified resin that is component B used in the present invention is a monomer mixture of a vinyl □ aromatic dimmer and an unsaturated dicarboxylic acid anhydride in the presence of a rubber component, which is prepared by a two-step bulk polymerization method. The ratio of unsaturated dicarboxylic acid anhydride in the above polymer mixture that participates in polymerization in the first step before phase inversion is 2.
-11% by weight, particularly preferably in the range 4-10% by weight, and in the second stage after the phase inversion, the proportion of unsaturated dicarboxylic acid anhydride is in the range 12-45% by weight, especially It is preferably obtained by graft polymerization so that the amount is in the range of 13 to 35% by weight. In other words, when the above monomer mixture is bulk polymerized in the presence of a rubber component, As the process progresses, the viscosity of the polymerization system gradually increases, and at a certain point, the viscosity suddenly decreases and the turbidity increases. This is known as a change in properties when the polymerization system undergoes phase inversion, but in the present invention, the copolymerization ratio of the monomer mixture involved in polymerization is changed as described above before and after such phase inversion. That is, in the two-stage bulk polymerization method, the proportion of unsaturated dicarboxylic anhydride in the monomer mixture is small in the first stage before phase inversion, and the proportion is increased in the second stage after phase inversion, The copolymerization ratio is changed.

このような特定の2段階塊状重合法によりグラフト重合
させで得られるゴム変性樹脂によれば、これを塩化ビニ
ル系樹脂にブレンドしたとき、前記従来公知の通常のゴ
ム変性樹脂とは異なって、塩化ビニル系樹脂本来の加工
性を阻害することなくその欠点である耐熱性と耐衝撃性
とを共に大きく改善することがで□きる。この改善効果
は、転相前の第1段階で“の不飽和ジカルボン酸無水物
の前記割合を2〜11重量%の範囲、′転相後の第2段
階での同割合を12〜45重量%の範囲に調整したとき
にのみ、再現性良く確実に奏し得られるが、上記範囲を
逸脱すると耐熱性と耐衝撃性のいずれか一方または両方
が大きく低下する。
According to the rubber-modified resin obtained by graft polymerization using such a specific two-step bulk polymerization method, when blended with vinyl chloride-based resin, unlike the conventionally known ordinary rubber-modified resin, It is possible to greatly improve both heat resistance and impact resistance, which are disadvantages of vinyl resins, without impeding the inherent processability. This improvement effect is due to the fact that in the first stage before phase inversion, the proportion of unsaturated dicarboxylic acid anhydride is in the range of 2 to 11% by weight, and in the second stage after phase inversion, the same proportion is in the range of 12 to 45% by weight. % range, the performance can be reliably achieved with good reproducibility, but if it deviates from the above range, either or both of heat resistance and impact resistance will be significantly reduced.

上記のグラフト重合に用いるゴム成分としては、ポリブ
タジェン、スチレンーブタシエンブロックボリマー、ニ
トリルゴム、ポリイソブレンゴJ1、ブタジェン−アク
リロニトリルゴム、EPDM (エチレンープロピレン
ージエンクーボリマー)などがある。また、ビニル芳香
族単量体としては、スチレン、α−メチルスチレン、0
−クロロスチレン、p−クロロスチレン、ビニルトルエ
ンなどがある。さらに、不飽和ジカルボン酸無水物とし
ては、無水マレイン酸、イタコン酸無水物、クロロマレ
イン酸無水物、シトラコン酸無水物、フェニルマレイン
酸無水物などがある。これらのゴム成分、ビニル芳香族
単量体および不飽和ジカルボン酸無水物は、それぞれ、
その1種を用いても2種以上を混合使用してもよい。
Rubber components used in the above graft polymerization include polybutadiene, styrene-butadiene block polymer, nitrile rubber, polyisobrengo J1, butadiene-acrylonitrile rubber, and EPDM (ethylene-propylene-diene block polymer). In addition, examples of vinyl aromatic monomers include styrene, α-methylstyrene,
-chlorostyrene, p-chlorostyrene, vinyltoluene, etc. Furthermore, examples of the unsaturated dicarboxylic anhydride include maleic anhydride, itaconic anhydride, chloromaleic anhydride, citraconic anhydride, and phenylmaleic anhydride. These rubber components, vinyl aromatic monomer and unsaturated dicarboxylic acid anhydride are each
You may use one type or mix and use two or more types.

これら原料成分の使用割合は、まず、ビニル芳香族単量
体と不飽和ジカルボン酸無水物とからなる単量体混合物
100重量部に対して、ゴム成分が4〜40重量部、特
に好適には8〜30重量部となるようにするのがよい。
The ratio of these raw material components to be used is, firstly, 4 to 40 parts by weight of the rubber component to 100 parts by weight of the monomer mixture consisting of the vinyl aromatic monomer and the unsaturated dicarboxylic acid anhydride. The amount is preferably 8 to 30 parts by weight.

ゴム成分が4重量部未満となると耐衝撃性が低下し、ま
た40重量部を超えると耐熱性が低下するため、いずれ
も好ましくない。
If the rubber component is less than 4 parts by weight, the impact resistance will decrease, and if it exceeds 40 parts by weight, the heat resistance will decrease, so both are not preferred.

つぎに、重合体中の単量体混合物の組成としては、ビニ
ル芳香族単量体が60〜95重量%、特に好適には65
〜93重景%で重量飽和ジカルボン酸無水物が40〜5
重量%、特に好適には35〜7重量%となるようにする
のがよく、前記した第1段階および第2段階におりる不
飽和ジカルボン酸無水物の割合は、その合計量が上記の
範囲となるように、調整される。ビニル芳香族単量体が
95重重量を超え不飽和ジカルボン酸無水物が5重量%
未満となると耐熱性が低下し、また不飽和ジカルボン酸
無水物が40重量%を超えビニル芳香族単量体が60重
里%未満となるとゴム変性樹脂の分子量が低くなって耐
衝撃性が低下するため、いずれも好ましくない。
Next, the composition of the monomer mixture in the polymer is such that the vinyl aromatic monomer is 60 to 95% by weight, particularly preferably 65% by weight.
~93 weight percent and weight saturated dicarboxylic acid anhydride is 40-5
% by weight, particularly preferably from 35 to 7% by weight, and the proportion of unsaturated dicarboxylic acid anhydride in the first and second stages is such that the total amount is within the above range. It is adjusted so that Vinyl aromatic monomer is more than 95% by weight and unsaturated dicarboxylic acid anhydride is 5% by weight
If the content of the unsaturated dicarboxylic acid anhydride exceeds 40% by weight and the content of the vinyl aromatic monomer is less than 60% by weight, the molecular weight of the rubber-modified resin decreases, resulting in a decrease in impact resistance. Therefore, both are unfavorable.

このような原料成分を用いて前記特定の2段階塊状重合
法により本発明のゴム変性樹脂を得るには、たとえばゴ
ム成分をビニル芳香族単量体に溶解した溶液を所定量重
合釜に仕込み、撹拌上温度90〜120℃で、所定量の
不飽和ジカルボン酸無水物と適量の重合開始剤を溶解し
た第1のビニル芳香族単量体溶液を加えながら重合し、
転相するまで重合を続ける。転相が生じた時点から、所
定量の不飽和ジカルボン酸無水物と適量の重合開始剤を
溶解した第2のビニル芳香族単量体溶液を加えて重合を
続け、目標とする転化率に達するまで重合を進行させれ
ばよい。
In order to obtain the rubber-modified resin of the present invention by the specific two-step bulk polymerization method using such raw material components, for example, a predetermined amount of a solution in which the rubber component is dissolved in a vinyl aromatic monomer is charged into a polymerization kettle; Polymerize while stirring at a temperature of 90 to 120°C while adding a first vinyl aromatic monomer solution in which a predetermined amount of unsaturated dicarboxylic acid anhydride and an appropriate amount of polymerization initiator are dissolved,
Polymerization continues until phase inversion occurs. From the point at which phase inversion occurs, a second vinyl aromatic monomer solution containing a predetermined amount of unsaturated dicarboxylic anhydride and an appropriate amount of polymerization initiator is added to continue polymerization to reach the target conversion rate. What is necessary is to allow the polymerization to proceed until

このようにして得られる重合液は、ゴム成分に単量体混
合物がグラフト重合したグラフト体のほか未反応のゴム
成分やグラフトに関与しない重合体などからなる固形分
とともに、重合に関与しなかった未反応のビニル芳香族
単量体(これは重合溶媒としての働きを有する)からな
る液状成分が含まれている。そこで、この重合液を薄膜
蒸留機、フラッシャ−1押出機などを用いて減圧乾燥し
て、上記の液状成分を除去することにより、ベレット状
や粒状とされた本発明のゴム変性樹脂が得られる。
The polymerization solution obtained in this way contains a solid component that does not participate in the polymerization, as well as a graft product in which a monomer mixture is graft-polymerized to a rubber component, as well as unreacted rubber components and polymers that do not participate in grafting. It contains a liquid component consisting of unreacted vinyl aromatic monomer (which acts as a polymerization solvent). Therefore, by drying this polymerization liquid under reduced pressure using a thin film distillation machine, a Flasher-1 extruder, etc. to remove the above-mentioned liquid components, the rubber modified resin of the present invention in the form of pellets or granules can be obtained. .

このゴム変性樹脂におけるゴム成分を除いた樹脂分(つ
まり前記グラフト体を構成するゴム成分以外の樹脂分お
よびグラフトに関与しない重合体からなる樹脂分)の分
子量は、特に規制されるものではないが、一般にはG 
P C法による重量平均分子量が約50.000〜30
0,000の範囲にあるのが望ましい。
The molecular weight of the resin component excluding the rubber component in this rubber-modified resin (that is, the resin component other than the rubber component constituting the graft body and the resin component consisting of a polymer not involved in grafting) is not particularly regulated. , generally G
Weight average molecular weight by PC method is approximately 50.000 to 30
Preferably, it is in the range of 0,000.

本発明の耐熱性塩化ビニル系樹脂組成物は、A成分であ
る塩化ビニル系重合体に上記したB成分であるゴム変性
樹脂を配合し、均一に混合することにより、調製される
。ここで、上記両成分の配合割合は、A成分100重量
部に対してB成分が5〜150重量部、特に好適には8
〜120重量部とするのがよい。B成分が5重量部未満
となると耐熱性ならびに耐衝撃性が低下し、150重量
部を超えると加工性が悪くなるため、いずれも好ましく
ない。
The heat-resistant vinyl chloride resin composition of the present invention is prepared by blending the above-described rubber-modified resin as component B with the vinyl chloride polymer as component A and uniformly mixing. Here, the blending ratio of both of the above components is 5 to 150 parts by weight of component B to 100 parts by weight of component A, particularly preferably 8 parts by weight.
The amount is preferably 120 parts by weight. If component B is less than 5 parts by weight, heat resistance and impact resistance will decrease, and if it exceeds 150 parts by weight, processability will deteriorate, so both are not preferred.

A、B成分を均一に混合する方法は特に限定されず、ヘ
ンシェルミキサー、リボンブレンダーなどであらかじめ
両成分を混合しておき、これをハンバリー、押出機、ロ
ールなどで溶融混合するようにしてもよく、あるいは連
続混練機に両成分を定量的に供給しながら溶融混練して
もよい。
The method for uniformly mixing components A and B is not particularly limited, and both components may be mixed in advance using a Henschel mixer, ribbon blender, etc., and then melt-mixed using a Hanbury, extruder, roll, etc. Alternatively, both components may be melt-kneaded while being quantitatively supplied to a continuous kneader.

本発明の耐熱性塩化ビニル系樹脂組成物には、少量の高
分子系加工助剤、熱安定剤、可塑剤、酸化防止剤、紫外
線吸収剤、充填剤、滑剤、発泡剤、難燃剤、顔料などを
必要に応じて配合することができる。
The heat-resistant vinyl chloride resin composition of the present invention contains small amounts of polymeric processing aids, heat stabilizers, plasticizers, antioxidants, ultraviolet absorbers, fillers, lubricants, blowing agents, flame retardants, and pigments. etc. can be added as necessary.

(発明の効果〕 本発明の耐熱性塩化ビニル系樹脂組成物は、良好な加工
性を有するとともに、耐熱性、耐衝撃性においてバラン
スのとれた物性を示すことから、建材、自動車部品、家
電製品などの既述した各種用途に幅広く使用できる。
(Effects of the Invention) The heat-resistant vinyl chloride resin composition of the present invention has good processability and exhibits well-balanced physical properties in heat resistance and impact resistance, so it can be used in building materials, automobile parts, and home appliances. It can be widely used for the various applications mentioned above.

〔実施例〕〔Example〕

つぎに、本発明を参考例、実施例、比較例により具体的
に説明する。なお以下、部および%とあるはそれぞれ重
量部および重量%を意味する。
Next, the present invention will be specifically explained using reference examples, examples, and comparative examples. Hereinafter, parts and % mean parts by weight and % by weight, respectively.

参考例1 ポリブタジェンゴム〔旭化成工業■製の商品名ジエン3
5R)100部とスチレン785部とを重合釜に仕込み
、撹拌してゴムを完全に溶解した。
Reference example 1 Polybutadiene rubber [trade name Diene 3 manufactured by Asahi Kasei Kogyo ■
5R) and 785 parts of styrene were charged into a polymerization pot and stirred to completely dissolve the rubber.

その後、重合釜に窒素を吹き込んでガス置換し、昇温し
て115℃にし、この温度に達すると同時に無水マレイ
ン酸(以下、MANという)22部およびベンゾイルパ
ーオキサイド(以下、BPOという)0.0071部を
321部のスチレンに溶解した第1の溶液を2時間50
分かけて定量的に滴下した。この時、重合系の粘度が著
しく低下し、転相したことを認めた。
Thereafter, nitrogen was blown into the polymerization reactor to replace the gas, and the temperature was raised to 115°C. As soon as this temperature was reached, 22 parts of maleic anhydride (hereinafter referred to as MAN) and 0.0 parts of benzoyl peroxide (hereinafter referred to as BPO) were added. A first solution of 0.0071 parts dissolved in 321 parts of styrene was heated at 50°C for 2 hours.
It was added dropwise quantitatively over several minutes. At this time, the viscosity of the polymerization system decreased significantly, and it was recognized that a phase inversion occurred.

この段階で重合系の少量をサンプリングし、固形分を測
定したところ、25,9%であった。また、この固形分
中のMAN含量を「高分子分析ハンドブック」日本分析
化学金錫、朝倉書店、P278(1985年)にしたが
つ°ζ分析測定したところ、6.8%であった。
At this stage, a small amount of the polymerization system was sampled and the solid content was determined to be 25.9%. Further, the MAN content in this solid content was measured by °ζ analysis according to "Polymer Analysis Handbook", Nippon Analytical Kagaku Kintin, Asakura Shoten, P278 (1985), and was found to be 6.8%.

つづいて、同温度でMAN57.8部およびBPoo、
0071部をスチレン321部に熔解した第2の溶液を
3時間かけて定量的に滴下した。滴下終了後、50℃ま
で急冷し、サンプリングして固形骨を測定したところ、
35.1%であった。重合液を減圧乾燥して、ゴム変性
樹脂を得た。
Subsequently, at the same temperature, 57.8 parts of MAN and BPoo,
A second solution prepared by dissolving 0071 parts in 321 parts of styrene was quantitatively added dropwise over 3 hours. After dropping, it was rapidly cooled to 50°C and sampled to measure solid bone.
It was 35.1%. The polymerization solution was dried under reduced pressure to obtain a rubber modified resin.

参考例2 つぎの第1表に示すように、第1の溶液と第2の溶液と
を合わせて、これを1段で5時間50分かけて添加する
ようにした以外は、参考例1の場合と同様に重合して、
固形分が36,2%の重合液を得、これを減圧乾燥して
、ゴム変性樹脂を得た。
Reference Example 2 As shown in Table 1 below, the procedure of Reference Example 1 was repeated, except that the first solution and the second solution were combined and added in one stage over a period of 5 hours and 50 minutes. Polymerize as in the case,
A polymerization solution having a solid content of 36.2% was obtained, and this was dried under reduced pressure to obtain a rubber modified resin.

参考例3〜6 重合釜仕込量、重合温度、第1段階および第2段階の各
滴下液の組成2滴下時間を、第1表に示すように変更し
た以外は、参考例1と同様にして重合し、その後減圧乾
燥して、ゴム変性樹脂を得た。
Reference Examples 3 to 6 The procedure was the same as in Reference Example 1, except that the amount charged in the polymerization pot, the polymerization temperature, the composition of each dropping liquid in the first stage and the second stage, and the two-dropping time were changed as shown in Table 1. The polymer was polymerized and then dried under reduced pressure to obtain a rubber-modified resin.

参考例7 ポリブタジェンゴム(参考例1で用いたものと同し)1
(10部とスチレン314部とα−メチルスチレン47
1部とを重合釜に仕込み、撹拌してゴムを完全に溶解し
た。その後、重合釜に窒素を吹き込んでガス置換し、昇
温しで110℃にし、この温度に達すると同時に、MA
N22部およびBPOo、07部を128部のスチレン
と193部のα−メチルスチレンとに溶解した第1の溶
液を、2時間52分かけて定量的に滴下した。この時、
重合系の粘度が著しく低下し、転相したごとを認めた。
Reference example 7 Polybutadiene rubber (same as that used in reference example 1) 1
(10 parts, 314 parts of styrene, and 47 parts of α-methylstyrene)
1 part was placed in a polymerization pot and stirred to completely dissolve the rubber. After that, nitrogen was blown into the polymerization reactor to replace the gas, and the temperature was raised to 110°C, and as soon as this temperature was reached, the MA
A first solution in which 22 parts of N and 0.7 parts of BPOo were dissolved in 128 parts of styrene and 193 parts of α-methylstyrene was quantitatively added dropwise over 2 hours and 52 minutes. At this time,
The viscosity of the polymerization system decreased significantly, and it was observed that a phase inversion occurred.

この段階で重合系の少量をザンプリングし、参考例1の
場合と同様にして固形分およびMAN含量を測定したと
ころ、固形分は28.5%、MAN含量は6.24%で
あった。
At this stage, a small amount of the polymerization system was sampled and the solid content and MAN content were measured in the same manner as in Reference Example 1, and the solid content was 28.5% and the MAN content was 6.24%.

つづいて、同温度で、MAN58部およびBPoo、0
7部をスチレン128部とα−メチルスチレン193部
とに溶解した第2の溶液を、3時間かけて定量的に滴下
した。滴下終了後、参考例1と同様にして固形分を測定
したところ、38.2%であった。重合液を減圧乾燥し
て、ゴム変性樹脂を得た。
Subsequently, at the same temperature, 58 parts of MAN and 0 parts of BPoo
A second solution prepared by dissolving 7 parts of styrene in 128 parts of styrene and 193 parts of α-methylstyrene was quantitatively added dropwise over 3 hours. After the dropping was completed, the solid content was measured in the same manner as in Reference Example 1 and found to be 38.2%. The polymerization solution was dried under reduced pressure to obtain a rubber modified resin.

以上の参考例1〜7にて製造した各ゴム変性樹脂につき
、そのゴム含量、MAN含量およびゴム分離後の樹脂分
のcpcによる重量平均分子量を、「高分子分析ハンド
ブック」日本分析化学金錫、朝倉書店、P27B (1
985年)にしたがって、分析測定した。また、2段階
塊状重合法を採用しなかった参考例2を除いて、各参考
例において転相前の第1段階で重合に関与した哨量体混
合物〔MANとスチレン(またはこれとα−メチルスチ
レン)との合計量〕中のMAN含量(Xl)と、転相後
の第2段階での同MAN含量(X2)とを、下記の式に
したがって計算した。これらの結果は、つぎの第2表に
示されるとおりであった。
For each rubber-modified resin produced in Reference Examples 1 to 7 above, the rubber content, MAN content, and weight average molecular weight by CPC of the resin after rubber separation were determined from "Polymer Analysis Handbook" Japan Analytical Chemistry Kintin, Asakura Shoten, P27B (1
Analytical measurements were carried out according to 985). In addition, except for Reference Example 2 in which the two-step bulk polymerization method was not adopted, in each Reference Example, the polymer mixture [MAN and styrene (or this and α-methyl The MAN content (Xl) in the total amount of styrene) and the MAN content (X2) in the second stage after phase inversion were calculated according to the following formula. These results were as shown in Table 2 below.

M。M.

a:第1段階での重合液の固形分 b:最終重合液の固形分 Z:重合釜へのゴム成分の仕込量 Ml :第1段階でのMANの滴下量 M2 :第2段階でのMANの滴下量 実施例1 塩化ビニル樹脂〔住人化学■製の商品名スミリット5X
−Jll”、重合度+、O5O:+と参考例Iで得たゴ
ム変性樹脂と各種の添加剤とを、下記の配合組成にてヘ
ンケル社製・す′−で混合した。
a: Solid content of the polymerization solution in the first stage b: Solid content of the final polymerization solution Z: Amount of rubber component charged into the polymerization pot Ml: Amount of MAN dropped in the first stage M2: MAN in the second stage Dripping amount Example 1 Vinyl chloride resin [trade name Sumirit 5X manufactured by Juju Chemical
-Jll'', polymerization degree +, O5O:+, the rubber modified resin obtained in Reference Example I, and various additives were mixed in a Henkel S'-- with the following composition.

塩化ヒニル樹脂        100部ゴム変性樹脂
          30部複合滑剤(ヘンケル社製の
     1部商品名G II −4) オクチルスズマレート(勝BE    1.5部化工社
製の商品名TM−188J) ステアリン酸カルシウム       1部3塩基性硫
酸鉛          2部つぎに、この混合物を表
面温度185℃に加熱された熱ロールで5分間混練して
シートとし、これを平板プレスを用いて190℃、  
100 kg/crAlの条件で10分間プレス成形し
て、耐熱性塩化ビニル系樹脂組成物からなる後記の各試
験に供するための試験片をそれぞれ作製した。
Hinyl chloride resin 100 parts Rubber modified resin 30 parts Composite lubricant (manufactured by Henkel, 1 part, trade name G II-4) Octyl tin malate (Katsu BE 1.5 parts, trade name TM-188J, manufactured by Kako Co., Ltd.) Calcium stearate 1 Part 3: 2 parts of basic lead sulfate Next, this mixture was kneaded for 5 minutes with a hot roll heated to a surface temperature of 185°C to form a sheet, which was then kneaded at 190°C using a flat plate press.
Press molding was carried out for 10 minutes under the condition of 100 kg/crAl to prepare test pieces made of heat-resistant vinyl chloride resin compositions for each test described below.

比較例1 参上例1でi(Iたゴム変性樹脂に代えて、参考例2で
得たゴム変性樹脂を同量用いた以外は、実施例1と同様
にして試験片を作製した。
Comparative Example 1 A test piece was prepared in the same manner as in Example 1, except that the same amount of the rubber modified resin obtained in Reference Example 2 was used in place of the rubber modified resin i (I) in Reference Example 1.

実施例2 参考例1で得たゴム変性樹脂に代えて、参考例3で得た
ゴム変性樹脂を40部用いた以外は、実施例1と同様に
して試験片を作製した。
Example 2 A test piece was prepared in the same manner as in Example 1, except that 40 parts of the rubber-modified resin obtained in Reference Example 3 was used instead of the rubber-modified resin obtained in Reference Example 1.

比較例2 参考例3で得たゴム変性樹脂に代えて、参考例4で得た
ゴム変性樹脂を同量用いた以外は、実施例2と同様にし
て試験片を作製した。
Comparative Example 2 A test piece was prepared in the same manner as in Example 2, except that the same amount of the rubber-modified resin obtained in Reference Example 4 was used in place of the rubber-modified resin obtained in Reference Example 3.

比較例3 参考例3で得たゴム変性樹脂の配合部数を3部に変更し
た以外は、実施例2と同様にして試験片を作製した。
Comparative Example 3 A test piece was prepared in the same manner as in Example 2, except that the number of parts of the rubber-modified resin obtained in Reference Example 3 was changed to 3 parts.

比較例4 参考例3で得たゴ1、変性樹脂の配合部数を2゜0部に
変更した以外は、実施例2と同様にして試験片を作製し
た。
Comparative Example 4 A test piece was prepared in the same manner as in Example 2, except that the blended amount of Go 1 obtained in Reference Example 3 and the modified resin was changed to 2.0 parts.

実施例3 参考例1で得たゴム変性樹脂に代えて、参考例5で得た
ゴム変性樹脂を100部用いた以外は、実施例1と同様
にして試験片を作製した。
Example 3 A test piece was prepared in the same manner as in Example 1, except that 100 parts of the rubber-modified resin obtained in Reference Example 5 was used in place of the rubber-modified resin obtained in Reference Example 1.

比較例5 参考例5で得たゴム変性樹脂に代えて、参考例6で得た
ゴム変性樹脂を同量用いた以外は、実施例3と同様にし
て試験片を作製した。
Comparative Example 5 A test piece was prepared in the same manner as in Example 3, except that the same amount of the rubber-modified resin obtained in Reference Example 6 was used in place of the rubber-modified resin obtained in Reference Example 5.

実施例4 参考例Iで得たゴム変性樹脂に代えて、参考例7で得た
ゴム変性樹脂を30部用いた以外は、実施例1と同様に
して試験片を作製した。
Example 4 A test piece was prepared in the same manner as in Example 1, except that 30 parts of the rubber modified resin obtained in Reference Example 7 was used in place of the rubber modified resin obtained in Reference Example I.

比較例6 ゴム変性樹脂を全く配合混練しなかった以外は、実施例
1と同様にして試験片を作製した。
Comparative Example 6 A test piece was prepared in the same manner as in Example 1, except that no rubber modified resin was mixed and kneaded.

以上の実施例1〜4および比較例1〜6で作製した各試
験片を用いて、以下の要領で、熱変形温度、アイゾツト
衝撃強度、メルトフロ−レ−1・を測定した。結果は、
後記の第3表に示されるとおりであった。なお、これら
の測定値は、いずれもその値が高いほど耐熱性、耐衝撃
性および加工性にずくれることを意味している。
Using each of the test pieces prepared in Examples 1 to 4 and Comparative Examples 1 to 6 above, heat distortion temperature, Izot impact strength, and melt flow rate 1. was measured in the following manner. Result is,
The results were as shown in Table 3 below. It should be noted that the higher the value of each of these measured values, the worse the heat resistance, impact resistance, and workability.

ヒカット軟化点: JIS K1206 、  B法ア
イゾツト衝撃強度: JIS [6871、ノツチ付き
上記の第3表の結果から明らかなように、本発明に係る
塩化ビニル系樹脂組成物は、良好な加工性を備えている
とともに、耐熱性および耐衝撃性に共にすぐれているこ
とが判る。
Hicut softening point: JIS K1206, B method Izot impact strength: JIS [6871, notched As is clear from the results in Table 3 above, the vinyl chloride resin composition according to the present invention has good processability. It can be seen that it has excellent heat resistance and impact resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)A)塩化ビニル系重合体100重量部に、B)ゴ
ム成分4〜40重量部の存在下、ビニル芳香族単量体6
0〜95重量%と不飽和ジカルボン酸無水物40〜5重
量%とからなる単量体混合物100重量部を、2段階塊
状重合法により、転相前の第1段階において重合に関与
する単量体混合物中の不飽和ジカルボン酸無水物の割合
が2〜11重量%の範囲、転相後の第2段階において上
記同様の不飽和ジカルボン酸無水物の割合が12〜45
重量%の範囲となるように、グラフト重合させて得られ
るゴム変性樹脂5〜150重量部を、 配合したことを特徴とする耐熱性塩化ビニル系樹脂組成
物。
(1) In the presence of A) 100 parts by weight of a vinyl chloride polymer, B) 4 to 40 parts by weight of a rubber component, 6 parts by weight of a vinyl aromatic monomer.
100 parts by weight of a monomer mixture consisting of 0 to 95% by weight and 40 to 5% by weight of an unsaturated dicarboxylic acid anhydride was added by a two-step bulk polymerization method to remove the monomers involved in the polymerization in the first step before phase inversion. The proportion of unsaturated dicarboxylic acid anhydride in the mixture is in the range of 2 to 11% by weight, and the proportion of the same unsaturated dicarboxylic acid anhydride in the second stage after phase inversion is in the range of 12 to 45% by weight.
1. A heat-resistant vinyl chloride resin composition, characterized in that 5 to 150 parts by weight of a rubber-modified resin obtained by graft polymerization is blended within a range of 5 to 150 parts by weight.
JP11558288A 1988-05-12 1988-05-12 Heat-resistant vinyl chloride resin composition Pending JPH01284541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11558288A JPH01284541A (en) 1988-05-12 1988-05-12 Heat-resistant vinyl chloride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11558288A JPH01284541A (en) 1988-05-12 1988-05-12 Heat-resistant vinyl chloride resin composition

Publications (1)

Publication Number Publication Date
JPH01284541A true JPH01284541A (en) 1989-11-15

Family

ID=14666160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11558288A Pending JPH01284541A (en) 1988-05-12 1988-05-12 Heat-resistant vinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JPH01284541A (en)

Similar Documents

Publication Publication Date Title
US4608414A (en) Thermoplastic resin composition containing an imide polymer and graft copolymer
US4879343A (en) Heat and impact resistant resin composition
JPS58129043A (en) Thermoplastic resin composition
JPS58101141A (en) Thermoplastic resin composition
JPH0554500B2 (en)
JPH11217411A (en) Rubber-modified styrene-based resin composition
JPH01284541A (en) Heat-resistant vinyl chloride resin composition
JPS61163949A (en) Thermoplastic resin composition
JPS5813650A (en) Thermoplastic resin composition
JPH02265944A (en) Vinyl chloride resin composition
JPH04122759A (en) Vinyl chloride resin composition
JPH02175740A (en) Vinyl chloride resin composition
JPS6317949A (en) Heat-resistant resin composition
JPH02265945A (en) Vinyl chloride resin composition
JPH0262585B2 (en)
JP3311137B2 (en) Thermoplastic resin composition
JPS59193950A (en) Delustered polycarbonate based resin composition
JPH0441548A (en) Thermoplastic resin composition
JP2005298774A (en) Resin composition and heat-resistant resin composition using the same
JPH02110155A (en) Heat-resistant vinyl chloride resin composition
JPH0339347A (en) Vinyl chloride-based resin composition
JPH07157624A (en) Thermoplastic resin composition
JPS632282B2 (en)
JPH02208345A (en) Vinyl chloride resin composition
JPH0794592B2 (en) Thermoplastic resin composition