JPH01284371A - Production of gas-shielding formed polystyrene vessel - Google Patents

Production of gas-shielding formed polystyrene vessel

Info

Publication number
JPH01284371A
JPH01284371A JP63113872A JP11387288A JPH01284371A JP H01284371 A JPH01284371 A JP H01284371A JP 63113872 A JP63113872 A JP 63113872A JP 11387288 A JP11387288 A JP 11387288A JP H01284371 A JPH01284371 A JP H01284371A
Authority
JP
Japan
Prior art keywords
coating
vessel
container
latex
polyvinylidene chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63113872A
Other languages
Japanese (ja)
Other versions
JPH0543432B2 (en
Inventor
Toshiki Ikeda
池田 敏喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP63113872A priority Critical patent/JPH01284371A/en
Publication of JPH01284371A publication Critical patent/JPH01284371A/en
Publication of JPH0543432B2 publication Critical patent/JPH0543432B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform gas-shielding coating film on the inside of a foamed polystyrene vessel by rotating the vessel at a relatively low speed and spraying polyvinylidene chloride latex on the inside of the vessel to be coated with airless spray nozzles. CONSTITUTION:A vessel 1 obtd. by foam-molding foamable polystyrene resin beads is rotated at a low speed of 300-2,000r.p.m. Polyvinylidene chloride latex contg. 40-60wt.% co- or terpolymer of 70-90% polyvinylidene chloride with 10-30% methyl acrylate and/or acrylonitrile is sprayed on the inside of the vessel 1 to be coated for 50-500msec with airless spray nozzles 2, 3 positioned toward the inside to form a film shielding moisture, preventing the permeation of oxygen and ensuring improved flavor retentivity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はガス遮断性発泡ポリスチレン容器の製法に関
する。さらに詳しくは発泡性ポリスチレン系樹脂粒子の
発泡成形からなる食品等の容器であって、食品等の保全
のため、水分の遮断、保持、酸素の透過防止、保香、風
味の保持性等を向上したガス遮断性容器の製法に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for manufacturing a gas-barrier expanded polystyrene container. More specifically, it is a food container made of foam-molded expandable polystyrene resin particles, which has improved moisture barrier and retention properties, oxygen permeation prevention, aroma retention, flavor retention, etc. in order to preserve food products. The present invention relates to a method for producing a gas-barrier container.

(ロ)従来の技術 即席麺用のカップ状容器等食品の包装容器として、発泡
ポリスチレンm脂粒子で構成された側壁および底壁から
なる容器が使用されている。この発泡ポリスチレン製容
器は、熱湯を注入したときの断熱性か侵れると共に軽量
であり量産性が良く安価で使い捨て可能なものとして広
く普及している。しかしながら、上記発泡ポリスチレン
製容器の場合、水蒸気や酸素の透過性が高く内部の食品
等に水分が含有され粉末スープを固化したり、酸素の侵
入で油脂分か酸化したり、食品の変質を促し、食味等を
損なう欠点があった。
(b) Prior Art Containers having side walls and bottom walls made of expanded polystyrene fat particles are used as food packaging containers such as cup-shaped containers for instant noodles. This expanded polystyrene container is widely used as a container that has good insulation properties when hot water is poured into it, is lightweight, is easy to mass produce, is inexpensive, and is disposable. However, in the case of the above-mentioned expanded polystyrene containers, the permeability of water vapor and oxygen is high, and the food inside may contain moisture, solidifying the powdered soup, or oxidizing fats and oils due to oxygen intrusion, promoting deterioration of the quality of the food. However, there were drawbacks such as loss of taste.

そこで発泡ポリスチレン製容器の内面を、ガス遮断性の
高い素材として知られている塩化ビニリデン系樹脂層で
被覆することが行われている。この方法は、上記発泡ポ
リスチレン製容器を2,000〜3.00Orpm  
の高速で一様に回転しておき、その内側に塩化ビニリデ
ンラテックスを通常のエアスプレにより噴霧し、上記回
転力により延展させると共に余剰のラテックスを振り切
ることにより塗工し波膜形成さける方法である(特公昭
54−35531号公報)。
Therefore, the inner surface of a container made of expanded polystyrene is coated with a layer of vinylidene chloride resin, which is known as a material with high gas barrier properties. In this method, the foamed polystyrene container is heated at 2,000 to 3.00 Orpm.
This method avoids the formation of a corrugated film by spraying vinylidene chloride latex on the inside of the rubber plate by regular air spray, spreading it using the rotational force, and shaking off the excess latex. (Special Publication No. 54-35531).

(ハ)発明が解決しようとする課題 しかしながら、上記方法は容器の内側のみに塗工が限定
されており、さらに高速回転による遠心力でラテックス
を流し拡げるものなので、どうしても容器底部が薄く、
側壁のリップ部が厚くなる傾向かあり一様な塗膜肉厚が
得られない。また個々の塗工樹脂量が一定になり難い。
(c) Problems to be Solved by the Invention However, the above method is limited to coating only the inside of the container, and furthermore, since the latex is spread and spread by centrifugal force due to high-speed rotation, the bottom of the container is inevitably thin.
The lip of the side wall tends to become thicker, making it impossible to obtain a uniform coating thickness. Further, it is difficult to keep the amount of each coating resin constant.

この発明はかかる状況に鑑みなされf二色のであり、食
品用の包装容器として重要なガス遮断性に優れると共に
断熱性や強度、形状精度等の諸性能にも優れる発泡ポリ
スチレン容器の製法を提供しようとするものである。
This invention was developed in view of the above circumstances, and it is an object of the present invention to provide a method for producing a polystyrene foam container that has excellent gas barrier properties, which are important for food packaging containers, and also has excellent properties such as heat insulation, strength, and shape accuracy. That is.

(ニ)課題を解決するための手段 かくしてこの発明によれば、発泡性ポリスチレン系樹脂
粒子で発泡成形された容器の少なくとも内面の全体にわ
たって、塩化ビニリデンラテックスの塗工膜を形成する
に際し、上記容器を300〜2.00Orpm、で回転
させつつ所望の塗工面に対して噴霧口を位置さけたエア
レススプレノズルを用いて、ポリ塩化ビニリデン70〜
90%とメチルアクリレートおよび/またはアクリロニ
トリルlO〜30%との二元らしくは三元共重合樹脂分
が40〜60重量%で含有された塩化ビニリデンラテッ
クスを、50〜500m5ecの吐出時間で噴霧するこ
とにより、均一なガス遮断性塗布膜を形成ずろことを特
徴とするガス遮断性発泡ポリスチレン容器の製法か提供
される。
(d) Means for Solving the Problems Thus, according to the present invention, when forming a coating film of vinylidene chloride latex over at least the entire inner surface of a container foam-molded with expandable polystyrene resin particles, Using an airless spray nozzle with the spray nozzle positioned at the desired coating surface while rotating at 300 to 2.00 rpm,
Spray vinylidene chloride latex containing 40 to 60% by weight of a binary or tertiary copolymer resin of 90% and methyl acrylate and/or acrylonitrile IO to 30% with a discharge time of 50 to 500 m5ec. Provided is a method for manufacturing a gas-barrier expanded polystyrene container characterized by forming a uniform gas-barrier coating film.

この発明の方法は、発泡性ポリスチレン系Mit脂粒子
の発泡成形体を比較的低速度で回転しつつ、これにエア
レススプレノズルを用いて塩化ビニリデンラテックスを
塗工することを特徴とする。
The method of the present invention is characterized in that vinylidene chloride latex is applied to a foam molded product of expandable polystyrene-based Mit resin particles using an airless spray nozzle while rotating the product at a relatively low speed.

この発明において塗工対象となる容器は、発泡性ポリス
チレン系樹脂粒子を発泡成形して得られるものであり、
さらに開口を有するものが好ましい。上記発泡性ポリス
チレン系樹脂粒子としては、スチレン重合体、メチルス
チレン重合体、スチレン−アクリロニトリル共重合体、
スチレンとアクリル酸エステルまたはメタクリル酸エス
テルとの共重合から選択される1種の樹脂に、該樹脂の
軟化点より低い沸点を存する炭化水素からなる発泡剤を
1〜10重量%を含有したしのが好ましい。
In this invention, the container to be coated is obtained by foam molding expandable polystyrene resin particles,
Furthermore, one having an opening is preferable. The expandable polystyrene resin particles include styrene polymer, methylstyrene polymer, styrene-acrylonitrile copolymer,
One type of resin selected from copolymerization of styrene and acrylic ester or methacrylic ester contains 1 to 10% by weight of a blowing agent consisting of a hydrocarbon having a boiling point lower than the softening point of the resin. is preferred.

この発明において、上記容器に対する塗工は、エアレス
スプレノズルを用いて行われる。ここでエアレススプレ
とは通常、一般金属塗装のみならずプラスチック、皮、
装飾品等の塗装に使用されるものであり、塗工液に直接
加圧して、ノズルより吐出させ、そのエネルギで微粒化
し、対象物まで遅び、付着させるものである。すなわち
比較的高い加圧(40〜100kg/cm’)によって
ノズルから高速に放出されるとき、大気と激しく衝突し
、霧化する方式であり、通常のエアスプレに比べて、放
出速度か数倍速く、成形品表面の発泡性樹脂粒子間にあ
る凹部への入り込みが大であり、また塗工付着効率が約
30%程度高い等の利点を有している。さらにこのエア
レススプレの利点は、塗工樹脂量の調節を吐出時間を設
定することにより精度良く行うことができることである
In this invention, the coating on the container is performed using an airless spray nozzle. Here, airless spray is usually used not only for general metal coatings, but also for plastic, leather, etc.
It is used for painting decorative items, etc., and the coating liquid is directly pressurized and discharged from a nozzle, and the energy is used to atomize it, which is then delayed to the object and adheres to it. In other words, when it is released from a nozzle at high speed under relatively high pressure (40 to 100 kg/cm'), it collides violently with the atmosphere and becomes atomized, and the ejection speed is several times faster than normal air spray. It has the advantage that it can penetrate into the recesses between the foamable resin particles on the surface of the molded article to a large extent, and that the coating adhesion efficiency is about 30% higher. A further advantage of this airless spray is that the amount of coating resin can be adjusted with high precision by setting the discharge time.

この発明において、上記エアレススプレノズルに用いら
れる塗工液としては、対象物の容器に濡れ易く、塗工液
の波型れが生じにくく、成膜性が良い等の使用性が良好
で、かつ、ガス1!!断性、塗膜とポリスチレン系粒子
の発泡成形品との密着接合性、塗膜の強度、発泡成形品
に追従できるたわみ性、耐プロブキング性、ヒートシー
ル性、耐候性またはR製塗工液の使用時の安定性から、
所望の塩化ビニリデンラテックスが用いられる。該塩化
ビニリデンラテックスは、アクリレート、メタクリレー
ト、アクリロニトリル、塩化ビニルとの二元もしくは三
元の共重合物でR製される。すなわちポリ塩化ビニリデ
ン70〜901ft、%/メタクリレートlO〜30重
量%の共重合体、またはポリ塩化ヒニリデン70〜80
重量%/メタクリレートlO〜20重量%/アクリロニ
トリル10〜20重量%の共重合体、またはポリ塩化ビ
ニリデンTO〜90重量%/アクリロニトリル10〜3
0重量%の共重合体が適当である。ラテックスは、塗工
において発泡成形品との濡れ性が良く、塗膜のビンポー
ルおよびクラックがなく、かつ、液垂れ(縞模様になる
状態)が生じにくく、塗膜成形(固化と水分乾燥)が適
当な速度で行われることが必要であり、この点から、ラ
テックスの樹脂分は濃度穴の方が望ましいが、ラテック
スの保存性、使用時の安定性も必要であり、樹脂分は4
0〜60重量%か適当であり、さらに45〜55重量%
が好ましい。塗工時のラテックスのはじきや塗膜のビン
ボール等の発生は湿潤の部分的欠陥によるものであるが
、この点は界面活性剤の適当な選択によって表面張力の
低下することで改善される。またこれらの界面活性剤は
重合時の乳化剤またはラテックス保存性の乳化安定剤と
して不可欠となる。従ってこの発明において上記ラテッ
クスに用いられる界面活性剤及しては、アニオン系界面
活性剤としては、ソジウムアルキルアリールスルホネー
ト、ソジウムアルキルスルホネート、ソジウムアルキル
サルフェート、アルキルナフタリンスルホネート等が、
またノニオン系界面活性剤としては、ポリオキシエチレ
ンアルキルエーテル、ポリオキシエチレンアルキルフェ
ノールエーテル、ポリエチレングリコール高級脂肪酸エ
ステル、ソルビタン高級脂肪酸エステル等が挙げられる
。上記アニオン系とノニオン系の界面活性剤は併用され
て乙よく、これらの界面活性剤はラテックス中に0.0
5〜1.0重量%で使用されることが好ましい。この場
合ラテックス樹脂粒子径は0.1〜0.2μmとなり、
ラテックス表面張力は30〜60dyne/cm (a
t20℃)の範囲となる。
In the present invention, the coating liquid used in the airless spray nozzle has good usability, such as being easy to wet the container of the object, hard to cause waving of the coating liquid, and having good film forming properties. , Gas 1! ! breakage properties, adhesion between the coating film and the foamed molded product made of polystyrene particles, strength of the coating film, flexibility that can follow the foamed molded product, probing resistance, heat sealability, weather resistance, or R coating fluid. From stability during use,
Any desired vinylidene chloride latex is used. The vinylidene chloride latex is made of a binary or ternary copolymer of acrylate, methacrylate, acrylonitrile, and vinyl chloride. That is, a copolymer of polyvinylidene chloride 70 to 901 ft, %/methacrylate lO to 30% by weight, or polyvinylidene chloride 70 to 80
Copolymer of wt%/methacrylate lO~20wt%/acrylonitrile 10~20wt%, or polyvinylidene chloride TO~90wt%/acrylonitrile 10~3
0% by weight of copolymer is suitable. Latex has good wettability with foamed molded products during coating, has no cracks or cracks in the coating film, is less likely to drip (striped pattern), and is easy to form (solidify and dry moisture). It is necessary to conduct the process at an appropriate speed, and from this point of view, it is preferable to have a concentration hole for the resin content of the latex, but the storage stability of the latex and stability during use are also required, and the resin content is 4.
0 to 60% by weight or appropriate, and further 45 to 55% by weight
is preferred. Occurrence of latex repelling and coating film bubbles during coating is due to local wetting defects, but this can be improved by lowering the surface tension by appropriately selecting a surfactant. These surfactants are also essential as emulsifiers during polymerization or emulsion stabilizers during latex storage. Therefore, the surfactants and anionic surfactants used in the latex in this invention include sodium alkylaryl sulfonate, sodium alkyl sulfonate, sodium alkyl sulfate, alkylnaphthalene sulfonate, etc.
Examples of nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyethylene glycol higher fatty acid ester, and sorbitan higher fatty acid ester. The above-mentioned anionic and nonionic surfactants can be used together, and these surfactants contain 0.0% in the latex.
Preferably, it is used in an amount of 5 to 1.0% by weight. In this case, the latex resin particle diameter is 0.1 to 0.2 μm,
Latex surface tension is 30 to 60 dyne/cm (a
t20°C).

この発明において前述の容器に対して前記エアレススプ
レノズルを用いて上記塗工液を塗工する場合、前記容器
を低速度で回転させつつ、その容器の少なくとも内面の
全面にわたってむらのないように行なわれる。上記低速
度とは通常エアスプレノズルを用いて行われる塗工時よ
りし低い速度であり、300〜2.OOOrpm、の範
囲から選択される。
In this invention, when applying the above-mentioned coating liquid to the above-mentioned container using the above-mentioned airless spray nozzle, the above-mentioned container is rotated at a low speed and the coating is applied evenly over at least the entire inner surface of the container. It will be done. The above-mentioned low speed is a speed lower than that when coating is normally performed using an air spray nozzle, and is 300 to 2. OOOrpm.

この塗工にあたっては上記エアレススプレノズルは所望
の塗工面に対してむらなく塗工できるよう噴霧口を位置
させて設置される。上記エアレススプレノズルを1本で
用いる場合は、所望の塗工面、例えば側面および底面毎
に所定回数の塗工工程を操り返して行われるのが好まし
いが、所望の塗工面毎に対して噴霧口を位置させ、かつ
むらなく塗工するに足る数のエアレススプレノズルを用
いて同時に塗工するようになされるものであってもよい
。またさ、らに開口を有する容器の場合はその外面が塗
工対象とされてもよい。上記のごとく所定数で設置され
るエアレススプレノズルによる1回の吐出時間は、前述
のラテックスを必要最小限量で正確に塗工できかつ塗膜
厚みのバラツキの少ない被膜形成か達成できるように調
製される。この−例として、容器に塗布された上記ラテ
ックスが流れて縞模様になるのを防ぐ限度量を40g/
m”とすると、上記容器の回転速度が300〜2.00
Orpm、の範囲に調節された場合、吐出時間は50〜
500m5ecの範囲に設定されることが好ましいもの
として挙げられる。また上記限度量を2回以上に分けて
吐出する方が、より均一でかつガス遮断性能が良好な塗
膜が形成される点で好ましい。以上のことは後述する実
施例の記載か参照される。
During this coating, the airless spray nozzle is installed with its spray port positioned so that the desired coating surface can be coated evenly. When using one airless spray nozzle, it is preferable to repeat the coating process a predetermined number of times for each desired coating surface, for example, the side surface and the bottom surface. The coating may be simultaneously applied using a sufficient number of airless spray nozzles to position the spray nozzle and apply the coating uniformly. Furthermore, in the case of a container having an opening, the outer surface thereof may be coated. The time required for one discharge from the airless spray nozzles, which are installed in a predetermined number as described above, is adjusted so that the aforementioned latex can be accurately applied in the minimum necessary amount and a film can be formed with little variation in coating thickness. Ru. As an example of this, we set a limit of 40 g/l to prevent the latex applied to the container from running and forming stripes.
m", the rotation speed of the container is 300 to 2.00
When adjusted to the range of Orpm, the discharge time is 50~
It is preferable to set it within a range of 500 m5ec. Further, it is preferable to discharge the above-mentioned limit amount in two or more doses, since a coating film that is more uniform and has good gas barrier performance is formed. For the above details, refer to the description of the embodiments described later.

この発明において、上記スプレによる塗工前に、対象と
なる発泡成形品を予熱することが、塗工後の成膜時にピ
ンホールやクラック等を抱き込まないようにする点で好
ましい。また上記塗工後におけろ成膜化に際しては、塗
工時よりも低速(例えばlO〜2Orpm、 )で発泡
成形品を回転しながら熱風で乾燥することが好ましい。
In the present invention, it is preferable to preheat the target foam molded product before coating by the above-mentioned spray method in order to prevent pinholes, cracks, etc. from being included during film formation after coating. Further, when forming a film after the above-mentioned coating, it is preferable to dry the foam molded product with hot air while rotating it at a lower speed (for example, 10 to 20 rpm) than at the time of coating.

この熱風乾燥時の条件は、基材の発泡成形品が発泡膨張
しない温度範囲に限られ、例えば90〜100℃とされ
ろ。また加熱時間は熱風吹き出し口の面積・風量によっ
て異なるが、60〜120sec程度が適当である。ま
た、発泡成形品を量産しているときの塗工においては、
カップを積み重ねるスクッキング方式か採られ、塗膜に
よるブロッキング(粘着)の防止が必要となる。このブ
ロッキングは塗膜の乾燥不足に伴い発生するので乾燥を
充分しておく必要がある。さらに乾燥後、ポリ塩化ビニ
リデンの結晶化を完結させることがガス遮断性の点から
好ましく、40〜60℃で10〜40時間キユアリング
を行うことが好ましい。
The conditions for this hot air drying are limited to a temperature range in which the foamed molded product of the base material does not expand and expand, for example, 90 to 100°C. Further, the heating time varies depending on the area of the hot air outlet and the air volume, but approximately 60 to 120 seconds is appropriate. In addition, in coating when mass producing foam molded products,
A cooking method is used in which the cups are stacked, and it is necessary to prevent blocking (adhesion) due to the coating film. This blocking occurs due to insufficient drying of the coating film, so it is necessary to ensure sufficient drying. Further, after drying, it is preferable to complete the crystallization of polyvinylidene chloride from the viewpoint of gas barrier properties, and it is preferable to perform curing at 40 to 60° C. for 10 to 40 hours.

なお、上述した発泡性ポリスチレン系樹脂粒子とその発
泡成形品には従来品がそのまま適用できる。また発泡倍
数は約5〜65倍の発泡成形品が好ましい。またこの発
明の方法に供する発泡成形品は、容器体形状であればカ
ップ状、箱状、片状、皿状等どのようなものであってら
よい。
Note that conventional products can be applied as they are to the above-mentioned expandable polystyrene resin particles and foam molded products thereof. Further, a foam molded product having an expansion ratio of about 5 to 65 times is preferable. Further, the foamed molded product to be subjected to the method of the present invention may have any container shape, such as a cup shape, a box shape, a piece shape, a plate shape, etc.

(ホ)作用 この発明によれば、300〜2,000rpm、の低速
度で回転される発泡性ポリスチレン系樹脂粒子発泡成形
容器に、ポリ塩化ビニリデン70〜90%とメチルアク
リレートおよび/またはアクリロニトリル10〜30%
との二元もしくは三元共重合樹脂分が40〜60重量%
で含有された塩化ビニリデンラテックスを、エアレスス
プレノズルにより50〜500m5ecの吐出時間で噴
霧することにより、上記容器の少なくとも内面が一様に
塗布されてかつ塗布された塗布液が遠心力による不均一
な分布も生じずに、厚みの均一なガス遮断性塗膜が形成
されることとなる。
(e) Effect According to the present invention, 70 to 90% polyvinylidene chloride and 10 to 10% of methyl acrylate and/or acrylonitrile are added to a foam molded container of expandable polystyrene resin particles that is rotated at a low speed of 300 to 2,000 rpm. 30%
Binary or tertiary copolymer resin content with 40 to 60% by weight
By spraying the vinylidene chloride latex contained in the above with an airless spray nozzle for a discharge time of 50 to 500 m5ec, at least the inner surface of the container is uniformly coated, and the applied coating liquid is free from non-uniformity due to centrifugal force. A gas barrier coating film with a uniform thickness is formed without any distribution.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 発泡性ポリスチレン粒子である平均粒径0.4mmφの
エスレンビーズHK(ペンタンs、o重量%含有)を常
圧飽和水蒸気中で撹拌しながら嵩密度90g/(lに予
備発泡し、その発泡粒を450m(カップ状の成型型窩
に充填し、水蒸気圧2.2kg/cm”で間接加熱2.
0sec、直接加熱2.0secで成形を行い、冷却水
を3.5sec通し、型窩を取り外し発泡粒が融着一体
化したカップ状成形品を得た。
(f) Example Expandable polystyrene particles, Eslen beads HK (containing pentane S, O wt %) with an average particle diameter of 0.4 mm, are pre-foamed to a bulk density of 90 g/(l) while stirring in normal pressure saturated steam, The foamed beads were filled into a 450 m (cup-shaped mold cavity) and indirectly heated at a water vapor pressure of 2.2 kg/cm.
Molding was performed with direct heating for 0 sec and 2.0 sec, cooling water was passed for 3.5 sec, and the mold cavity was removed to obtain a cup-shaped molded product in which the foam particles were fused and integrated.

塩化ビニリデン80重量%、メチルアクリレート20重
量%の比率の共重合体をソジウムアルキルスルホネート
およびポリエチレングリコール高級脂肪酸で乳化分散さ
せた樹脂分50%のラテックスを調製した。
A latex with a resin content of 50% was prepared by emulsifying and dispersing a copolymer containing 80% by weight of vinylidene chloride and 20% by weight of methyl acrylate with sodium alkyl sulfonate and polyethylene glycol higher fatty acid.

上記塩化ビニリデンラテックスを、前記カップ状成形品
の外面に塗工するにあたり、第1図の模式図に示される
ようカップ状成形品(1)の側面方向および底部方向に
向かって設置された2本のエアレススプレノズル(2X
3)(いずれもノードソン社、タイプ713−201W
/RES)を用い、2段ピストンポンプで液圧40kg
/am”とし、上記成形品(1)をi、ooorpm、
の速度で回転させ、これに対して、上記各ノズルの吐出
時間をそれぞれ、ノズル(2)=320msec、ノズ
ル(3) : 150m5ecに設定して塗工した。
When applying the vinylidene chloride latex to the outer surface of the cup-shaped molded product, two tubes were installed toward the side and bottom of the cup-shaped molded product (1) as shown in the schematic diagram in FIG. airless spray nozzle (2X
3) (both Nordson, type 713-201W)
/RES) and a two-stage piston pump with a hydraulic pressure of 40 kg.
/am”, and the above molded product (1) is i, ooorpm,
The discharge time of each nozzle was set to 320 msec for nozzle (2) and 150 msec for nozzle (3) for coating.

スプレ塗工後、90℃の熱風を吹き出し口面積15cm
’から風速5m/seaで、lOrpm、で回転してい
る塗工カップに吹き付け、120sec乾燥した。
After spray coating, blow out 90℃ hot air with an outlet area of 15cm.
It was sprayed onto a coating cup rotating at a wind speed of 5 m/sea and lOrpm, and dried for 120 seconds.

上記塗工工程を2回繰り返し、1カツプあたりポリ塩化
ビニリデン系樹脂1.0=1.1gr付着のほぼ均一な
20〜25μm肉厚の塗膜を形成した。更に該塗工樹脂
の結晶化完結のため、40℃で40時間キユアリングを
行い、ガス遮断性の発泡ポリスチレン製カップを得た。
The above coating process was repeated twice to form a substantially uniform coating film having a thickness of 20 to 25 μm and adhering 1.0=1.1 gr of polyvinylidene chloride resin per cup. Furthermore, in order to complete the crystallization of the coating resin, curing was performed at 40° C. for 40 hours to obtain a gas-barrier foamed polystyrene cup.

以上の工程を経て製造されたカップは、発泡ポリスチレ
ン成形品とポリ塩化ビニリデン塗膜の接合一体化らよく
、カップ同志のスタッキング時のブロッキングもなく、
製造面、用途面で回答支障をきたすものではなかった。
The cup manufactured through the above process has a good integration of the foamed polystyrene molded product and the polyvinylidene chloride coating, and there is no blocking when stacking the cups together.
There was no problem in terms of manufacturing or usage.

そして水蒸気透過試験で当ガス遮断性カップの透過速度
は30℃、75%R)Iで1.3gr/+”24HR5
であり、従来のポリ塩化ビニリデン塗工しないカップの
透過量45〜50g/Ill″に比べて著しく水蒸気遮
断性が高いことが実証された。
In a water vapor permeation test, the permeation rate of this gas barrier cup was 1.3gr/+"24HR5 at 30℃ and 75% R)I.
It was demonstrated that the water vapor barrier property was significantly higher than that of a conventional cup not coated with polyvinylidene chloride, which had a permeation amount of 45 to 50 g/Ill''.

(ト)発明の効果 この発明によれば、これまで通常の発泡性ポリスチレン
系樹脂粒子より発泡成形された容器に、ポリ塩化ビニリ
デンラテックスをスプレ塗工し成膜させ、密着一体化し
た二重構造容器を製造することでガス遮断性の良い容器
を得ることができる。
(G) Effects of the Invention According to this invention, polyvinylidene chloride latex is spray-coated to form a film on a container that has conventionally been foam-molded from ordinary expandable polystyrene resin particles, resulting in a double-layered structure that is tightly integrated. By manufacturing the container, a container with good gas barrier properties can be obtained.

従って即席麺等の食品容器として必要なガス遮断性をポ
リ塩化ビニリデン塗膜によって良好に発揮すると同時に
発泡成形体によって断熱性や形状維持性をも良好に発揮
できることとなり、極めて商品価値の高い容器を製造で
きろことになる。
Therefore, the polyvinylidene chloride coating film provides excellent gas barrier properties necessary for containers for foods such as instant noodles, while the foam molding also provides excellent heat insulation and shape retention properties, creating containers with extremely high commercial value. It will be possible to manufacture it.

またこの発明の方法をポリスチレン系発泡シ−トに用い
ることにより、従来ポリ塩化ビニリデンフィルムをラミ
ネートしたシート酸形の加工時における延伸?こよって
、一定方向に対する強度が弱くなったり、裂けやすくす
る欠点を解消することができる。
Furthermore, by applying the method of the present invention to a polystyrene foam sheet, it is possible to improve the stretching during processing of conventional acid-form sheets laminated with polyvinylidene chloride film. Therefore, it is possible to eliminate the disadvantages of weakening the strength in a certain direction and making it easy to tear.

またさらに深い容器や複雑な形状の容器等にも簡便に塗
工てきる方法である。
It is also a method that can be easily applied to deeper containers or containers with complicated shapes.

以上この発明の方法は、発泡性ポリスチレン系樹脂粒子
の発泡成形により得られる発泡成形品に対し、吸湿、脱
湿、減量、香気の散逸、空気酸化による風味の低下等の
防止に優れた発泡容器を提供することかできる。
As described above, the method of the present invention provides a foam container that is excellent in preventing moisture absorption, dehumidification, weight loss, aroma dissipation, deterioration of flavor due to air oxidation, etc. for foam molded products obtained by foam molding of expandable polystyrene resin particles. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の一実施例の塗工工程のエアレ
ススプレノズルの配置を示す模式図である。 (1)・・・・・・カップ状発泡成形品、(2)、(3
)・・・・・・エアレススプレノズル。 21 図
FIG. 1 is a schematic diagram showing the arrangement of airless spray nozzles in the coating process of one embodiment of the method of the present invention. (1)...Cup-shaped foam molded product, (2), (3
)...Airless spray nozzle. 21 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、発泡性ポリスチレン系樹脂粒子で発泡成形された容
器の少なくとも内面の全体にわたって、塩化ビニリデン
ラテックスの塗工膜を形成するに際し、上記容器を30
0〜2,000rpm.で回転させつつ所望の塗工面に
対して噴霧口を位置させたエアレススプレノズルを用い
て、ポリ塩化ビニリデン70〜90%とメチルアクリレ
ートおよび/またはアクリロニトリル10〜30%との
二元もしくは三元共重合樹脂分が40〜60重量%で含
有された塩化ビニリデンラテックスを、50〜500m
secの吐出時間で噴霧することにより、均一なガス遮
断性塗布膜を形成することを特徴とするガス遮断性発泡
ポリスチレン容器の製法。
1. When forming a coating film of vinylidene chloride latex over at least the entire inner surface of a container foam-molded with expandable polystyrene resin particles,
0-2,000rpm. Using an airless spray nozzle with the spray nozzle positioned against the desired coating surface while rotating at 50 to 500 m of vinylidene chloride latex containing 40 to 60% by weight of polymer resin.
A method for producing a gas-barrier expanded polystyrene container, characterized in that a uniform gas-barrier coating film is formed by spraying with a discharge time of sec.
JP63113872A 1988-05-10 1988-05-10 Production of gas-shielding formed polystyrene vessel Granted JPH01284371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113872A JPH01284371A (en) 1988-05-10 1988-05-10 Production of gas-shielding formed polystyrene vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113872A JPH01284371A (en) 1988-05-10 1988-05-10 Production of gas-shielding formed polystyrene vessel

Publications (2)

Publication Number Publication Date
JPH01284371A true JPH01284371A (en) 1989-11-15
JPH0543432B2 JPH0543432B2 (en) 1993-07-01

Family

ID=14623227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113872A Granted JPH01284371A (en) 1988-05-10 1988-05-10 Production of gas-shielding formed polystyrene vessel

Country Status (1)

Country Link
JP (1) JPH01284371A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997014506A1 (en) * 1995-10-14 1997-04-24 Ppg Industries, Inc. Method and device for applying sprayable lacquers to the inner surface of unilaterally open packaging, and the corresponding internally lacquered packaging
JP2006117886A (en) * 2004-10-25 2006-05-11 Jsp Molding Kk Internal mold foaming particulate molded product of waterproofness
WO2021010002A1 (en) 2019-07-17 2021-01-21 株式会社Tbm Laminated structure, food packaging container, methods for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997014506A1 (en) * 1995-10-14 1997-04-24 Ppg Industries, Inc. Method and device for applying sprayable lacquers to the inner surface of unilaterally open packaging, and the corresponding internally lacquered packaging
JP2006117886A (en) * 2004-10-25 2006-05-11 Jsp Molding Kk Internal mold foaming particulate molded product of waterproofness
WO2021010002A1 (en) 2019-07-17 2021-01-21 株式会社Tbm Laminated structure, food packaging container, methods for producing same
US11958671B2 (en) 2019-07-17 2024-04-16 Tbm Co., Ltd. Laminated structure, food packaging container, and method for producing the same

Also Published As

Publication number Publication date
JPH0543432B2 (en) 1993-07-01

Similar Documents

Publication Publication Date Title
US20070017440A1 (en) System, apparatus and process for coating and curing disposable containers
US4544698A (en) Polymer coating composition and its use in the manufacture of layered packaging
US4515836A (en) Process for coating substrates with aqueous polymer dispersions
CN1331659C (en) Coating composition for thermoplastic resin particles for forming foam containers
US4573429A (en) Process for coating substrates with aqueous polymer dispersions
US3804663A (en) Method of internally coating rigid or semi-rigid plastic containers
US4254170A (en) Process for rendering polyester hollow bodies gastight
US3309439A (en) Method of producing an expanded polystyrene foam having a dense surface
US2862834A (en) Method of coating an article with a heat expandable coating composition and coating composition therefor
US3432380A (en) Windowed foam package
NO116992B (en)
JPS58196239A (en) Polystyrene foam sheet suitable for use in fabrication
JPH01284371A (en) Production of gas-shielding formed polystyrene vessel
JP2007515355A (en) Disposable container covered with latex coating
US3200005A (en) Paper products coated with vinyl resin and wax
US3457205A (en) Composition for making coated expanded polystyrene foam
US3535144A (en) Method of coating containers
JPS6369844A (en) Expandable styrene based resin particle and production thereof
JPH0453890B2 (en)
US2697053A (en) Method of coating a sheet of polyvinyl butyral resin and laminating said sheet between glass plates
JPH04164937A (en) Polystyrene resin foam and production thereof
RU94511U1 (en) DISPOSABLE CONTAINER FOR FOOD STORAGE (OPTIONS)
JPS63307055A (en) Method for imparting gas barrier property to formable polystyrene container and product thereof
JPS6212264B2 (en)
JPS61236837A (en) Method of forming film of coating on container made of plastic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term