JPH01284016A - Contactless relay device - Google Patents

Contactless relay device

Info

Publication number
JPH01284016A
JPH01284016A JP11168888A JP11168888A JPH01284016A JP H01284016 A JPH01284016 A JP H01284016A JP 11168888 A JP11168888 A JP 11168888A JP 11168888 A JP11168888 A JP 11168888A JP H01284016 A JPH01284016 A JP H01284016A
Authority
JP
Japan
Prior art keywords
temperature
turned
ctrrc
sensing element
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11168888A
Other languages
Japanese (ja)
Other versions
JP2593913B2 (en
Inventor
Kaoru Kurita
薫 栗田
Shigeharu Ono
小野 重治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP63111688A priority Critical patent/JP2593913B2/en
Publication of JPH01284016A publication Critical patent/JPH01284016A/en
Application granted granted Critical
Publication of JP2593913B2 publication Critical patent/JP2593913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

PURPOSE:To obtain a contactless relay device without any malfunction due to electromagnetic noise, being easily destroyed and with high reliability by providing a thermo-sensing element whose resistance is changed suddenly at a prescribed temperature and a heat means heating the thermo-sensing element and activating the relay by the on/off of the thermo-sensing element. CONSTITUTION:A PTC or a CTR is used as a thermo-sensing element. The element is made of a composite sintered body of a transition metallic oxide, etc. A power supply VB, a CTRRC and a lamp L1 are connected in series and a heater RH is fitted around the CTRRC via an insulator 3. The heater RH is connected to the power supply VB via a switch SW and one unit 1 consists of the CTRRC and the heater RH. Since the temperature is a critical temperature T1 of the CTRRC or below with the switch SW turned off, the resistance of the CTRRC is very large and any current almost flows. With the switch SW turned on, the heater RH is energized and the temperature of the CTRRC rises and the resistance is decreased rapidly at the temperature of T1 or over, a drive current flows to the lamp L1 and the lamp is lighted up. The operation is reversed when a PTCRP is employed in place of the CTRRC.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械式の接点を持たず、負荷に供給する駆動
電流を制御する無接点リレー装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-contact relay device that does not have mechanical contacts and controls a drive current supplied to a load.

′ 〔従来の技術〕 従来一般にリレー装置としては、例えば第9図(a) 
、 (b)の構成のものが用いられている。同図(a)
はスイッチSWがオフのときリレーコイルR4が励磁さ
れないので、その接点がオフであり、負荷であるランプ
L、は消灯しており、スイッチSWがオンするとリレー
コイルR5が励磁されてその接点がオンしてランプL、
が通電され点灯する。このリレー装置は、機械的な接点
をオン・オフする電磁リレーを持っているため、構造が
複雑でコスト高となるほか、接点の切り換えを伴うため
寿命などで問題がある。
[Prior Art] Conventionally, as a general relay device, for example, the one shown in FIG. 9(a)
, (b) is used. Figure (a)
When switch SW is off, relay coil R4 is not energized, so its contact is off, and the lamp L, which is the load, is off. When switch SW is on, relay coil R5 is energized and its contact is on. and lamp L,
is energized and lights up. Since this relay device has an electromagnetic relay that turns on and off mechanical contacts, it has a complicated structure and is expensive, and it also has problems with its lifespan because it involves switching the contacts.

そこで機械的な接点をもたない無接点リレー装置として
同図(b)に示すものが一般に使用されている。すなわ
ち、同図(b)ではスイッチSWがオフであればトラン
ジスタQzがオフであり、ランプI。
Therefore, a non-contact relay device having no mechanical contacts is generally used as shown in FIG. 2(b). That is, in the same figure (b), if the switch SW is off, the transistor Qz is off, and the lamp I is turned off.

1が消灯し、スイッチSWをオンにするとトランジスタ
Q、にベース電流が流れてオンとなりランプL1が点灯
する。ところが同図(b)のトランジスタによるもので
はノイズにより誤動作したり、容量が大きくないとトラ
ンジスタが節単に破壊し信頼性に欠ける等の問題がある
1 goes out, and when switch SW is turned on, base current flows through transistor Q, turning it on and lighting lamp L1. However, the transistor shown in FIG. 2B has problems such as malfunction due to noise, and if the capacitance is not large, the transistor easily breaks down and lacks reliability.

また、上述したリレー装置において、リレーに過大電流
が流れても装置自身や負荷が破壊することがないように
、通常ヒユーズやCB(コンタクト・ブレーカ)等の保
護手段を別途に電源と装置間に挿入している。そして過
負荷時に過大電流が流れた場合、ヒユーズを溶断させて
回路を遮断させたり、また2枚の膨張率の異なる板を貼
合せたCBを用いた場合、過大電流による温度上昇によ
り、この2枚の板を屈曲し2回路を遮断させていた。
In addition, in the above-mentioned relay device, to prevent damage to the device itself or the load even if excessive current flows through the relay, protective measures such as a fuse or CB (contact breaker) are usually installed between the power supply and the device. It is inserted. If an excessive current flows during an overload, the fuse will be blown and the circuit will be cut off.Also, if a CB made of two boards with different expansion coefficients is used, the temperature rise due to the excessive current will cause the The two circuits were cut off by bending two plates.

よって本発明は、電磁気ノイズによる誤動作がなく、ま
た容易に破壊せず信頼性の高い無接点リレー装置を提供
することを主たる課題としている。
Therefore, the main object of the present invention is to provide a highly reliable non-contact relay device that does not malfunction due to electromagnetic noise and is not easily destroyed.

また本発明は、別途保護手段を設けることなく過電流に
よる破壊から自身を保護できるようにした無接点リレー
装置を提供することを他の課題としている。
Another object of the present invention is to provide a non-contact relay device that can protect itself from destruction due to overcurrent without providing additional protection means.

〔課題を解決するための手段] 上記主たる課題を解決するために本発明により成された
無接点リレー装置は、所定温度で抵抗値が急変する感温
素子と、該感温素子を加熱する加熱手段とを備え、該感
温素子のオン・オフによりリレー動作を行うものである
[Means for Solving the Problems] In order to solve the above-mentioned main problems, a non-contact relay device according to the present invention includes a temperature sensing element whose resistance value suddenly changes at a predetermined temperature, and a heating element that heats the temperature sensing element. and a means for performing a relay operation by turning on and off the temperature sensing element.

そして、前記感温素子が所定温度以上で抵抗値が急激に
増大するPTCである場合、前記加熱手段のオンにより
オフし、前記加熱手段のオフによりオンし、前記感温素
子が所定温度以下で抵抗値が急激に増大するCTRであ
る場合、前記加熱手段のオンによりオンし、前記加熱手
段のオフによりオフする。
If the temperature sensing element is a PTC whose resistance value increases rapidly above a predetermined temperature, it is turned off when the heating means is turned on, turned on when the heating means is turned off, and when the temperature sensing element is at a predetermined temperature or lower, it is turned off. In the case of a CTR whose resistance value increases rapidly, it is turned on when the heating means is turned on, and turned off when the heating means is turned off.

また、上記他の課題を解決するため本発明により成され
た無接点リレー装置は、第1の所定温度以上になると抵
抗値が急激に増大するPTCと、該P T Cと直列に
接続され、前記第1の所定温度より低い第2の所定温度
以下になると抵抗値が急激に増大するCTRと、前記P
TC及びCTRを加熱する加熱手段とを備え、前記加熱
手段のオンによりPTC及びCTRを前記第1及び第2
の所定温度間の温度に加熱して電流を流すようにしたも
のである。
In addition, in order to solve the other problems mentioned above, a non-contact relay device made according to the present invention includes a PTC whose resistance value increases rapidly when the temperature exceeds a first predetermined temperature, and a PTC connected in series with the PTC, a CTR whose resistance value increases rapidly when the temperature falls below a second predetermined temperature lower than the first predetermined temperature;
a heating means for heating the TC and the CTR, and when the heating means is turned on, the PTC and the CTR are heated to the first and second points.
The device is heated to a temperature between a predetermined temperature range and a current is passed through it.

〔作 用] 上記主たる課題を解決するため本発明により成された無
接点リレー装置においては、感温素子を用いている。こ
の感温素子としてP T C(Positive Te
mperature Coefficient The
rmistor)或いはCTR(Critical T
emperature Re5istor)と称するも
のがある。これらの素子は、Mn、Co、Ni、Fe等
の遷移金属酸化物の複合焼結体等より成り、第2図(a
) 、 (b)に示す如く、PTCの場合には温度T2
以上ではその抵抗値が小さく、T2以上になると急激に
増大するいう特性を有している(第2図(a))。また
CTRの場合では、温度T。
[Function] In order to solve the above-mentioned main problem, the non-contact relay device made according to the present invention uses a temperature sensing element. As this temperature sensing element, PTC (Positive Te
mperature coefficient The
rmistor) or CTR (Critical T
There is something called "emperature Re5istor". These elements are made of composite sintered bodies of transition metal oxides such as Mn, Co, Ni, and Fe, and are shown in Figure 2 (a).
), as shown in (b), in the case of PTC, the temperature T2
It has a characteristic that the resistance value is small above T2, and increases rapidly when it becomes T2 or above (FIG. 2(a)). In the case of CTR, the temperature T.

以下では抵抗値が大きく、T1以上になると急激に減少
するという特性を有している(第2図(b))。
It has a characteristic that the resistance value is large below T1 and rapidly decreases when it becomes T1 or more (FIG. 2(b)).

従って、加熱手段のオン又はオフにより感温素子の抵抗
が象、激に増加して電流が流れることを禁止し、また加
熱手段のオフ又はオンにより抵抗が急激に減少し電流が
流れることを許容するためリレー動作を行うことができ
、しかも感温素子はノイズによる誤動作がなく、一般に
焼結体からなるため構造が単純で信頼性が高く、安価で
ある。
Therefore, when the heating means is turned on or off, the resistance of the temperature sensing element increases dramatically, prohibiting current from flowing, and when the heating means is turned off or on, the resistance suddenly decreases, allowing current to flow. Therefore, a relay operation can be performed, and the temperature sensing element does not malfunction due to noise, and since it is generally made of a sintered body, the structure is simple, highly reliable, and inexpensive.

また他の課題を解決するために成された無接点リレー装
置においては、加熱手段がオフでPTCやCTRが加熱
されないときには、温度はCTRの第2の所定温度以下
であり、その抵抗値は大きいためPTCとCTRには殆
ど電流が流れない。
In addition, in a non-contact relay device developed to solve another problem, when the heating means is off and the PTC or CTR is not heated, the temperature is below the second predetermined temperature of the CTR, and the resistance value is large. Therefore, almost no current flows through the PTC and CTR.

一方加熱手段をオンさせると温度が上昇しCTRの第2
の所定温度以上で、かつPTCの第1の所定温度以下と
なる。従ってその直列抵抗値が減少し電流が流れる。
On the other hand, when the heating means is turned on, the temperature rises and the second
is higher than the predetermined temperature of PTC and lower than the first predetermined temperature of PTC. Therefore, its series resistance value decreases and current flows.

また、過大電流が流れると温度がPTCの第1の所定温
度以上となり抵抗値が急激に増大して電流が流れなくな
る。更にこの過大電流が流れなくなり、温度が下降する
と、放熱手段によりCTRの温度が急速に低下し、PT
C側の温度が第1の所定温度まで低下する以前に既にC
TRの温度が第2の所定温度以下となってCTRの抵抗
値が増大するため、CTRとPTCの直列抵抗は増大し
た状態を維持する。
Further, when an excessive current flows, the temperature becomes higher than the first predetermined temperature of the PTC, the resistance value increases rapidly, and the current stops flowing. Furthermore, when this excessive current stops flowing and the temperature decreases, the temperature of the CTR rapidly decreases due to the heat dissipation means, and the PT
Before the temperature on the C side drops to the first predetermined temperature,
Since the temperature of the TR becomes equal to or lower than the second predetermined temperature and the resistance value of the CTR increases, the series resistance of the CTR and the PTC maintains an increased state.

これによって過大電流により温度が上昇しPTCの抵抗
値が増大して該過大電流を遮断した後でも、放熱手段に
より急速にCTRの温度が下降してCRTの抵抗値が増
大するので、遮断状態を維持し、CTRとPTCを破壊
から保護する。
As a result, the temperature rises due to the excessive current, and the resistance value of the PTC increases, and even after the excessive current is cut off, the temperature of the CTR rapidly decreases due to the heat dissipation means, and the resistance value of the CRT increases, so that the cut-off state can be prevented. and protect the CTR and PTC from destruction.

〔実施例〕〔Example〕

以下、本発明の実施例を図面と共に説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)及び(b)は本発明による無接点リレー装
置の一実施例を示す。同図(a)において、電源VB 
FIGS. 1(a) and 1(b) show an embodiment of a non-contact relay device according to the present invention. In the same figure (a), the power supply VB
.

CTRRC及びランプL1が直列接続されると共に、C
T RRcの周囲に絶縁体3を介してヒータR,を取付
ける。該ヒータR,は同図の如く絶縁体3に巻装した発
熱コイルであり、スイッチSWを介して電源VBと接続
され、CTRRCとヒータRイとにより1つのユニット
1を構成する。つまり同図(a)の等価回路は同図Φ)
のようになる。
CTRRC and lamp L1 are connected in series, and C
Heater R is installed around TRRc via insulator 3. The heater R is a heating coil wrapped around an insulator 3 as shown in the figure, and is connected to a power source VB via a switch SW, and the CTRRC and heater R constitute one unit 1. In other words, the equivalent circuit in figure (a) is Φ)
become that way.

この構成において、スイッチSWがオフのときには温度
はCTRRcの臨界温度T1以下であるため、CTRR
cの抵抗値が非常に大きく電流は殆ど流れないので、ラ
ンプL1は消灯している。
In this configuration, when the switch SW is off, the temperature is below the critical temperature T1 of CTRRc, so CTRR
Since the resistance value of c is very large and almost no current flows, the lamp L1 is turned off.

一方スイッチSWをオンにすると、ヒータRHが通電さ
れてcTRRcの温度が上昇し、T1以上になるとその
抵抗値が急激に減少する。これによってランプし、に駆
動電流が流れ点灯状態となる。
On the other hand, when the switch SW is turned on, the heater RH is energized and the temperature of cTRRc rises, and when the temperature exceeds T1, its resistance value rapidly decreases. This causes the lamp to turn on, and a drive current flows through it, turning it on.

また同図の回路においてCT RRcの代りにPTCR
,を用いれば、上記動作とは逆にスイッチSWがオフの
とき臨界温度T2以上となってランプL、が点灯し、オ
ンにするとT2以上となりランプL、が消灯するように
動作する。
Also, in the circuit of the same figure, PTCR is used instead of CT RRc.
, in contrast to the above operation, when the switch SW is off, the critical temperature T2 or higher is reached and the lamp L is lit, and when the switch SW is turned on, the temperature is T2 or higher and the lamp L is turned off.

上記したCTRやPTCを利用した無接点リレー装置に
おいては、CTRやPTCに過大電流が流れて感温素子
自身が破壊するのを防止するため、ヒユーズやCB等が
必要である。例えば第1図(a)。
In the non-contact relay device using the CTR or PTC described above, a fuse, CB, etc. are required to prevent the temperature sensing element itself from being destroyed due to excessive current flowing through the CTR or PTC. For example, FIG. 1(a).

(b)の無接点リレー装置の場合においては、第3図の
如く電源■8とc’rRRcやPTCR,間にヒユーズ
FLを挿入して過負荷時に過大電流が流れた場合、ヒユ
ーズFLを溶断させて回路を遮断させたり、また2枚の
膨張率の異なる板を貼合せたCBを用いた場合には過大
電流による温度の上昇により、この2枚の板を屈曲して
2回路を遮断する。
In the case of the non-contact relay device (b), a fuse FL is inserted between the power supply ■8 and c'rRRc or PTCR as shown in Figure 3, and if an excessive current flows during an overload, the fuse FL will be fused. If a CB made of two plates with different expansion coefficients is used, the temperature rises due to excessive current, and the two plates are bent to interrupt the circuit. .

第4図は上述したヒユーズやCBを必要としない本発明
にかかる無接点リレー装置の実施例を示す。図において
、CTRRcとPTCRPとは直列に接合し、CT R
Rc側にはその周囲にCTRに比して非常に熱容量の小
さな金属(例えばAff)より成る放熱器2を取付ける
。またC T RRcとPTCR,を加熱するためのヒ
ータR11を両者の近傍に設け、1つのユニット1を構
成している。
FIG. 4 shows an embodiment of a non-contact relay device according to the present invention that does not require the above-mentioned fuse or CB. In the figure, CTRRc and PTCRP are connected in series, and CT
On the Rc side, a heat sink 2 made of a metal (for example, Aff) having a much smaller heat capacity than the CTR is attached around it. Further, a heater R11 for heating the C T RRc and the PTCR is provided in the vicinity of both to form one unit 1 .

第5図は上記無接点リレー装置の応用例を示し、同図に
おいて、電Rv trとユニット1及びランプL1を直
列接続し、ヒータR1+とスイッチSWの直列回路を電
源■8間に接続する。また各CTRRc及びPTCRP
の各々の特性は第2図について上記したと同じ第6図(
a) 、 (b)に示すものとなるが、PTCRPの臨
界温度T2をCT RRcの臨界温度T、より高(設定
し、各温度以下及び以上の抵抗値を各々図示の如< R
z−R+□、R2+9R2□とする。
FIG. 5 shows an application example of the above-mentioned non-contact relay device. In the same figure, a voltage Rv tr, a unit 1, and a lamp L1 are connected in series, and a series circuit of a heater R1+ and a switch SW is connected between a power source 8. Also, each CTRRc and PTCRP
The characteristics of each of the are shown in Figure 6 (
As shown in a) and (b), the critical temperature T2 of PTCRP is set higher than the critical temperature T of CT RRc, and the resistance values below and above each temperature are set as < R as shown in the figure.
Let z−R+□, R2+9R2□.

以上の構成において、その動作を第7図に示す温度対C
TRとPTCの直列抵抗値特性図と、第8図に示すタイ
ムチャートと共に説明する。
In the above configuration, its operation is shown in FIG.
This will be explained with reference to a series resistance value characteristic diagram of TR and PTC and a time chart shown in FIG.

まずスイッチSWがオフのときには、ヒータRHは通電
されないのでCTRRc及びPTCR,の温度は共にT
、以下であるため、CTRRCの抵抗値はR,□、PT
CR,の抵抗値はRZIとなり、その直列抵抗値は(R
+ z + Rz r )となって電流が殆ど流れない
でランプL1は消灯している。次に時刻L1においてス
イッチSWをオンにしヒータR,を通電させてCTRR
cとPTCR,を加熱すると、各感温素子の温度はT、
以上で、かつT2以下となり、CTRRCの抵抗値がR
o、PTCRPの抵抗値がR21となるため直列抵抗値
は(R+++Rz+)となって減少し、ランプL1に駆
動電流が流れて点灯する。
First, when the switch SW is off, the heater RH is not energized, so the temperature of both CTRRc and PTCR is T.
, the resistance value of CTRRC is R, □, PT
The resistance value of CR, is RZI, and its series resistance value is (R
+ z + Rz r ), almost no current flows, and the lamp L1 is turned off. Next, at time L1, switch SW is turned on, heater R is energized, and CTRR is
When c and PTCR are heated, the temperature of each temperature sensing element becomes T,
above and below T2, and the resistance value of CTRRC is R
o. Since the resistance value of PTCRP becomes R21, the series resistance value decreases to (R+++Rz+), and a driving current flows through the lamp L1, turning it on.

また時刻t2において過負荷により過大電流が流れて温
度が上昇すると、温度はT2以上となる。
Further, at time t2, when an excessive current flows due to an overload and the temperature rises, the temperature becomes equal to or higher than T2.

従ってPTCR,の抵抗値はR2□となり、直列抵抗値
は(Rz+Rz□)に増大し、電流が殆ど流れなくなり
過大電流を遮断する。この遮断によって温度は低下する
が、P T CRpの温度が臨界温度T2まで下がるま
では、RPの抵抗値はR2□を維持し、直列抵抗値は(
Rz+Rz□)となり、過大電流が流れたときの抵抗値
を維持するので、遮断状態を継続する。
Therefore, the resistance value of PTCR becomes R2□, and the series resistance value increases to (Rz+Rz□), so that almost no current flows and the excessive current is cut off. Although the temperature decreases due to this interruption, the resistance value of RP maintains R2□ until the temperature of P T CRp falls to the critical temperature T2, and the series resistance value is (
Rz+Rz□), and the resistance value when the excessive current flows is maintained, so the cut-off state continues.

また更に温度が下降してCTRR,の温度が時刻L3に
て臨界温度T1となるが、このときCTRR,に取付け
た放熱器2によりCTRRCの温度はPTCR,の温度
に比して急速に下降するのでPTCRPの温度はその臨
界温度T2以下とはなっておらず、直列抵抗は(R1□
+R2□)となり、引き続き遮断状態となっている。そ
して時刻t4においてPTCR,の温度がT2になると
、その抵抗値がRZ、となるが、CTRR,は既にRI
□となっているため、直列抵抗は(R+z+Rz+)と
なり、遮断状態が継続される。
The temperature further decreases, and the temperature of CTRR reaches the critical temperature T1 at time L3, but at this time, the temperature of CTRRC decreases rapidly compared to the temperature of PTCR, due to the radiator 2 attached to CTRR. Therefore, the temperature of PTCRP is not lower than its critical temperature T2, and the series resistance is (R1□
+R2□), and continues to be in a cut-off state. When the temperature of PTCR, reaches T2 at time t4, its resistance value becomes RZ, but CTRR, has already reached RI.
Since it is □, the series resistance becomes (R+z+Rz+), and the cut-off state continues.

即ち、上記動作より、過大電流が流れると、CTRR,
及びPTCRPの少な(とも一方の抵抗値が大きい方の
値(R5z、Rz□)となるので、過大電流を遮断せし
めユニット1自体を破壊から保護する。
That is, from the above operation, when an excessive current flows, CTRR,
and PTCRP (the resistance value of one of them is the larger value (R5z, Rz□), so the excessive current is cut off and the unit 1 itself is protected from destruction.

なお、上記実施例において、CTRRcに放熱器を取付
けると共に、P T CRpの周囲に断熱材を取付けて
PTCR,の温度が放熱されにくくすることにより、過
大電流が流れて遮断された後、PTCRPの温度が容易
に臨界温度T2以下にならないようにすれば、第8図に
おける時刻t3がらt4までの時間を長くすることがで
き、過大電流に対する遮断特性を更に向上することがで
きる。
In the above embodiment, a heat sink is attached to CTRRc, and a heat insulating material is attached around PTCRP to make it difficult for the temperature of PTCRP to be radiated. By preventing the temperature from easily falling below the critical temperature T2, the time from time t3 to t4 in FIG. 8 can be lengthened, and the interrupting characteristics against excessive current can be further improved.

また無接点リレー装置からヒータR1及びスイッチSW
を取ると、温度センサとして使用することができ、検出
されるべき外部温度によってCTRとPTCの温度が加
熱され、所定温度以上になると感温素子が通電され、短
絡等により過大電流が流れると感温素子に流れる過大電
流が遮断され装置を保護する。
In addition, heater R1 and switch SW are connected to the non-contact relay device.
The temperature sensor can be used as a temperature sensor, and the temperature of the CTR and PTC is heated by the external temperature to be detected, and when the temperature exceeds a predetermined temperature, the temperature sensing element is energized, and if an excessive current flows due to a short circuit, etc. Excessive current flowing through the thermal element is blocked and the equipment is protected.

〔効 果〕〔effect〕

以上の如く本発明によれば、温度に応じてCTRやPT
Cに流れる電流の通電と遮断が制御できるため加熱手段
との組み合わせにより無接点リレー装置を構成すること
ができ、これらの素子の性質上ノイズによって誤動作す
ることがなく信頼性の高い装置が得られる。しかもPT
CとCTRとを組み合わせて使用すると、装置自体が保
護機能をもつようになるため、保護装置を別途設ける必
要がなく、回路構成が簡単になりコストダウンや軽量化
が図られるようになる。
As described above, according to the present invention, CTR and PT
Since the energization and interruption of the current flowing through C can be controlled, a non-contact relay device can be constructed by combining it with a heating means, and due to the nature of these elements, a highly reliable device can be obtained without malfunctioning due to noise. . Moreover, P.T.
When C and CTR are used in combination, the device itself has a protection function, so there is no need to provide a separate protection device, and the circuit configuration is simplified, resulting in cost reduction and weight reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る無接点リレー装置の実施例を示す
図、 第2図は第1図の装置に使用した感温素子の特性を示す
グラフ、 第3図は第1図の装置に従来の保護装置を使用した例を
示す回路図、 第4図は本発明の他の実施例を示す図、第5図は第4図
の装置を使用した回路例を示す回路図、 第6図は第4図の装置に使用している素子の抵抗特性を
示すグラフ、 第7図及び第8図は第5図の動作を説明するための動作
特性図、 第9図は従来のリレー装置を示す回路図である。 2・・・放熱器、R6・・・CTR,RP・・・PTC
lR,・・・ヒータ、SW・・・スイッチ。 、、、RL (a) 第9 (b) 第3図 (a)              (b)第2図 第4図 第5図 (b)              (a)第6図
Fig. 1 is a diagram showing an embodiment of the non-contact relay device according to the present invention, Fig. 2 is a graph showing the characteristics of the temperature sensing element used in the device of Fig. 1, and Fig. 3 is a diagram showing the characteristics of the temperature sensing element used in the device of Fig. 4 is a circuit diagram showing an example of using a conventional protection device; FIG. 4 is a diagram showing another embodiment of the present invention; FIG. 5 is a circuit diagram showing an example of a circuit using the device of FIG. 4; FIG. is a graph showing the resistance characteristics of the element used in the device shown in Fig. 4, Figs. 7 and 8 are operational characteristic diagrams for explaining the operation shown in Fig. 5, and Fig. 9 is a graph showing the resistance characteristics of the elements used in the device shown in Fig. 4. FIG. 2...Radiator, R6...CTR, RP...PTC
lR,...heater, SW...switch. ,,,RL (a) No. 9 (b) Fig. 3 (a) (b) Fig. 2 Fig. 4 Fig. 5 (b) (a) Fig. 6

Claims (4)

【特許請求の範囲】[Claims] (1)所定温度で抵抗値が急変する感温素子と、該感温
素子を加熱する加熱手段とを備え、 該加熱手段のオン・オフによりリレー動作を行う、 ことを特徴とする無接点リレー装置。
(1) A non-contact relay comprising a temperature sensing element whose resistance value changes suddenly at a predetermined temperature and a heating means for heating the temperature sensing element, and performing a relay operation by turning on and off the heating means. Device.
(2)前記感温素子は所定温度以上で抵抗値が急激に増
大するPTCであり、 前記加熱手段のオンによりオフし、前記加熱手段のオフ
によりオンする、 ことを特徴とする請求項(1)に記載の無接点リレー装
置。
(2) Claim (1) characterized in that the temperature sensing element is a PTC whose resistance value increases rapidly above a predetermined temperature, and is turned off when the heating means is turned on, and turned on when the heating means is turned off. ) Non-contact relay device described in ).
(3)前記感温素子は所定温度以下で抵抗値が急激に増
大するCTRであり、 前記加熱手段のオンによりオンし、前記加熱手段のオフ
によりオフする、 ことを特徴とする請求項(2)に記載の無接点リレー装
置。
(3) The temperature sensing element is a CTR whose resistance value increases rapidly below a predetermined temperature, and is turned on when the heating means is turned on and turned off when the heating means is turned off. ) Non-contact relay device described in ).
(4)第1の所定温度以上になると抵抗値が急激に増大
するPTCと、 該PTCと直列に接続され、前記第1の所定温度より低
い第2の所定温度以下になると抵抗値が急激に増大する
CTRと、 前記加熱手段のオンによりPTC及びCTRを前記第1
及び第2の所定温度間の温度に加熱して電流を流すよう
にした、 ことを特徴とする無接点リレー装置。
(4) A PTC whose resistance value increases rapidly when the temperature exceeds a first predetermined temperature, and a PTC connected in series with the PTC whose resistance value rapidly increases when the temperature falls below a second predetermined temperature lower than the first predetermined temperature. increasing CTR and turning on the heating means to increase the PTC and CTR to the first
and a second predetermined temperature so that a current flows through the contactless relay device.
JP63111688A 1988-05-10 1988-05-10 Non-contact relay device Expired - Fee Related JP2593913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111688A JP2593913B2 (en) 1988-05-10 1988-05-10 Non-contact relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111688A JP2593913B2 (en) 1988-05-10 1988-05-10 Non-contact relay device

Publications (2)

Publication Number Publication Date
JPH01284016A true JPH01284016A (en) 1989-11-15
JP2593913B2 JP2593913B2 (en) 1997-03-26

Family

ID=14567654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111688A Expired - Fee Related JP2593913B2 (en) 1988-05-10 1988-05-10 Non-contact relay device

Country Status (1)

Country Link
JP (1) JP2593913B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644289B1 (en) * 2023-09-18 2024-03-06 인터콘시스템스 주식회사 Digital signal input circuit for train

Also Published As

Publication number Publication date
JP2593913B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
JP4514669B2 (en) Protection device using thermal fuse
US5153805A (en) Temperature-compensated thermal protector
US7391185B2 (en) Battery pack protection circuit with plural protective means, and battery pack including the protection circuit
JP2004014434A (en) Dc current shut-0ff switch
US4459632A (en) Voltage-limiting circuit
US6421216B1 (en) Resetable overcurrent protection arrangement
GB1604111A (en) Overload prevention circuit for an electric motor
JP4119159B2 (en) Temperature protection element
US5247273A (en) Surge absorber for protection of communication equipment connected to communication lines
JPH07226138A (en) Overload protective device
JPH01284016A (en) Contactless relay device
JPH04337222A (en) Thermo-switch
JPH07274377A (en) Power distribution circuit protection device
KR100378627B1 (en) Circuit for limiting the making current for a transformer
JP2000092695A (en) Rush current suppression circuit and element
JP3797629B2 (en) Current-limiting circuit breaker
JPH0341441Y2 (en)
KR100586574B1 (en) Bimetal plate laminated thereon positive temperature coefficient material layer and Device of blocking over current in electrical circuit using the same
JPH10106418A (en) Relay having overload preventive function
CA2023286C (en) Temperature-compensated thermal protector
KR840002358Y1 (en) Fuse
JPH05260647A (en) Current breaking device
JPH071822B2 (en) Method of manufacturing resistive circuit board with thermal fuse
JPH0657038U (en) Secondary circuit protection device for current transformer
JPH01303013A (en) Protective circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees