JPH01283527A - Light wavelength converting device - Google Patents

Light wavelength converting device

Info

Publication number
JPH01283527A
JPH01283527A JP11312588A JP11312588A JPH01283527A JP H01283527 A JPH01283527 A JP H01283527A JP 11312588 A JP11312588 A JP 11312588A JP 11312588 A JP11312588 A JP 11312588A JP H01283527 A JPH01283527 A JP H01283527A
Authority
JP
Japan
Prior art keywords
optical waveguide
diffraction grating
light
optical
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11312588A
Other languages
Japanese (ja)
Inventor
Tatsuo Ito
達男 伊藤
Shinichi Mizuguchi
水口 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11312588A priority Critical patent/JPH01283527A/en
Publication of JPH01283527A publication Critical patent/JPH01283527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the efficiency of the coupling of semiconductor laser light with an optical waveguide by aligning the center of a diffraction grating with the start point of the optical waveguide. CONSTITUTION:The optical waveguide 14 is provided so as to have an opening in the center of the arc of the arcuate diffraction grating 13 formed on the surface of an optical waveguide layer 12. Namely, light which is radiated on the surface of the arcuate diffraction grating optical waveguide layer larger than the beam diameter of the incident laser light is diffracted and coupled with the optical waveguide, and also converged in the optical waveguide layer and made incident on the optical waveguide. Consequently, the efficiency of the coupling is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーナ光源から発せられたレーザー光を
、光メモリー装置やレーザープリンタ等に利用するため
に必要な光波長変換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical wavelength conversion device necessary for utilizing laser light emitted from a semiconductor laser light source in optical memory devices, laser printers, and the like.

従来の技術 従来より、非線形光学効果を応用した第二高調波発生(
以下SHGと略す)により、レーザー光の波長を%に変
換することは 半冒;;等テよく知られている(特開昭61−7222
2号公報等)。
Conventional technology Conventionally, second harmonic generation (
It is well known that converting the wavelength of a laser beam into % by using SHG (hereinafter abbreviated as SHG) (Japanese Patent Laid-Open No. 61-7222
Publication No. 2, etc.).

第3図、第4図は従来の光波長変換装置を示すもので1
はL 1Nbc)3単結晶基板、2はL INbC)s
単結晶基板1上に形成された光導波路、3は光入射部、
4はSHG素子テLiNbc)3単結晶基板1.光導波
路2より形成される。5は半導体レーザー、6はコリメ
ートレンズ、7はフォーカスレンズであり、コリメート
レンズ6、フォーカスレンズ7により集光された半導体
レーザー6の光8を光入射部3に入射すると、光導波路
2における非線形光学効果により波長変換された第二高
調波(以下SH光と略す)9が、LiNb0.単結晶基
板1で発生して外部へ取り出される。なお10は光導波
路2を通過した一次光である。
Figures 3 and 4 show conventional optical wavelength conversion devices.
is L 1Nbc)3 single crystal substrate, 2 is L INbC)s
An optical waveguide formed on a single crystal substrate 1; 3 is a light incidence part;
4 is an SHG element (LiNbc) 3 single crystal substrate 1. It is formed from an optical waveguide 2. 5 is a semiconductor laser, 6 is a collimating lens, and 7 is a focus lens. When the light 8 of the semiconductor laser 6 that has been focused by the collimating lens 6 and the focus lens 7 is incident on the light incidence section 3, nonlinear optics in the optical waveguide 2 is generated. The second harmonic (hereinafter abbreviated as SH light) 9 whose wavelength has been converted by the effect is LiNb0. It is generated in the single crystal substrate 1 and taken out to the outside. Note that 10 is the primary light that has passed through the optical waveguide 2.

発明が解決しようとする課題 しかしながら、第5図に示すように光入射部3の導波路
断面は幅1μm、深さ0.6μm程度に構成されるのに
対し、フォーカスレンズ7でi光された半導体レーザー
光8は約1μm径にしか絞られないので、第8図に示す
ように光導波路3に導入される結合効率は幾何学的に、 となる。実際には集光スポット径は光強度のe−2で決
められるため、半導体レーザー5から兄生じた光に対す
る結合効率は○。6を下回ることとなる。
Problems to be Solved by the Invention However, as shown in FIG. Since the semiconductor laser beam 8 can be focused to a diameter of only about 1 μm, the coupling efficiency introduced into the optical waveguide 3 as shown in FIG. 8 is geometrically expressed as follows. In reality, the focused spot diameter is determined by the light intensity e-2, so the coupling efficiency for the light generated from the semiconductor laser 5 is ○. It will be less than 6.

光導波路形光波長変換素子では入射した光強度の2乗に
比例してSH光強度が取り出せるので、光導波路への結
合効率を高めることが欠周上の大きな課題であった。
In an optical waveguide-type optical wavelength conversion element, the SH light intensity can be extracted in proportion to the square of the incident light intensity, so increasing the coupling efficiency to the optical waveguide has been a major problem in terms of frequency loss.

本発明の第一の発明は上記間頌点に鑑み、半導体レーザ
ー光の導波路への結合効率を高めた光波長変換装置を提
供するものである。
A first aspect of the present invention is to provide an optical wavelength conversion device in which the efficiency of coupling semiconductor laser light to a waveguide is increased in view of the above points.

と、非線形光学結晶基板と、前記非線形光学結晶基板に
形成された光導波層と、前記光導uりに形成された回折
格子と、前記非線形光学結晶基板に形成されて、前記光
導波層の一端に始点をもっ光導波路とからなる光波長変
換装置に於いて、前記回折格子の中心が前記光導波路の
始点と一致するという構成を備えたものである。
a nonlinear optical crystal substrate, an optical waveguide layer formed on the nonlinear optical crystal substrate, a diffraction grating formed on the optical guide, and one end of the optical waveguide layer formed on the nonlinear optical crystal substrate. An optical wavelength conversion device comprising an optical waveguide having a starting point at , the center of the diffraction grating coincides with the starting point of the optical waveguide.

作  用 本発明の作用は入射レーザー光のビーム径より大きな円
弧状の回折格子光導波す表面に照射される光を回折して
光導波層に結合すると共に、光導波u内で集光して、更
に光導波路に入射させることによって結合効率金高める
ことができる。
Function The function of the present invention is to diffract the light irradiated onto the optical waveguide surface of the arc-shaped diffraction grating, which is larger than the beam diameter of the incident laser beam, and to couple it to the optical waveguide layer, and to condense the light within the optical waveguide u. Furthermore, the coupling efficiency can be increased by making the light incident on an optical waveguide.

実施例 以下本発明の一実施例の光波長変換装置について、図面
を参照して説明する。
Embodiment Hereinafter, an optical wavelength conversion device according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の実施例に於ける光波長変換装置の主要
構成図である。同図において11は、非線形光学結晶基
板、12は非線形光学結晶基板11上に形成された光導
波層、13は光導波@12上に設けられた円弧状回折格
子、14は非線形光学結晶基板1上に形成された光導波
路である。以上のように構成された光波長変換装置につ
いて、以下第1図及び第2図を用いてその動作を説明す
る。
FIG. 1 is a main configuration diagram of an optical wavelength conversion device in an embodiment of the present invention. In the figure, 11 is a nonlinear optical crystal substrate, 12 is an optical waveguide layer formed on the nonlinear optical crystal substrate 11, 13 is an arcuate diffraction grating provided on the optical waveguide @ 12, and 14 is the nonlinear optical crystal substrate 1. An optical waveguide is formed on top of the optical waveguide. The operation of the optical wavelength conversion device configured as described above will be described below with reference to FIGS. 1 and 2.

第2図は、第1図の要部断面図でろり、第1図と同一物
には同−昔号を付しへ説明を省略する。
FIG. 2 is a sectional view of the main part of FIG. 1, and the same parts as those in FIG.

16は図示しないレーザー光源から出たレーザー光であ
り、16は尋波層12を伝播するレーザー光(以下伝播
光と呼ぶ)である。今、図示しないレーザー光源から出
たレーザー光16はそのビーム幅よりも十分大きな円弧
状回折格子13によって回折される。この回折光の内、
光L4ffV12の厚みによって決まる特定の入射角で
もって光導波層12に入射するレーザー光は、光導波層
12内で反射を味#)返し、伝播光16となる。又、円
弧状回折格子13は、回折光の果光作用七勺するので、
伝播光16は円弧状回折格子130円弧甲心中心まるこ
ととなり、七の恢、円弧中心の位置に開口をMする光導
波路14中を伝播して、第2高調波金元生することとな
る。
16 is a laser beam emitted from a laser light source (not shown), and 16 is a laser beam that propagates through the waveform layer 12 (hereinafter referred to as propagating light). Now, a laser beam 16 emitted from a laser light source (not shown) is diffracted by an arcuate diffraction grating 13 that is sufficiently larger than its beam width. Of this diffracted light,
The laser light that enters the optical waveguide layer 12 at a specific angle of incidence determined by the thickness of the light L4ffV12 is reflected within the optical waveguide layer 12 and becomes propagated light 16. In addition, since the arc-shaped diffraction grating 13 has a light effect on the diffracted light,
The propagating light 16 is centered around the arc core of the arc-shaped diffraction grating 130, propagates through the optical waveguide 14 having an opening M at the center of the arc, and generates a second harmonic wave.

以上のように本笑施V[によれは、光導f1.Es14
を光導波層12の表面に形成した円弧状回折格子130
円弧中心に開口をもつように設けることにより、円弧状
回折格子13に入射したレーザー光の大部分を光導反路
14に入射させることが出来る。そして円弧状回折格子
13は光導波路14の開口寸法に比べて格段に大きくで
きるので、従来例に示した如くレーザー光を集光して入
射させるという必要もなくなる。
As described above, the light guide f1. Es14
An arc-shaped diffraction grating 130 formed on the surface of the optical waveguide layer 12
By providing an opening at the center of the arc, most of the laser light incident on the arc-shaped diffraction grating 13 can be made to enter the light guide path 14. Since the arcuate diffraction grating 13 can be made much larger than the aperture size of the optical waveguide 14, there is no need to condense the laser beam and make it incident as in the conventional example.

なお、実施例では第2高調波について述べたが、第3.
第4高調波についても同様の構成でとり出すことが可能
である。
Although the second harmonic has been described in the embodiment, the third harmonic has been described.
The fourth harmonic can also be extracted using a similar configuration.

発明の効果 以上のように本発明は、レーザー光源と、非線形光学結
晶と、前記非線形光学結晶表面の一部領域に形成した光
導波層と、前記光導波層表面に形成した無数の同心円弧
状の小溝からなる回折格子と、前記非線形光学結晶表面
に形成されて、前記光導波層の一端に始点をもつ光導波
路とからなる光波長変換装置に於いて、前記回折格子の
中心が前記光導波路の始点と一致するように設けること
により、円弧状回折格子に入射したレーザー光の回折光
を光導波路に入射させることが出来る。
Effects of the Invention As described above, the present invention provides a laser light source, a nonlinear optical crystal, an optical waveguide layer formed on a partial area of the surface of the nonlinear optical crystal, and numerous concentric arc-shaped arcs formed on the surface of the optical waveguide layer. In an optical wavelength conversion device comprising a diffraction grating consisting of small grooves and an optical waveguide formed on the surface of the nonlinear optical crystal and having a starting point at one end of the optical waveguide layer, the center of the diffraction grating is located at the center of the optical waveguide. By arranging it so that it coincides with the starting point, the diffracted light of the laser light incident on the arcuate diffraction grating can be made to enter the optical waveguide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における光波長変換装置の要
部構成図、第2図は同断面図、第3図は従来の光波長変
換装置の構成図、第4図は同装置の要部斜視図、第5図
は同装置の要部断面図である。 11・・・・・・非線形光学結晶基板、12・・・・・
・光導波層、13・・・・・・円弧状回折格子、14・
・・・・・光導波路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
−・背ル房尤1絃龜基ゾ、 j4− 先MIF汲路 第2図
FIG. 1 is a block diagram of the main parts of an optical wavelength conversion device according to an embodiment of the present invention, FIG. 2 is a sectional view of the same, FIG. 3 is a block diagram of a conventional optical wavelength conversion device, and FIG. 4 is a diagram of the same device. FIG. 5 is a perspective view of the main part, and FIG. 5 is a sectional view of the main part of the device. 11...Nonlinear optical crystal substrate, 12...
・Optical waveguide layer, 13... Arc-shaped diffraction grating, 14.
...Optical waveguide. Name of agent: Patent attorney Toshio Nakao and 1 other person11
-・Back Rubo 1st string, j4- Ahead MIF pumping route 2nd figure

Claims (1)

【特許請求の範囲】[Claims] レーザー光源と、非線形光学結晶基板と、前記非線形光
学結晶基板に形成された光導波層と、前記光導波層に形
成された回折格子と、前記非線形光学結晶基板に形成さ
れて、前記光導波層の一端に始点をもつ光導波路とから
なる光波長変換装置に於いて、前記回折格子の中心が前
記光導波路の始点と一致するようにしたことを特徴とす
る光波長変換装置。
a laser light source, a nonlinear optical crystal substrate, an optical waveguide layer formed on the nonlinear optical crystal substrate, a diffraction grating formed on the optical waveguide layer, and an optical waveguide layer formed on the nonlinear optical crystal substrate. and an optical waveguide having a starting point at one end thereof, wherein the center of the diffraction grating coincides with the starting point of the optical waveguide.
JP11312588A 1988-05-10 1988-05-10 Light wavelength converting device Pending JPH01283527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11312588A JPH01283527A (en) 1988-05-10 1988-05-10 Light wavelength converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11312588A JPH01283527A (en) 1988-05-10 1988-05-10 Light wavelength converting device

Publications (1)

Publication Number Publication Date
JPH01283527A true JPH01283527A (en) 1989-11-15

Family

ID=14604165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11312588A Pending JPH01283527A (en) 1988-05-10 1988-05-10 Light wavelength converting device

Country Status (1)

Country Link
JP (1) JPH01283527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463886A2 (en) * 1990-06-28 1992-01-02 Sharp Kabushiki Kaisha A light wavelength converter
US5715092A (en) * 1994-06-29 1998-02-03 Eastman Kodak Company Ferroelectric light frequency doubler device with a surface coating and having an inverted domain structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463886A2 (en) * 1990-06-28 1992-01-02 Sharp Kabushiki Kaisha A light wavelength converter
US5715092A (en) * 1994-06-29 1998-02-03 Eastman Kodak Company Ferroelectric light frequency doubler device with a surface coating and having an inverted domain structure

Similar Documents

Publication Publication Date Title
US4951293A (en) Frequency doubled laser apparatus
EP0372345B1 (en) Light source device
JPH02254427A (en) Optical wavelength converter
EP0463886A2 (en) A light wavelength converter
JPH01283527A (en) Light wavelength converting device
JP4024260B2 (en) Wavelength converter
JPH09179155A (en) Optical wavelength converting device
JPH02116809A (en) Optical coupler
JP2594122B2 (en) Optical waveguide device
JPS63269132A (en) Optical integrated circuit
JPS63269129A (en) Optical integrated circuit
JP2005331992A (en) Wavelength conversion device
JPS63266430A (en) Optical harmonic generator
JPH0389574A (en) Second harmonic generator
JPH04190334A (en) Light integrated circuit
JP2843196B2 (en) Second harmonic generator
JP2688102B2 (en) Optical wavelength converter
JPH01200206A (en) Condensing coupler
JPH03182705A (en) Optical element and its manufacture
JP2865295B2 (en) Optical information processing device
JPH05158095A (en) Optical second harmonic generating device
JPH0212136A (en) Light wavelength converter
JPS61250628A (en) Optical deflector
JPH0545690A (en) Wavelength converter
JPH06347666A (en) Grating coupler