JPH01283036A - Stator of dc machine - Google Patents

Stator of dc machine

Info

Publication number
JPH01283036A
JPH01283036A JP10902388A JP10902388A JPH01283036A JP H01283036 A JPH01283036 A JP H01283036A JP 10902388 A JP10902388 A JP 10902388A JP 10902388 A JP10902388 A JP 10902388A JP H01283036 A JPH01283036 A JP H01283036A
Authority
JP
Japan
Prior art keywords
pole
leakage
core
winding
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10902388A
Other languages
Japanese (ja)
Inventor
Haruo Oharagi
春雄 小原木
Kazuo Tawara
田原 和雄
Mitsuhiro Nitobe
二藤部 光弘
Nobutaka Suzuki
信孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Setsubi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Setsubi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Setsubi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Setsubi Engineering Co Ltd
Priority to JP10902388A priority Critical patent/JPH01283036A/en
Publication of JPH01283036A publication Critical patent/JPH01283036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Machiner (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE:To enable automatic regulation of leakage commutating flux through a DC machine body, by providing a pole chip protrusion on the pole chip of a main pole core at a position facing with a shortcircuit core and providing a leakage regulation winding to the pole chip protrusion. CONSTITUTION:A main pole 2 provides main flux to the armature winding 7 of an armature 6 rotatable in a stator. A commutating pole 3 provides commutating flux for producing commutation electromotive force when the current flowing through the armature winding 7 is converted. A core 10 for shortcircuiting the side face close to the armature 6 of the commutating pole core 8 and the side face of a pole chip 4A is arranged between the main pole 2 and the commutating pole 3. Furthermore, pole chip protrusions 12A, 12B are provided to the pole chip 4A of the main pole core 4 and a leakage regulation winding 11 is provided to a pole chip protrusion 12A arranged on the pole chip 4A of the main pole 2 having same polarity as the commutating pole 2. The direction of the magnetromotive force is set to be contrary to the magnetromotive force of the commutating pole winding 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直流機に係り、特に1回転数に対する無火花帯
移動現象を補償するのに好適な直流機の固定子に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a DC machine, and more particularly to a stator of a DC machine suitable for compensating for the phenomenon of no-spark zone movement for one rotational speed.

〔従来の技術〕[Conventional technology]

直流機には古くから回転数の増加に対して無火花帯が適
格流側へ移動する無火花帯の移動現象があり、この対策
として(1)0回転数に対して補極分路電流を調整する
方法、(2)、別電源を用いて補(が磁束を調整する方
法等が用いられている。しかし、これらは直流機本体以
外に袋口を付加した方法であるため高価となる。そこで
、直流機本体のみで対策するものとして特開昭62−7
1463号公報があり、第9図、第10図に示す直流機
が提案されている。
DC machines have long had a phenomenon in which the non-sparking band moves to the proper flow side as the rotational speed increases, and as a countermeasure to this phenomenon, (1) the interpolation shunt current is changed to 0 rotational speed. (2) Adjusting the magnetic flux by using a separate power supply is used.However, these methods are expensive because they add a bag opening to the main body of the DC machine. Therefore, as a countermeasure for using only the DC machine itself, JP-A-62-7
Japanese Patent No. 1463 proposes a DC machine shown in FIGS. 9 and 10.

第9図に直流機の要部展開図を示す。継鉄1の内周には
主極2と補極3とが設けられる。主極2は主極鉄心4と
磁極片4Aおよび界磁巻線5とで形成され、固定子内部
で回転する電機子6の電機子巻線7に主磁束を与え、補
極3は補極鉄心8と補極巻線9とから形成され、電機子
巻線7を流れる′1ヨ流が反転する整流現象時に整流起
電力を発生させるための補極磁束を与える役目をしてい
る。
Figure 9 shows an exploded view of the main parts of the DC machine. A main pole 2 and a complementary pole 3 are provided on the inner periphery of the yoke 1. The main pole 2 is formed by a main pole iron core 4, a magnetic pole piece 4A, and a field winding 5, and provides main magnetic flux to the armature winding 7 of an armature 6 rotating inside the stator, and the commutating pole 3 is a commutating pole. It is formed from an iron core 8 and a commutator winding 9, and serves to provide a commutator magnetic flux for generating a rectified electromotive force during a rectification phenomenon in which the '1 current flowing through the armature winding 7 is reversed.

また、主極2と補極3との間には補極鉄心8の電機子6
側近傍の側面と磁極片4Aの側面とを短絡する短絡鉄心
10 (IOA、l0B)が設けられる。
Additionally, an armature 6 of the commutator core 8 is disposed between the main pole 2 and the commutator pole 3.
A short-circuit core 10 (IOA, 10B) is provided to short-circuit the side surface near the side and the side surface of the magnetic pole piece 4A.

このような構成で、その低速運転時、および、高速運転
時の動作が第10図に示されている。同図(#1)は低
速運転時、(b)は高速運転時が示されており、φMP
 (φMP1+ φMP2)は主磁束、φ■1・(φI
PI〜φII’3)は補極磁束である。(a)の低速運
転時では強め界磁であるため主磁束φMPIが大となり
、主極鉄心4と継鉄1との磁束密度が高くなるので磁気
的に飽和した状態となり、短絡鉄心10Bを通して洩れ
る漏洩補極磁束はφI)・1のみとなり、残りのφIP
2.φlP3は電機子6側へ入射して整流起電力を発生
するための補極磁束となる。
The operation of this configuration during low-speed operation and high-speed operation is shown in FIG. The same figure (#1) shows the time of low-speed operation, and (b) shows the time of high-speed operation, and φMP
(φMP1+ φMP2) is the main magnetic flux, φ■1・(φI
PI~φII'3) is the interpolation magnetic flux. During low-speed operation in (a), the field is strong, so the main magnetic flux φMPI becomes large, and the magnetic flux density between the main pole core 4 and the yoke 1 increases, resulting in a magnetically saturated state and leakage through the short-circuit core 10B. The leakage commutating magnetic flux is only φI)・1, and the remaining φIP
2. φlP3 becomes a commutating magnetic flux that enters the armature 6 side and generates a rectified electromotive force.

(b)の高速運転時では、弱め界磁であるから主磁束φ
MP2が小となり主極鉄心4と継鉄1との磁束密度が低
く、磁気的に飽和していない状態となるので短絡鉄心1
0Bを介して補極磁束φTPが主極鉄心4へ漏れ易くな
り、補極磁束φlP1+ 2が主極鉄心4への漏洩補極
磁束となり、φN’3が電機子6へ入射する。
During high-speed operation (b), since the field is weakened, the main magnetic flux φ
Since MP2 becomes small and the magnetic flux density between the main pole iron core 4 and the yoke 1 is low and the state is not magnetically saturated, the short-circuited iron core 1
The commutating magnetic flux φTP tends to leak to the main pole iron core 4 through 0B, the commutating magnetic flux φlP1+2 becomes the leaking commutating flux to the main pole iron 4, and φN'3 enters the armature 6.

このように、電機子6へ入射する磁束量が高速運転時に
は低速運転時より小さくなるので、無火花帯の移動現象
が防げる。
In this way, the amount of magnetic flux incident on the armature 6 is smaller during high-speed operation than during low-speed operation, so the movement of the no-spark zone can be prevented.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は電機子に入射する補極磁束を調整するた
めの短絡鉄心を通す漏洩補極磁束の外部からの調整機能
がついていないため、補(歪、¥1.絡鉄心、主極、継
鉄からなる磁気回路の定数のみで短絡鉄心を通る補極の
漏洩補極磁束量が決まってしまい、界磁制御範囲内で回
転数にリンクした最適な漏洩補極磁束量の調整が鑑しが
った。
The above conventional technology does not have an external adjustment function for the leakage magnetic flux of the magnetic pole through the short-circuited iron core to adjust the magnetic flux of the magnetic pole incident on the armature. The amount of leakage magnetic flux of the commutator that passes through the short-circuited iron core is determined only by the constant of the magnetic circuit made of iron, and it is difficult to adjust the amount of leakage magnetic flux of the interpole linked to the rotation speed within the field control range. .

本発明は、漏洩補極磁束を直流機本体で自動的に調整で
き、無火花帯移動現象を防止することを可能とした直流
機を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a DC machine that can automatically adjust leakage interpolation magnetic flux in the main body of the DC machine and prevent the no-spark zone movement phenomenon.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、短絡鉄心と対向する位置で空隙を介し、主
極鉄心の磁極片に磁極片凸部を設け、補極鉄心と同極性
の磁極片凸部に漏洩調整巻線を設け、かつ、界磁巻線と
並列接続することにより達成される。
The above object is to provide a magnetic pole piece convex portion on the magnetic pole piece of the main pole core through an air gap at a position facing the short-circuit core, and provide a leakage adjustment winding on the magnetic pole piece convex portion having the same polarity as the commutating pole core, and This is achieved by connecting it in parallel with the field winding.

〔作用〕[Effect]

主極鉄心の磁極片凸部に設けた漏洩調整巻線は、低速運
転時には短絡鉄心の磁気抵抗を大きくし、高速運転時は
小さくするように働くようになって、同極性の主事鉄心
と補極鉄心間に設けた短絡鉄心を通る漏洩補極磁束量は
低速運転時には少なく、高速退転時は大きくなり、他か
ら何等手を加えることなく補極の電機子側へ入射する磁
束(整流起電力を発生させる)を、低速運転時より高速
運転時が少なくでき、無火花帯移動現象を防止できる。
The leakage adjustment winding installed on the convex part of the magnetic pole piece of the main pole iron works to increase the magnetic resistance of the short-circuited iron during low-speed operation and to reduce it during high-speed operation. The amount of leakage magnetic flux of the commutator through the short-circuited core installed between the pole cores is small during low-speed operation, and increases during high-speed retraction, and the magnetic flux (rectified electromotive force ) can be reduced during high-speed operation than during low-speed operation, and the no-spark zone movement phenomenon can be prevented.

漏洩補極磁束量の絶対値を調整するのは、漏洩調整巻線
の分流率を調整することで、容易に対応できる。
The absolute value of the amount of leakage magnetic flux can be easily adjusted by adjusting the current division ratio of the leakage adjustment winding.

〔実施例〕〔Example〕

第1図から第8図に本発明の実施例が示されている。 Embodiments of the invention are shown in FIGS. 1-8.

第1図は本発明の要部展開図であり、補極鉄心8の電機
子6側近傍に短絡鉄心10A、IOBを、主極鉄心4の
磁極片4Aに磁極片凸部12A。
FIG. 1 is a developed view of the main parts of the present invention, showing a short-circuit core 10A and an IOB near the armature 6 side of the commutating pole core 8, and a pole piece convex portion 12A on the pole piece 4A of the main pole core 4.

12Bを設け、短絡鉄心10Aと磁極片凸部12A、短
絡鉄心10Bと磁極片凸部12Bとの間に空隙Sgを設
けている。補極2と同極性の主極2の磁極片4Aに設け
た磁極片凸部12Aには漏洩調整巻線11を設け、その
起磁力方向を補極巻線9の起磁力と相反するように設定
している。
12B, and a gap Sg is provided between the short-circuit core 10A and the pole piece protrusion 12A, and between the short-circuit core 10B and the pole piece protrusion 12B. A leakage adjusting winding 11 is provided on the pole piece convex portion 12A provided on the magnetic pole piece 4A of the main pole 2 having the same polarity as the commutating pole 2, and the direction of the magnetomotive force thereof is set to be opposite to the magnetomotive force of the commutating pole winding 9. It is set.

第2図は直流機の接続回路図であり、界磁巻線5と並列
に漏洩調整巻線11を設けている。
FIG. 2 is a connection circuit diagram of the DC machine, in which a leak adjustment winding 11 is provided in parallel with the field winding 5.

このような構成で、低速運転時と高速運転時の動作を第
3図に基づいて説明する。同図(a)の低速運転時は強
め界磁(界磁電流が大)であるから、漏洩yA整巻線1
1の起磁力も大となるため。
With such a configuration, operations during low-speed operation and high-speed operation will be explained based on FIG. 3. During low-speed operation in Figure (a), the field is strong (the field current is large), so the leakage yA regular winding 1
1 also has a large magnetomotive force.

補巻線9による補極鉄心8を通る補極磁束φIPI〜φ
IP3のうち、主極2の磁極片4Aへ漏れる漏洩補極磁
束は、主極2と補極3との異極間に設けた短絡鉄心10
B、磁極片凸部12Bを経由するφIPIのみとなり、
残りのφ1P2t φIP3が電機子6側へ入射して整
流起電力を発生させるための補ti磁束となる。
The commutating magnetic flux φIPI~φ passing through the commutating iron core 8 due to the auxiliary winding 9
Of the IP3, the leakage commutator magnetic flux leaking to the magnetic pole piece 4A of the main pole 2 is caused by the short-circuited iron core 10 provided between the different poles of the main pole 2 and the commutator pole 3.
B, only φIPI passes through the pole piece convex portion 12B,
The remaining φ1P2t φIP3 enters the armature 6 side and becomes a supplementary ti magnetic flux for generating a rectified electromotive force.

これに対して、(b)の高速運転時では弱め界磁(界磁
電流が小)であるから、漏洩調整巻線11の起磁力も小
さくなるため、漏洩補極磁束φIPIが短絡鉄心10B
と磁極片凸部12Bとを経由し、かつ、漏洩補極磁束φ
IP3が短絡鉄心1 、OAと磁極片凸部12Aとを経
由して主極鉄心4へ漏れ、残りのφIP3が電機子6側
へ入射して整流起電力を発生させるため補極磁束となる
On the other hand, during high-speed operation in (b), the field is weakened (the field current is small), so the magnetomotive force of the leakage adjustment winding 11 is also small, so that the leakage commutating magnetic flux φIPI is reduced to the short-circuited iron core 10B.
and the magnetic pole piece convex portion 12B, and the leakage commutating magnetic flux φ
IP3 leaks to the main pole iron core 4 via the short-circuited iron core 1, OA and the pole piece convex portion 12A, and the remaining φIP3 enters the armature 6 side and becomes interpolation magnetic flux to generate a rectified electromotive force.

従って、低速運転時の漏洩補極磁束量φIPIと高速運
転時の漏洩補極磁束量(φIP1+φIP3)とは明ら
かにφrp!< ’(φIPI+φIP3) 、逆に、
補極鉄心8から電機子6側へ入射する整流起電力を発生
させるための補極磁束量は低速運転時が(φIP2+φ
+pa) 、高速運転時がφIP12で明らかに(φI
PZ+φIP3) >φIP2どなる。これにより。
Therefore, it is clear that the amount of leakage interpole magnetic flux φIPI during low-speed operation and the amount of leakage interpole magnetic flux (φIP1+φIP3) during high-speed operation are φrp! <'(φIPI+φIP3), conversely,
During low-speed operation, the amount of commutating magnetic flux for generating rectified electromotive force incident on the armature 6 side from the commutating pole iron core 8 is (φIP2+φ
+pa), during high-speed operation, it is clear at φIP12 (φI
PZ+φIP3) >φIP2 roars. Due to this.

高速運転時の補極磁束量が低速運転時より小さくなるの
で、直流機本体のみで無火花帯移動現象が防止できる。
Since the amount of interpole magnetic flux during high-speed operation is smaller than during low-speed operation, the no-spark band movement phenomenon can be prevented using only the DC machine main body.

なお、短終鉄心と磁極片凸部との間に設けた空隙Sgは
補極磁束の直線性(負荷電流に対して)を得るためであ
る。
The purpose of the air gap Sg provided between the short end core and the pole piece convex portion is to obtain linearity of the interpole magnetic flux (with respect to the load current).

この時の漏洩補極磁束量は回転数を変える(界磁の強さ
(ii流)を変える)ことにより、界磁巻線5と並列に
設けた漏洩調整巻線11の起磁力も自動的に変るので、
何等手を加えることなく自動的に回転数にリンクして変
化させることができ、その絶対量(必要起磁力)の調整
をしておけば、界磁制御範囲内で、常に、最適な整流状
態が維持できる直流機が得られる。
At this time, by changing the rotation speed (by changing the field strength (ii flow)), the leakage copole magnetic flux amount can be adjusted automatically by changing the magnetomotive force of the leakage adjustment winding 11 installed in parallel with the field winding 5. Since it changes to
It can be automatically linked to the rotation speed and changed without any modification, and by adjusting the absolute amount (required magnetomotive force), the optimum rectification state is always maintained within the field control range. You can get a DC machine that can.

電機子電流IMの方向を反転して両回転方向で運転され
る直流機の場合は補極2の極性も反転するので、それに
応じた構成にする必要がある。
In the case of a DC machine that is operated in both rotational directions by reversing the direction of the armature current IM, the polarity of the commutating pole 2 is also reversed, so it is necessary to configure the machine accordingly.

第4図は両回転方向で運転される直流機を対象とした本
発明の他の実施例であり、第1図における漏洩調整巻線
を主極鉄心の両側面の磁極片凸部に設け、第5図に示す
ように、回転方向に応じて一方の漏洩調整巻線を選ぶよ
うにしたものである。
FIG. 4 shows another embodiment of the present invention intended for a DC machine operated in both directions of rotation, in which the leakage adjustment windings in FIG. As shown in FIG. 5, one of the leakage adjusting windings is selected depending on the direction of rotation.

第4図で、主極2と補極3の極性及び電機子巻線7の電
流方向を図示の様に設定すると、電機子6の回転方向は
右方向となる。この時、第5図に示したスイッチ13に
よって漏洩調整巻線11Aを選択すると、第3図と同様
に漏洩補極磁束量を調整できる。電機子巻線7の電流方
向を切り替えて電機子6の回転方向を反転すると、補極
3の極性も反転するのでスイッチ13によって漏洩調整
巻線11Bを選択すると、S極となる補極3と相反する
起磁力方向であるので、直流機本体のみで補極磁束量を
調整できる。
In FIG. 4, if the polarities of the main pole 2 and the counter pole 3 and the current direction of the armature winding 7 are set as shown, the rotation direction of the armature 6 will be in the right direction. At this time, if the leakage adjusting winding 11A is selected by the switch 13 shown in FIG. 5, the amount of leakage commutating magnetic flux can be adjusted as in FIG. 3. When the current direction of the armature winding 7 is switched and the rotation direction of the armature 6 is reversed, the polarity of the commutative pole 3 is also reversed, so when the leakage adjustment winding 11B is selected by the switch 13, the commutative pole 3 becomes the S pole. Since the magnetomotive forces are in opposite directions, the amount of interpolation magnetic flux can be adjusted using only the DC machine body.

第6図は両回転方向で運転される直流機を対象とした本
発明の他の実施例であり、第1図における漏洩調整巻線
を主極鉄心の両側面の磁極片凸部に設けたものである。
Figure 6 shows another embodiment of the present invention for a DC machine operated in both rotational directions, in which the leakage adjustment windings in Figure 1 are provided on the convex portions of the pole pieces on both sides of the main pole core. It is something.

第6図において、漏洩調整巻線11AとIIBの起磁力
を主極2のN極とS極を短絡する方向に設定したもので
ある。強め界磁の場合は、漏洩調整巻線11Bの起磁力
が強く補極磁束を主極鉄心4へ漏らす方向に働くが、短
絡鉄心10B、磁極片凸部12Bが界磁巻線5と補極巻
線9との起磁力による漏洩補極磁束によって磁気飽和し
ているので、この漏洩調整巻線11Bによる漏洩補極磁
束の増加は殆どない。漏洩調整巻線11Aはその起磁力
方向が第1図で示したのと同様に、補1巻線9の起磁力
方向と相反するので、補極磁束が短絡鉄心10A、磁極
片凸部12Aを経由して同極性の主極鉄心4へ漏れるの
を防げる。
In FIG. 6, the magnetomotive forces of the leakage adjustment windings 11A and IIB are set in a direction that short-circuits the north and south poles of the main pole 2. In the case of a strong field, the magnetomotive force of the leakage adjustment winding 11B is strong and acts in the direction of leaking the copolarity magnetic flux to the main pole core 4, but the short-circuit core 10B and the pole piece convex portion 12B are connected to the field winding 5 and the commutator. Since magnetic saturation is caused by the leakage commutative flux due to the magnetomotive force with the winding 9, there is almost no increase in the leakage commutator flux due to the leakage adjustment winding 11B. The direction of the magnetomotive force of the leakage adjusting winding 11A is opposite to the direction of the magnetomotive force of the first auxiliary winding 9, as shown in FIG. This can prevent leakage to the main pole iron core 4 of the same polarity.

これに対し、弱め界磁の場合は、漏洩調整巻線11の起
磁力が小さくなるため、短絡鉄心10B。
On the other hand, in the case of field weakening, the magnetomotive force of the leakage adjustment winding 11 becomes smaller, so that the short-circuited iron core 10B.

磁極片凸部12Bを経由して主極鉄心4へ漏れる漏洩補
極磁束量はほとんど変わらず、短絡鉄心10A、磁極片
凸部12Aを経由して主極鉄心4へ漏れる漏洩補極磁束
量が増加する。
The amount of leakage interpole magnetic flux leaking to the main pole iron core 4 via the pole piece convex portion 12B remains almost unchanged, and the amount of leakage interpole magnetic flux leaking to the main pole iron core 4 via the short-circuited iron core 10A and the pole piece convex portion 12A remains unchanged. To increase.

この結果、高速運転時(弱め界磁)の補極磁束量が低速
運転時(強め界磁)より小さくなるので、直流機本体の
みで無火花帯移動現象が防止できる。
As a result, the amount of interpolation magnetic flux during high-speed operation (weak field) is smaller than during low-speed operation (stronger field), so the no-spark zone movement phenomenon can be prevented only by the DC machine main body.

また、電機子巻線の電流方向を切り替えて回転方向を反
転させる場合(この方式による回転方向切替が主流であ
る)、補極3の極性も反転してS極になるが、漏洩調整
巻線11Bの起磁力方向が補極巻線9の起磁力方向と相
反する結果1回転方向にかかわらず、漏洩調整巻線の電
流方向を変えずども直流機本体のみで補極磁束量を調整
できる。
In addition, when switching the current direction of the armature winding to reverse the rotation direction (this method of switching the rotation direction is mainstream), the polarity of the commutative pole 3 is also reversed and becomes the S pole, but the leakage adjustment winding As a result of the magnetomotive force direction of 11B being opposite to the magnetomotive force direction of the commutator winding 9, regardless of the direction of one rotation, the amount of commutator magnetic flux can be adjusted only by the DC machine main body without changing the current direction of the leakage adjustment winding.

第8図は本発明の他の実施例であり、磁極片凸部と漏洩
調整巻線の取付位置を示す。
FIG. 8 shows another embodiment of the present invention, showing the mounting positions of the magnetic pole piece convex portion and the leakage adjustment winding.

第8図において、磁極片凸部12A、12Bを主極鉄心
4の磁極片4A中に設け、磁極片凸部12に漏洩調整巻
線11を止め具14 (14A。
In FIG. 8, magnetic pole piece convex portions 12A and 12B are provided in the magnetic pole piece 4A of the main pole iron core 4, and the leakage adjustment winding 11 is attached to the magnetic pole piece convex portion 12 by a stopper 14 (14A).

14B)を固定したものである。これにより、磁極片4
A及び磁極片凸部12と短絡鉄心10間との間の空隙が
Sgとなり、補極3の取外しが径方向に行えるため、組
立作業性が向上する。
14B) is fixed. As a result, the magnetic pole piece 4
The air gap between A and the pole piece convex portion 12 and the short-circuited iron core 10 becomes Sg, and the commutating pole 3 can be removed in the radial direction, thereby improving assembly workability.

このように、本実施例によれば、直流機本体のみで無火
花帯移動現象を防止できる。また、短絡鉄心と磁極片凸
部を設け、磁極片凸部に漏洩調整巻線を設けるのみの単
純な溝成なので、他の補償装を必要とせず、かつ、据付
、配線作業がなく安価であり、設置スペースも少なくて
すむ。
In this way, according to this embodiment, the no-spark band movement phenomenon can be prevented only by the DC machine main body. In addition, since it is a simple groove structure that only includes a short-circuit core and a pole piece convex part, and a leakage adjustment winding on the pole piece convex part, it does not require any other compensation equipment, and it is inexpensive because there is no installation or wiring work. Yes, and requires less installation space.

なお、本実施例では漏洩調整巻線を界磁巻線と並列に設
けたが、別電源で励磁しても良い。
Although the leak adjustment winding is provided in parallel with the field winding in this embodiment, it may be excited by a separate power source.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、補極鉄心から主極鉄心への漏洩補極磁
束を調整し、補極磁束量を直流機本体で自動的に調整で
きるので、無火花帯移動現象現象が防ぐことができる直
流機を得られる。
According to the present invention, leakage of the interpole magnetic flux from the interpole iron to the main pole iron can be adjusted, and the amount of interpolation magnetic flux can be automatically adjusted in the DC machine body, so that the non-spark zone movement phenomenon can be prevented. You can get a DC machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の直流機要部の展開図、第2
図は第1図の漏洩調整巻線を設けた状態を示す回路図、
第3図(a)、(b)は同じく一実施例の動作説明図、
(a)は低速運転時、(b)は高速運転時の動作を示す
直流機要部の展開図、第4図は本発明の他の実施例の直
流機要部の展開図、第5図は第4図での漏洩調整巻線を
設けた状態を示す回路図、第6図は本発明の他の実施例
の直流機要部の展開図、第7図は第6図での漏洩調整巻
線を設けた状態を示す回路図、第8図は本発明の漏洩調
整巻線の取付状態を示す直流機固定子の展開図、第9図
は従来の直流機の要部展開図、第10図(a)、(b)
は同じ〈従来の動作を示したもので、(a)は低速運転
時、(b)は高速運転時の動作を示す直流機要部の展開
図である。 1・・・継鉄、2・・・主極、3・・・補極、4・・・
主極鉄心、4A・・・磁極片、5・・・界磁巻線、6・
・・電機子、7・・・電機子巻線、8・・・補極鉄心、
9・・・補極巻線、10・・・短絡鉄心、11・・・漏
洩調整巻線、12・・・磁極片凸部、13・・・切替ス
イッチ、14・・・止め具。 代理人 弁理士 小川勝男(≦゛ 第1 国 Z 第2凹 第3図 (久) 第4図 ツー 、z 第5図 第6図 z 第7図 丁X 第8面 第9)凹 第10区 ξJ≦と、ン ゝ\−、/
Figure 1 is an exploded view of the main parts of a DC machine according to an embodiment of the present invention;
The figure is a circuit diagram showing a state in which the leakage adjustment winding shown in Figure 1 is installed.
FIGS. 3(a) and 3(b) are also explanatory diagrams of the operation of one embodiment,
(a) is a developed view of the main parts of a DC machine showing operation during low-speed operation, (b) is a developed view of the main parts of a DC machine showing operation during high-speed operation, FIG. 4 is a developed view of the main parts of a DC machine according to another embodiment of the present invention, and FIG. is a circuit diagram showing a state in which the leakage adjustment winding shown in FIG. 4 is installed, FIG. FIG. 8 is an exploded view of a DC machine stator showing how the leakage adjustment winding of the present invention is installed. FIG. 9 is an exploded view of the main parts of a conventional DC machine. Figure 10 (a), (b)
(a) is an exploded view of the main parts of the DC machine showing the operation at low speed operation and (b) at high speed operation. 1... Yoke, 2... Main pole, 3... Complementary pole, 4...
Main pole iron core, 4A...Magnetic pole piece, 5...Field winding, 6.
...Armature, 7...Armature winding, 8...Commuting pole iron core,
9... Commuting pole winding, 10... Short-circuit core, 11... Leakage adjustment winding, 12... Magnetic pole piece convex portion, 13... Changeover switch, 14... Stopper. Agent Patent Attorney Katsuo Ogawa (≦゛1st country ξJ≦ and =\−, /

Claims (1)

【特許請求の範囲】 1、回転子の電機子と、前記回転子に対向配置され、主
極鉄心および界磁巻線からなる複数の主極の相互間の環
状の継鉄の内周側に取付けられ、補極鉄心および補極巻
線からなる複数の補極から構成され、前記主極鉄心と前
記補極鉄心との間にはこれら両者の前記電機子側を短絡
し、漏洩補極磁束を流通させる短絡鉄心が設けられてい
る直流機の固定子において、 前記短絡鉄心と対向する位置に空隙を介し、前記主極鉄
心の磁極片に凸部を設け、前記補極鉄心と同極性の前記
主極鉄心の凸部に漏洩調整巻線を巻装し、前記補極鉄心
から前記主極鉄心へ漏れる前記漏洩補極磁束を調整する
ようにしたことを特徴とする直流機の固定子。 2、前記漏洩調整巻線を前記主極鉄心の両側面の前記磁
極片凸部に設け、前記回転子の回転方向によつて一方の
前記漏洩調整巻線を選択するようにしたことを特徴とす
る特許請求の範囲第1項記載の直流機の固定子。 3、前記漏洩調整巻線を前記界磁巻線と並列に設けたこ
とを特徴とする特許請求の範囲第1項記載の直流機の固
定子。 4、前記漏洩調整巻線を前記主極鉄心の両側面の前記磁
極片凸部に設け、前記主極鉄心間を短絡する漏洩補極磁
束を発生する方向に、電流を供給するようにしたことを
特徴とする特許請求の範囲第1項記載の直流機の固定子
[Claims] 1. On the inner peripheral side of an annular yoke between an armature of a rotor and a plurality of main poles arranged opposite to the rotor and consisting of a main pole iron core and a field winding. The armature side of both of these is short-circuited between the main pole iron core and the commutative pole iron core, and the leakage of the interpolation magnetic flux is prevented. In a stator of a DC machine, a convex portion is provided on the magnetic pole piece of the main pole iron at a position facing the short circuit iron core through a gap, and a convex portion is provided on the magnetic pole piece of the main pole iron, and a convex portion is provided on the magnetic pole piece of the main pole iron at a position facing the short circuit iron core, and a convex portion is provided on the magnetic pole piece of the main pole iron, and A stator for a DC machine, characterized in that a leakage adjusting winding is wound around a convex portion of the main pole core to adjust the leakage commutator magnetic flux leaking from the commutator core to the main pole core. 2. The leakage adjustment winding is provided on the pole piece convex portions on both sides of the main pole core, and one of the leakage adjustment windings is selected depending on the rotational direction of the rotor. A stator for a DC machine according to claim 1. 3. A stator for a DC machine according to claim 1, wherein the leakage adjustment winding is provided in parallel with the field winding. 4. The leakage adjustment windings are provided on the pole piece convex portions on both sides of the main pole core, and current is supplied in a direction that generates a leaky interpolation magnetic flux that short-circuits between the main pole cores. A stator for a DC machine according to claim 1, characterized in that:
JP10902388A 1988-05-06 1988-05-06 Stator of dc machine Pending JPH01283036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10902388A JPH01283036A (en) 1988-05-06 1988-05-06 Stator of dc machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10902388A JPH01283036A (en) 1988-05-06 1988-05-06 Stator of dc machine

Publications (1)

Publication Number Publication Date
JPH01283036A true JPH01283036A (en) 1989-11-14

Family

ID=14499639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10902388A Pending JPH01283036A (en) 1988-05-06 1988-05-06 Stator of dc machine

Country Status (1)

Country Link
JP (1) JPH01283036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739614A (en) * 1996-04-25 1998-04-14 Minebea Co., Ltd. Two-phase unipolar driving brushless DC motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739614A (en) * 1996-04-25 1998-04-14 Minebea Co., Ltd. Two-phase unipolar driving brushless DC motor

Similar Documents

Publication Publication Date Title
US5510662A (en) Permanent magnet motor
US5298827A (en) Permanent magnet type dynamoelectric machine rotor
JP3371314B2 (en) DC brushless motor and control device
US7969057B2 (en) Synchronous motor with rotor having suitably-arranged field coil, permanent magnets, and salient-pole structure
US5047681A (en) Constant power synchronous motor with microprocessor control
JP2002262533A (en) Permanent magnet type rotating electric machine
JP2978057B2 (en) Permanent magnet type motor and compressor for cooling system
JPH0759310A (en) Hybrid type synchronous motor
JP2002354728A (en) Reluctance motor
JPH08172742A (en) Permanent magnet field system rotary electric machine
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
JPH01283036A (en) Stator of dc machine
JPH0345150A (en) Brushless magnetogenerator
JPH01133550A (en) D.c. machine
JPH1189144A (en) Permanent magnet rotary electric motor and electric vehicle using it
JP3985655B2 (en) Rotating electric machine
JPH07222385A (en) Reverse salient cylindrical magnet synchronous motor
KR0121330Y1 (en) A stator for a stepping motor
GB2284104A (en) Adjustable flux permanent magnet brushless AC or DC motor
CN110391701B (en) Rotating electrical machine
JPH0393448A (en) Stator for dc machine
JPH0349551A (en) Stator for dc rotary machine
JPH0522917A (en) Direct current motor
JP3439874B2 (en) DC motor
JPH0368628B2 (en)