JPH0128298B2 - - Google Patents

Info

Publication number
JPH0128298B2
JPH0128298B2 JP55115453A JP11545380A JPH0128298B2 JP H0128298 B2 JPH0128298 B2 JP H0128298B2 JP 55115453 A JP55115453 A JP 55115453A JP 11545380 A JP11545380 A JP 11545380A JP H0128298 B2 JPH0128298 B2 JP H0128298B2
Authority
JP
Japan
Prior art keywords
flow rate
combustion
gas
hot water
rate sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55115453A
Other languages
Japanese (ja)
Other versions
JPS5741538A (en
Inventor
Tadashi Nishino
Eiichi Ooizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55115453A priority Critical patent/JPS5741538A/en
Publication of JPS5741538A publication Critical patent/JPS5741538A/en
Publication of JPH0128298B2 publication Critical patent/JPH0128298B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は強制燃焼式暖房専用機に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a forced combustion heating machine.

第1図に従来の暖房専用機を示し、暖房運転時
において水はポンプ1によつて配管2内を循環
し、熱交換器3により温水に熱交換される。熱交
換器3を通過した温水の温度はサーモスタツト4
によつて検出されて制御される。ところで熱交換
器3を加熱するメインバーナ5にはガス入口より
第1電磁弁6→ガスガバナ7→第2電磁弁8を介
して燃焼用ガスが送られ、メインバーナ5で燃焼
する。メインバーナ5の燃焼により熱交換器3を
加熱し、熱交換器3の熱を温水に熱交換するもの
である。メインバーナ5の排気ガスは排気口9か
ら機外に排出される。10は補給水タンク、11
は前記配管2中に設けられた放熱器である。斯か
る従来の暖房専用機において、サーモスタツト4
の温水温度検出により第2電磁弁8を開閉させる
ため、暖房高負荷時は第2電磁弁8が全開で燃焼
用ガス量が大、暖房低負荷時は第2電磁弁8が開
閉の繰り返しとなり燃焼用ガス量は小となる。従
つて暖房負荷が高負荷時では第2図に示すように
高熱効率が得られるが、低負荷時では空気過剰の
ため熱効率は低い。
FIG. 1 shows a conventional heating-only machine. During heating operation, water is circulated through piping 2 by a pump 1, and heat is exchanged into hot water by a heat exchanger 3. The temperature of the hot water that has passed through the heat exchanger 3 is determined by the thermostat 4.
detected and controlled by By the way, combustion gas is sent from the gas inlet to the main burner 5 that heats the heat exchanger 3 via the first electromagnetic valve 6 → gas governor 7 → second electromagnetic valve 8, and is combusted in the main burner 5. The heat exchanger 3 is heated by combustion in the main burner 5, and the heat of the heat exchanger 3 is exchanged with hot water. Exhaust gas from the main burner 5 is discharged to the outside of the machine from an exhaust port 9. 10 is a supplementary water tank, 11
is a radiator provided in the pipe 2. In such a conventional heating-only machine, thermostat 4
Since the second solenoid valve 8 is opened and closed by detecting the hot water temperature, when the heating load is high, the second solenoid valve 8 is fully opened and the amount of combustion gas is large, and when the heating load is low, the second solenoid valve 8 repeats opening and closing. The amount of combustion gas is small. Therefore, when the heating load is high, high thermal efficiency is obtained as shown in FIG. 2, but when the heating load is low, the thermal efficiency is low due to excess air.

そこで本発明は暖房負荷の全域に亘つて高い熱
効率が得られ、省エネルギーを計ることができる
ようにすることを目的とするものであり、以下本
発明を実施の一例を示す図面(第3図、第4図)
に基づいて説明する。図において21は循環水を
配管22中で循環させるために設けたポンプ、2
3は配管22中を流れる循環水を温水に熱交換す
るための熱交換器、24は配管22中の温水の温
度を制御するサーモスタツトである。25は前記
熱交換器23を加熱するメインバーナで、該メイ
ンバーナ25には燃焼用ガスがガス入口より第1
電磁弁26、ガスガバナ27を流れ第2電磁弁2
8及び第3電磁弁29を介して流入し、メインバ
ーナ25で燃焼し得るようになつている。このメ
インバーナ25で発生する排気ガスは燃焼用フア
ン30により排気口34から機外に排出されるよ
うになつている。31は前記配管22中に設けら
れた放熱器であつて、この放熱器31は実際は並
列或いは直列に複数台設けられている。32は補
給水タンクである。35は機器内の温水バイパス
回路であり、放熱器台数に応じて配管抵抗により
バイパス流量が可変し、台数が少ないときは大流
量、台数が多いときは小流量となるものである。
ところで本発明は暖房運転時において暖房負荷が
大である場合放熱器31の使用台数が増えるため
バイパス回路35には小流量、温水配管22aの
暖房温水流量は大流量となることを利用して配管
22中に流量センサー33を設け、その流量セン
サー33の信号電流によつて燃焼用フアン30を
切り換えて大回転させると共に第2電磁弁28及
び第3電磁弁29を全開としてガス量と燃焼用空
気量を適切に混合させることにより、暖房出力が
大なる場合は適度の高い熱効率が得られるもので
ある。又暖房負荷が小即ち放熱器31の使用台数
が少ない場合はバイパス回路35は大流量、温水
配管22aは小流量となり流量センサ33が所定
の温水流量以下になつたことを感知してその設定
電流により燃焼用フアン30を切り換えて小回転
させると共に第2電磁弁28及び第3電磁弁29
の何れか一方をオフさせてガス量と燃焼用空気量
とを適切に混合させることにより、暖房負荷が小
さい場合でも高い熱効率が得られるものである。
このように流量センサー33の信号電流と燃焼用
フアン30の回転及び第1、第2の電磁弁28,
29の開度を1:1に対応させることにより、暖
房負荷の全域に亘つて高い熱効率が得られ、省エ
ネルギーを計ることができるものである。第4図
に本発明による暖房出力と熱効率との関係をグラ
フで示し、第2図に示す従来例のグラフと比較し
て暖房負荷が小さい場合について大幅に熱効率が
アツプし、暖房負荷が大きい場合でも熱効率のア
ツプは見られた。本発明では流量センサー33の
所定流量ポイントが暖房負荷の切り換わるポイン
トである。
Therefore, it is an object of the present invention to obtain high thermal efficiency over the entire heating load range and to be able to measure energy savings. Figure 4)
The explanation will be based on. In the figure, 21 is a pump provided for circulating circulating water in the piping 22;
3 is a heat exchanger for exchanging heat from circulating water flowing through the pipe 22 to hot water; 24 is a thermostat for controlling the temperature of the hot water in the pipe 22; 25 is a main burner that heats the heat exchanger 23, and combustion gas is supplied to the main burner 25 from the gas inlet.
The gas flows through the solenoid valve 26 and the gas governor 27 and the second solenoid valve 2
8 and the third solenoid valve 29, and can be burned in the main burner 25. Exhaust gas generated by the main burner 25 is discharged to the outside of the machine from an exhaust port 34 by a combustion fan 30. Reference numeral 31 denotes a radiator provided in the pipe 22, and a plurality of radiators 31 are actually provided in parallel or in series. 32 is a makeup water tank. 35 is a hot water bypass circuit in the equipment, and the bypass flow rate is varied by piping resistance according to the number of radiators, and when the number of radiators is small, the flow rate is large, and when the number of radiators is large, the flow rate is small.
By the way, the present invention utilizes the fact that when the heating load is large during heating operation, the number of radiators 31 used increases, so the bypass circuit 35 has a small flow rate, and the heating hot water flow rate of the hot water pipe 22a has a large flow rate. A flow rate sensor 33 is provided in the flow sensor 22, and the combustion fan 30 is switched and rotated by a signal current from the flow rate sensor 33, and the second solenoid valve 28 and the third solenoid valve 29 are fully opened to adjust the amount of gas and the amount of combustion air. By appropriately mixing the two, a moderately high thermal efficiency can be obtained when the heating output is large. When the heating load is small, that is, when the number of radiators 31 used is small, the bypass circuit 35 has a large flow rate, and the hot water pipe 22a has a small flow rate, and the flow rate sensor 33 detects that the hot water flow rate has fallen below a predetermined hot water flow rate and adjusts the set current. The combustion fan 30 is switched to make a small rotation, and the second solenoid valve 28 and the third solenoid valve 29 are
By turning off either one of them and appropriately mixing the amount of gas and the amount of combustion air, high thermal efficiency can be obtained even when the heating load is small.
In this way, the signal current of the flow rate sensor 33, the rotation of the combustion fan 30, and the first and second electromagnetic valves 28,
By matching the opening degree of 29 to 1:1, high thermal efficiency can be obtained over the entire heating load range, and energy saving can be achieved. Figure 4 shows a graph of the relationship between heating output and thermal efficiency according to the present invention, and compared to the graph of the conventional example shown in Figure 2, the thermal efficiency is significantly increased when the heating load is small, and when the heating load is large. However, an increase in thermal efficiency was observed. In the present invention, the predetermined flow rate point of the flow rate sensor 33 is the point at which the heating load is switched.

本発明強制燃焼式暖房専用機は以上述べたよう
に実施し得るものであり、異室に設置した複数の
放熱器の使用数の増減によつて生ずる暖房負荷の
変化に対して、燃焼部を適時に対応させることが
出来、暖房負荷が小さい場合でも高い熱効率が得
られて暖房負荷の全域に亘つて高い熱効率が得ら
れ、省エネルギーを計ることができる。
The forced-combustion heating-dedicated device of the present invention can be implemented as described above, and the combustion section can be adjusted in response to changes in the heating load caused by increases or decreases in the number of radiators installed in different rooms. This can be done in a timely manner, high thermal efficiency can be obtained even when the heating load is small, high thermal efficiency can be obtained over the entire heating load range, and energy can be saved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す縦断面図、第2図は従来
例による暖房出力と熱効率との関係を示すグラ
フ、第3図は本発明の実施の一例を示す縦断面
図、第4図は本発明による暖房出力と熱効率との
関係を示すグラフである。 21…ポンプ、22…配管、23…熱交換器、
24…サーモスタツト、25…メインバーナ、2
6…第1電磁弁、27…ガスガバナ、28…第2
電磁弁、29…第3電磁弁、30…燃焼用フア
ン、31…放熱器、33…流量センサー、34…
排気口、35…バイパス回路。
FIG. 1 is a vertical cross-sectional view showing a conventional example, FIG. 2 is a graph showing the relationship between heating output and thermal efficiency according to the conventional example, FIG. 3 is a vertical cross-sectional view showing an example of implementation of the present invention, and FIG. It is a graph showing the relationship between heating output and thermal efficiency according to the present invention. 21...Pump, 22...Piping, 23...Heat exchanger,
24...Thermostat, 25...Main burner, 2
6...First solenoid valve, 27...Gas governor, 28...Second
Solenoid valve, 29...Third solenoid valve, 30...Combustion fan, 31...Radiator, 33...Flow rate sensor, 34...
Exhaust port, 35...bypass circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 異室に設置される複数の放熱器を並列に介在
させて形成される温水の循環流路に流量検出用の
流量センサーを設け、温水流量の度合に応じて前
記流量センサーの信号によつて回転数が切り換え
られる燃焼用フアンを設けるとともに、循環流路
を流れる循環水を加熱するガス燃焼部に対するガ
ス流量を流量センサーの信号によつて調節するガ
ス制御手段を設けたことを特徴とする強制燃焼式
暖房専用機。
1. A flow rate sensor for detecting the flow rate is provided in a hot water circulation channel formed by interposing a plurality of radiators installed in different rooms in parallel, and a flow rate sensor is installed to detect the flow rate according to the degree of hot water flow rate. A forced combustion system characterized by being provided with a combustion fan whose rotation speed can be changed, and gas control means for adjusting the gas flow rate to the gas combustion section that heats the circulating water flowing through the circulation flow path using a signal from a flow rate sensor. A dedicated combustion type heating machine.
JP55115453A 1980-08-21 1980-08-21 Forced combustion type heater used exclusively for room heating Granted JPS5741538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55115453A JPS5741538A (en) 1980-08-21 1980-08-21 Forced combustion type heater used exclusively for room heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55115453A JPS5741538A (en) 1980-08-21 1980-08-21 Forced combustion type heater used exclusively for room heating

Publications (2)

Publication Number Publication Date
JPS5741538A JPS5741538A (en) 1982-03-08
JPH0128298B2 true JPH0128298B2 (en) 1989-06-01

Family

ID=14662919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55115453A Granted JPS5741538A (en) 1980-08-21 1980-08-21 Forced combustion type heater used exclusively for room heating

Country Status (1)

Country Link
JP (1) JPS5741538A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147977B2 (en) * 1991-12-19 2001-03-19 新日本製鐵株式会社 Substrate for reflecting mirror made of sintered silicon carbide and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043545A (en) * 1973-08-22 1975-04-19
JPS5110442U (en) * 1974-07-11 1976-01-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043545A (en) * 1973-08-22 1975-04-19
JPS5110442U (en) * 1974-07-11 1976-01-26

Also Published As

Publication number Publication date
JPS5741538A (en) 1982-03-08

Similar Documents

Publication Publication Date Title
US4136731A (en) Heat transfer apparatus
US3999709A (en) Water heater
US4141408A (en) Supplementary heat control for heat pump system
JPS62190322A (en) Device for controlling combustion
JPH0128298B2 (en)
KR20190051487A (en) Cooling system for vehicles and thereof controlled method
JPS6360985B2 (en)
JPH10196974A (en) Floor heating system
JP2564722B2 (en) Gas combustion equipment
KR880000184B1 (en) Control apparatus of fan for heating system
JPS5854570Y2 (en) Hot water heat dissipation device
JPS60185050A (en) Instantaneous water heater
JPS6269034A (en) Temperature regulator
JP2615152B2 (en) Bypass mixing water heater
JP2760564B2 (en) Water heater
JPS6123251Y2 (en)
JPS60165463A (en) Hot-water room heater
JPH05149552A (en) Hot-water space heater
JPS6128989Y2 (en)
JPH0354369Y2 (en)
JPS6123253Y2 (en)
SU611084A1 (en) Air conditioning system
JPS62252848A (en) Heat exchanger
JPS60185049A (en) Instantaneous water heater
JPH0330755Y2 (en)