JPH01282812A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH01282812A
JPH01282812A JP11170688A JP11170688A JPH01282812A JP H01282812 A JPH01282812 A JP H01282812A JP 11170688 A JP11170688 A JP 11170688A JP 11170688 A JP11170688 A JP 11170688A JP H01282812 A JPH01282812 A JP H01282812A
Authority
JP
Japan
Prior art keywords
complex salt
tcnq
inorganic
electrolytic capacitor
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11170688A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Eiji Endo
栄治 遠藤
Satoshi Takemiya
聡 竹宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11170688A priority Critical patent/JPH01282812A/en
Publication of JPH01282812A publication Critical patent/JPH01282812A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Abstract

PURPOSE:To hold solder heat resistance, and to obtain excellent high-frequency characteristics by combining an inorganic matter and an inorganic compound having specific physical properties together with a TCNQ complex salt. CONSTITUTION:A solid electrolyte composed of the complex of a tetracyanoquinodimethane (TCNQ) complex salt and the particulates of an inorganic matter or an inorganic compound, a linear expansion coefficient of which is brought to 5X10<-5>(K-1) or less and the melting point of which is brought to 260 deg.C or higher, is used. The complex salt, etc., of isoquinolium, an N order of which is replaced with an alkyl group, and TCNQ is cited as the TCNQ complex salt. Carbon represented by graphite, a semimetal such as boron, silicon, etc., and various metals such as aluminum are quoted as the inorganic matter. Various oxides such as silica and alumina are cited as the inorganic compound. Accordingly, solder heat resistance is held, and excellent high-frequency characteristics are maintained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体電解コンデンサ、特に優れた高周波特性を
維持し、且半田耐熱性を有する固体電解コンデンサを提
供するにある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a solid electrolytic capacitor, particularly a solid electrolytic capacitor that maintains excellent high frequency characteristics and has solder heat resistance.

[従来の技術] 例えば特開昭58−17609号公報には、陽極酸化皮
膜の補修性が優れ、貫電導性の良好な有機固体電解質と
して、7,7,8.8テトラシアノキノジメタン錯塩(
以下TCNQi塩と略称する)を固体電解質に用いたコ
ンデンサが提案されている。
[Prior Art] For example, JP-A-58-17609 discloses a 7,7,8.8 tetracyanoquinodimethane complex salt as an organic solid electrolyte that has excellent repairability for anodic oxide films and good transconductivity. (
A capacitor using TCNQi salt (hereinafter abbreviated as TCNQi salt) as a solid electrolyte has been proposed.

前記公報によると、N位をアルキル置換したイソキノリ
ンとTCNQの錯塩からなる有機半導体を固体電解質と
して用い、このTCNQ錯塩を加熱溶融してコンデンサ
素子に含浸し、該錯塩が分解する前に冷却、固化して同
体電解質とすることが開示されており、この発明は高周
波特性の優れた同定電解コンデンサの提供を目的として
いる。
According to the above publication, an organic semiconductor consisting of a complex salt of isoquinoline substituted with alkyl at the N-position and TCNQ is used as a solid electrolyte, this TCNQ complex salt is heated and melted to impregnate a capacitor element, and before the complex salt is decomposed, it is cooled and solidified. It is disclosed that the electrolytic capacitor is made into a homogeneous electrolyte, and an object of the present invention is to provide an identified electrolytic capacitor with excellent high frequency characteristics.

[発明の解決しようとするif%i] しかしながら、前記コンデンサにおいては、TCNQ錯
塩を加熱、溶融せしめてコンデンサ素子に含浸後、冷却
固化している為、収縮が生じて誘電体酸化皮膜との接触
が不十分となり、この結果定格の70%程度の容量しか
得られない欠点を有している。
[if%i to be solved by the invention] However, in the above capacitor, the TCNQ complex salt is heated and melted and impregnated into the capacitor element, and then cooled and solidified, so that shrinkage occurs and contact with the dielectric oxide film occurs. This results in a disadvantage that only about 70% of the rated capacity can be obtained.

更に、掛かるτCNQ銘塩を用いたコンデサは、半田耐
熱試験(260℃×10秒)において漏れ電流が極端に
増加してしまい、チップ化が困難になる欠点も有してい
た。
Furthermore, capacitors using such τCNQ salt had the disadvantage that leakage current increased extremely in a soldering heat resistance test (260° C. x 10 seconds), making it difficult to make them into chips.

[課題を解決する為の手段] 本発明者等は本来高性能を有するTCNQCN上有する
前記諸欠点を排除できるなら、真に高性能なコンデンサ
が得られることから、前記諸欠点を有効に排除すること
を目的として種々研究、検討した結果、特定な物性を有
する無機物や無機化合物をTCNQfl塩と併用するこ
とにより、前記目的を達成し得ることを見出した。
[Means for Solving the Problems] The present inventors believe that if the above-mentioned drawbacks of TCNQCN, which inherently has high performance, can be eliminated, a truly high-performance capacitor can be obtained, and therefore, the above-mentioned drawbacks can be effectively eliminated. As a result of various studies and examinations aimed at this purpose, it has been found that the above object can be achieved by using an inorganic substance or an inorganic compound having specific physical properties in combination with TCNQfl salt.

かくして本発明は、テトラシアノキノジメタン錯塩と、
線膨張率が5 X 10−5(K−’)以下で且融点が
260℃以上を有する無機物又は無機化合物の微粒子と
の複合体から成る固体電解質を用いた固体電解コンデン
サを提供するにある。
Thus, the present invention provides a tetracyanoquinodimethane complex salt,
The object of the present invention is to provide a solid electrolytic capacitor using a solid electrolyte made of a composite with fine particles of an inorganic substance or compound having a coefficient of linear expansion of 5 x 10-5 (K-') or less and a melting point of 260°C or more.

本発明に用いられるテトラシアノキノジメタン錯塩(T
CNQCN上としては、例えば、N位をアルキル基で置
換したイソキノリニウムとTCNQの錯塩等が挙げられ
、更に具体的に用いられる前記錯塩としては、例えば特
開昭58−191414号公報に挙げられている。
Tetracyanoquinodimethane complex salt (T
Examples of CNQCN include complex salts of isoquinolinium substituted with an alkyl group at the N-position and TCNQ, and more specifically used complex salts include those listed in JP-A-58-191414. .

又、本発明に用いられる線膨張率とは、日本化学会編、
化学便覧改定2版基1i1ilin685頁に示された
定義に従う。
In addition, the coefficient of linear expansion used in the present invention is defined by the chemical society of Japan,
According to the definition shown on page 685 of Chemical Handbook, Revised 2nd Edition, Iililin.

本発明に用いられる無機物又は無機化合物の微粒子は線
膨張率が5 X 10−5(K”1)以下が必要である
。線膨張率が前記値より大きい場合にはTCNQ錆塩と
の複合体の線膨張係数を効果的に小さくすることができ
なくなるので不適当である。
The fine particles of the inorganic substance or inorganic compound used in the present invention must have a coefficient of linear expansion of 5 x 10-5 (K"1) or less. If the coefficient of linear expansion is greater than the above value, it is necessary to form a complex with TCNQ rust salt. This is inappropriate because it becomes impossible to effectively reduce the coefficient of linear expansion.

又、前記物質はかかる線膨張率と共に融点が260℃以
上を有することが必要である。融点がかかる値より低い
場合には溶融半田浴に浸漬時に溶融して体積増加が起こ
りコンデンサの漏れ電流の増加となるので不適当である
Further, the substance needs to have such a coefficient of linear expansion and a melting point of 260° C. or higher. If the melting point is lower than this value, it is unsuitable because it will melt when immersed in a molten solder bath and increase in volume, resulting in an increase in leakage current of the capacitor.

又、これら物質は、捲同型コンデサの場合等は陽極箔と
陰極箔の間に前記複合体を充填する必要があることから
平均粒子径が30μ以下、好ましくは10μ以下の微粒
子状であることが必要である。
In addition, in the case of a wound type capacitor, etc., it is necessary to fill the composite between the anode foil and the cathode foil, so these substances should be in the form of fine particles with an average particle size of 30μ or less, preferably 10μ or less. is necessary.

この様な物質のうち無機物としては例えば、黒鉛に代表
されるカーボンやホウ素、ケイ素等の半金属、アルミニ
ウム等の各種金属があげられ、又無機化合物としては例
えばシリカやアルミナの様な各種酸化物、窒化ケイ素の
ような窒化物、炭化ケイ素の様な炭化物、ホウ化ジルコ
ニウム等の各種ホウ化物等が挙げられ、これらは適宜一
種或は二種以上を併用して差し支えない。
Among these substances, examples of inorganic substances include carbon such as graphite, semimetals such as boron and silicon, and various metals such as aluminum, and examples of inorganic compounds include various oxides such as silica and alumina. , nitrides such as silicon nitride, carbides such as silicon carbide, various borides such as zirconium boride, etc., and these may be used alone or in combination of two or more.

これら微粒子とTCNQCN上の使用割合は、用いられ
る微粒子の線膨張率か小さい程その使用割合は少なくて
有効に作用する傾同にあるが、一般にはTCNQCN上
対し5〜10重量%程度を採用するのが適当である。し
かし、微粒子が非電子伝導性の場合にはTCNQCN上
対し、50重量%より多くなるとTCNQCN上の複合
体としての比抵抗が大きく増大し、好ましくない。
The ratio of these fine particles used on TCNQCN tends to be smaller and more effective as the coefficient of linear expansion of the fine particles used is smaller, but in general, about 5 to 10% by weight based on TCNQCN is adopted. is appropriate. However, when the fine particles are non-electronic conductive, if the amount exceeds 50% by weight, the specific resistance as a composite on TCNQCN increases significantly, which is not preferable.

かくして、TCNQCN上微粒子とは複合体を形成せし
める。
In this way, a complex is formed between the TCNQCN and the fine particles.

複合体の形成手段としては例えばこれら両者を十分混合
し、TCNQI塩を溶解する溶媒中に溶解せしめたり、
或は前記混合物を溶融せしめたりし得るが、特に溶融手
段を採用するのが実用的である。この場合、溶融温度は
260〜350℃を採用するのが適当である。
As a means of forming the complex, for example, the two are sufficiently mixed and dissolved in a solvent that dissolves the TCNQI salt,
Alternatively, the mixture may be melted, but it is particularly practical to use melting means. In this case, it is appropriate to adopt a melting temperature of 260 to 350°C.

かくして得られた溶融物はコンデンサ素子に含浸後、冷
却固化せしめて固体電解xNIが形成される。
The thus obtained molten material is impregnated into a capacitor element, and then cooled and solidified to form a solid electrolyte xNI.

[実施例] 以下、実施例及び比較例に基づいて本発明を具体的に説
明する。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

[比較例] 特開昭62−92424に開示されているN位イソアミ
ルで置換したイソキノリニウム−TCNQ錯塩を用い、
これをアルミニウム缶ケースに充填し、290℃に保温
しであるホットプレート上にて溶融した。次にあらかじ
め同じ温度に予熱しである公知の捲回型アルミニウム電
解コンデンサ素子(定格容量0.33μF、定格電圧2
5V)をすばやくアルミニウム缶ケースに入れてTCN
Q錯塩を含浸させた後ケースと共に引き上げて水冷して
TCNQ錯塩を固化させた。次に開口部をエポキシ樹脂
を用いて封口したのちコンデンサをエポキシ樹脂でモー
ルドしてチップ型アルミ固体電解コンデンサを試作した
。このコンデンサに105℃で定格電圧を1時間印加し
てエージングを行なった後の特性を下記に示した。
[Comparative Example] Using the isoquinolinium-TCNQ complex salt substituted with isoamyl at the N position disclosed in JP-A No. 62-92424,
This was filled into an aluminum can case and melted on a hot plate kept at 290°C. Next, a well-known wound aluminum electrolytic capacitor element (rated capacity 0.33 μF, rated voltage 2
5V) quickly into the aluminum can case and connect the TCN.
After being impregnated with the Q complex salt, the case was pulled up together with the case and cooled with water to solidify the TCNQ complex salt. Next, the opening was sealed with epoxy resin, and the capacitor was then molded with epoxy resin to fabricate a prototype chip-type aluminum solid electrolytic capacitor. The characteristics of this capacitor after aging by applying a rated voltage at 105° C. for 1 hour are shown below.

静電容量(120)1z)     0.22u Ft
an δ (120Hz)      0.010E 
S P  (100KHz)     0.25Ω漏れ
電流(1分値)    0.01μA次にこのコンデン
サを260℃で溶融している半田浴に10秒浸漬して半
田耐熱試験を行なった後、漏れ電流を測定したところ、
3.5mAという値となり、コンデンサの機能を失って
いた。
Capacitance (120) 1z) 0.22u Ft
an δ (120Hz) 0.010E
S P (100KHz) 0.25Ω Leakage current (1 minute value) 0.01μA Next, perform a solder heat resistance test by immersing this capacitor in a solder bath melting at 260℃ for 10 seconds, and then measure the leakage current. Then,
The value was 3.5mA, and the capacitor had lost its function.

実施例1 比較例で用いたTCNQ錯塩に対して純度99、99%
、平均粒径0.2μのアルミナ粉末(a膨張率2 X 
10−5(K−’) )を10wt蔦加えマメノウ乳バ
チで十分に混合した。次にこの混合物を用いて比較例1
と同様の操作を行なってチップ型アルミ固体電解コンデ
ンサを作成した。エージング後の特性及び半田耐熱試験
の結果を表に示す。
Example 1 Purity 99, 99% with respect to TCNQ complex salt used in comparative example
, alumina powder with an average particle size of 0.2 μ (a expansion coefficient 2
10 wt. 10-5 (K-')) was added and thoroughly mixed with a bean milk drumstick. Next, using this mixture, Comparative Example 1
A chip-type aluminum solid electrolytic capacitor was fabricated using the same procedure as above. The characteristics after aging and the results of the soldering heat resistance test are shown in the table.

実施例2 比較例で用いたTCNQ錯塩に対して純度99.98%
、平均粒径0.5μのシリコーンカーバイト(線膨張率
4 X 10−5(K−1) )を15wt%添加した
混合物を用いて実施例1と同様にコンデンサを試作し半
田耐熱試験を行なった。結果な表に示す。
Example 2 Purity 99.98% with respect to TCNQ complex salt used in comparative example
A capacitor was prototyped in the same manner as in Example 1 using a mixture to which 15 wt% of silicone carbide (linear expansion coefficient 4 x 10-5 (K-1)) with an average particle size of 0.5 μ was added, and a soldering heat resistance test was conducted. Ta. The results are shown in the table.

実施例3 比較例で用いたT CN Q W4塩に対して純度99
.99%、平均粒径0.4μの窒化ケイ素(線膨張率2
.5 Xl0−5(K−1) )を10wt%添加した
混合物を用いて実施例1と同様にコンデンサを試作し半
田耐熱試験を行なった。結果を表に示す。
Example 3 Purity 99 with respect to T CN Q W4 salt used in comparative example
.. 99% silicon nitride with an average particle size of 0.4μ (linear expansion coefficient 2
.. A capacitor was prototyped in the same manner as in Example 1 using a mixture to which 10 wt% of 5Xl0-5(K-1)) was added, and a soldering heat resistance test was conducted. The results are shown in the table.

[発明の効果] 以上実施例で明らかな様に、本発明におけるコンデンサ
は著しい半田耐熱性を保持しており、かつTCNQ錯塩
の良好な伝導性に基づく優れた高周波特性を維持したま
まチップ化が可能となる。又、容量達成率もTCNQ錯
塩のみの場合よりも向上させることができる。
[Effects of the Invention] As is clear from the examples above, the capacitor of the present invention maintains remarkable soldering heat resistance, and can be made into a chip while maintaining excellent high frequency characteristics based on the good conductivity of the TCNQ complex salt. It becomes possible. Moreover, the capacity achievement rate can also be improved compared to the case of only TCNQ complex salt.

Claims (2)

【特許請求の範囲】[Claims] 1.テトラシアノキノジメタン錯塩と、線膨張率が5×
10^−^5(K^−^1)以下で且融点が260℃以
上を有する無機物又は無機化合物の微粒子との複合体か
ら成る固体電解質を用いた固体電解コンデンサ。
1. Tetracyanoquinodimethane complex salt and linear expansion coefficient of 5×
A solid electrolytic capacitor using a solid electrolyte made of a composite with fine particles of an inorganic substance or inorganic compound having a temperature of 10^-^5 (K^-^1) or less and a melting point of 260°C or more.
2.固体電解質が、テトラシアノキノジメタン錯塩と、
線膨張率が5×10^−^5(K^−^1)以下で且融
点が260℃以上を有する無機物又は無機化合物の微粒
子との混合物を加熱し、テトラシアノキノジメタン錯塩
を融解後、冷却固化したものである請求項1記載の固体
電解コンデンサ。
2. The solid electrolyte is a tetracyanoquinodimethane complex salt,
After heating a mixture with fine particles of an inorganic substance or inorganic compound having a coefficient of linear expansion of 5 x 10^-^5 (K^-^1) or less and a melting point of 260°C or more to melt the tetracyanoquinodimethane complex salt. 2. The solid electrolytic capacitor according to claim 1, which is solidified by cooling.
JP11170688A 1988-05-10 1988-05-10 Solid electrolytic capacitor Pending JPH01282812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11170688A JPH01282812A (en) 1988-05-10 1988-05-10 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11170688A JPH01282812A (en) 1988-05-10 1988-05-10 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01282812A true JPH01282812A (en) 1989-11-14

Family

ID=14568090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11170688A Pending JPH01282812A (en) 1988-05-10 1988-05-10 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01282812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278788A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278788A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4553770B2 (en) * 2005-03-29 2010-09-29 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH01282812A (en) Solid electrolytic capacitor
BR0304557B1 (en) NIOBIO DUST AND CAPACITOR USING THE SAME
JPS6292424A (en) Solid electrolytic capacitor
JPH01297811A (en) Solid electrolytic capacitor
JP2840516B2 (en) Solid electrolytic capacitors
JPH01209713A (en) Solid electrolytic capacitor
JPS61163626A (en) Solid electrolytic capacitor
JP2940711B2 (en) Method for manufacturing solid electrolytic capacitor
JPH02294009A (en) Solid electrolytic capacitor
JPH04312910A (en) Production of solid-state electrolytic capacitor
JPS62111413A (en) Solid electrolytic capacitor
JPS61163625A (en) Manufacture of solid electrolytic capacitor
JPS60206127A (en) Method of producing solid electrolytic condenser
JPH01209714A (en) Solid electrolytic capacitor
JPH0722074B2 (en) Solid electrolytic capacitor
JPS61248514A (en) Solid electrolytic capacitor
JPS62144312A (en) Solid electrolytic capacitor
JPS60206126A (en) Method of producing solid electrolytic condenser
JPS61107716A (en) Solid electrolytic capacitor
JPH02239609A (en) Solid electrolytic capacitor
JPS63127523A (en) Solid electrolytic capacitor
JPS62152117A (en) Solid electrolytic capacitor
JPS61163624A (en) Solid electrolytic capacitor
JPS62139311A (en) Manufacture of solid electrolytic capacitor
JPH02291106A (en) Solid electrolytic capacitor