JPH01282483A - Sound analyser - Google Patents

Sound analyser

Info

Publication number
JPH01282483A
JPH01282483A JP11226888A JP11226888A JPH01282483A JP H01282483 A JPH01282483 A JP H01282483A JP 11226888 A JP11226888 A JP 11226888A JP 11226888 A JP11226888 A JP 11226888A JP H01282483 A JPH01282483 A JP H01282483A
Authority
JP
Japan
Prior art keywords
data
measured
spectrum
sample data
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11226888A
Other languages
Japanese (ja)
Inventor
Shigekatsu Horii
堀井 茂勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11226888A priority Critical patent/JPH01282483A/en
Publication of JPH01282483A publication Critical patent/JPH01282483A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically analyze sound easily with high accuracy, by excluding the effect due to Doppler effect generated by the relative speed with a moving body to be measured. CONSTITUTION:The data at the time when a relative speed is zero is stored in a standard data memory apparatus 12 as standard data at every moving body (ship, airplane) 13 to be measured. The data obtained when the relative speed with the moving body 13 at the time of measurement is generated is set to data to be measured, and this data and the standard data of the apparatus 12 are respectively converted to high speed Fourier transform by an FFT 16 to calculate the frequency spectrum SP of each data. After the specific SP in the SP of the data to be measured is linearly converted by a linear converter 17, the correlation between the SP of the data to be measured and that of the standard data is taken. When this correlation value is a reference value or less, both of them are regarded to be same to take out the standard data and, when said correlation value is the reference value or less, the next standard data is read to be subjected to Fourier transform and linear conversion along with the data to be measured and correlation is again taken to select standard data wherein the correlation value becomes the reference value or more and the moving body 13 can be discriminated on the basis of this data.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば移動体(船舶、飛行機等)の発する
固有の音響から移動体を個別に識別する音響解析装!に
関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) This invention is an acoustic analysis device that individually identifies moving objects (ships, airplanes, etc.) based on the unique sounds emitted by the objects! Regarding.

−(従来の技術) 従来の音響解析装置は、固体が個別の周波数を持った音
響を発していることを利用し、固体の発振音を捕えて周
波数スペクトラム(以下、単にスペクトラムと称する)
分析し、前もって取得しである標本データと比較して、
比較の結果一致すれば特定の固体であることを識別でき
る。しかし、移動体の場合は、−数的に音響解析装置と
の間に相対速度があり、この相対速度によってドツプラ
ー効果が生じるために周波数が変動する。
- (Prior art) Conventional acoustic analysis devices take advantage of the fact that solid bodies emit sounds with individual frequencies, capture the oscillated sound of the solid body, and generate a frequency spectrum (hereinafter simply referred to as spectrum).
Analyze and compare with previously obtained sample data.
If the comparison results in a match, it can be identified as a specific solid. However, in the case of a moving object, there is numerically a relative speed between it and the acoustic analysis device, and this relative speed causes the Doppler effect, which causes the frequency to fluctuate.

人間が音響解析する場合はこのドツプラー効果をキャン
セルしながら標本データと比較することにより識別可能
であるが、自動的に識別させようとした場合はこのドツ
プラー効果が支障となる。
When a human conducts acoustic analysis, it is possible to distinguish by canceling this Doppler effect and comparing it with sample data, but this Doppler effect becomes a hindrance when automatic identification is attempted.

すなわち、自動的に識別する方法は「測定データのスペ
クトラムと標本データのスペクトラムの相関をとり、あ
る−室以上の相関がある場合に同一物体とみなす」こと
により行なうが、ドツプラー効果が生じている場合はこ
の最大相関を与える位置が一定せず、その後の解析に支
障を与える。
In other words, the automatic identification method is performed by ``correlating the spectrum of the measured data with the spectrum of the sample data, and if there is a correlation of more than a certain degree, they are considered to be the same object,'' but the Doppler effect occurs. In this case, the position that gives this maximum correlation is not constant, which poses a problem in subsequent analysis.

(発明が解決しようとする課題) 以上述べたように従来の音響解析装置では、被測定移動
体く発振源)との間に相対速度がある場合にはドツプラ
ー効果が生じるため、自動解析が著しく困難であった。
(Problems to be Solved by the Invention) As mentioned above, in conventional acoustic analysis devices, when there is a relative velocity between the moving object to be measured (the oscillation source), the Doppler effect occurs, so automatic analysis is significantly difficult. It was difficult.

そこでこの発明は上記の欠点を除去すべくなされたもの
で、被測定移動体との相対速度によりドツプラー効果が
生じても、このドツプラー効果による影響を除外して、
容易にかつ高精度で自動解析できる音響解析装置を堤供
することを目的とする。
Therefore, this invention was made to eliminate the above-mentioned drawbacks, and even if the Doppler effect occurs due to the relative velocity with the moving object to be measured, the influence of this Doppler effect is excluded, and the
The purpose is to provide an acoustic analysis device that can perform automatic analysis easily and with high accuracy.

[発明の構成コ (課題を解決するための手段) 上記目的を達成するためにこの発明に係る音響解析装置
は、被測定移動体から発せられる音波を収得して音響信
号に変換する音響信号入力装置と、この音響信号入力装
置で得られた音響信号をデジタルデータに変換するアナ
ログ/デジタル変換器と、前記被測定移動体毎に相対速
度がゼロのときの前記アナログ/デジタル変換器の出力
データを標本データとして記憶する標本データ記憶装置
と、前記被測定移動体との相対速度が生じたときの前記
アナログ/亭ジタル変換器の出力データを被測定データ
として入力すると共に前記標本データ記憶装置から標本
データを読出して入力し、被測定データ及び標本データ
をそれぞれ高速フーリエ変換して各データの周波数スペ
クトラムを求める高速フーリエ変換手段と、この手段で
得られた被測定データ及び標本データの各スペクトラム
を入力し、被測定データのスペクトラムのうち特定スペ
クトラムが標本データの特定スペクトラムと一致するよ
うに被測定データのスペクトラムを線型変換する線型変
換手段と、この手段で変換された被測定データのスペク
トラム及び標本データのスペクトラムを入力し、?&測
定データのスペクトラムと標本データのスペクトラムと
の相関をとる相関手段と、この手段で得られた相関値が
基準値以上のときは両者を同一とみなしてその標本デー
タを取出し、この手段の相関値が基準値以下のとき前記
標本データ記憶装置から次の標本データを読出し、被測
定データと共に前記高速フーリエ変換処理及び線型変換
を行なった後、再度相関をとって相関値が基準値以上と
なる標本データを選び出す標本データ選出手段とを具備
して構成され、前記標本データ選出手段で選出された原
本データにより前記被測定移動体を識別することを特徴
とする。
[Configuration of the Invention (Means for Solving the Problems) In order to achieve the above object, the acoustic analysis device according to the present invention has an acoustic signal input that acquires sound waves emitted from a moving object to be measured and converts them into acoustic signals. an analog/digital converter that converts the acoustic signal obtained by the acoustic signal input device into digital data; and output data of the analog/digital converter when the relative velocity of each of the moving objects to be measured is zero. A sample data storage device that stores the data as sample data, and inputs output data of the analog/digital converter when a relative velocity with the moving object to be measured occurs as data to be measured, and also inputs the output data from the sample data storage device as the data to be measured. A fast Fourier transform means for reading out and inputting the sample data, performing fast Fourier transform on the data to be measured and the sample data to obtain a frequency spectrum of each data; a linear conversion means for linearly converting the spectrum of the data to be measured so that a specific spectrum of the spectrum of the data to be measured matches a specific spectrum of the sample data; and a spectrum of the data to be measured and the sample converted by this means. Enter the spectrum of data? & A correlation means that correlates the spectrum of the measured data with the spectrum of the sample data, and when the correlation value obtained by this means is greater than a reference value, the two are regarded as the same and the sample data is taken out, and the correlation of this means is When the value is less than the reference value, the next sample data is read from the sample data storage device, and after performing the fast Fourier transform processing and linear transformation with the data to be measured, the correlation is taken again and the correlation value becomes equal to or greater than the reference value. A sample data selection means for selecting sample data is provided, and the moving body to be measured is identified by the original data selected by the sample data selection means.

(作用) 上記構成による音響解析装置では、被測定移動体から発
せられる音波を音響信号に変換し、この音響信号をデジ
タルデータに変換する。ここで被測定移動体毎に相対速
度がゼロのときのデータを標本データとして標本データ
記憶装置に記憶しておく、測定時において、被測定移動
体との相対速度が生じたときのデータを被測定データと
し、この被測定データ及び標本データ記憶装置から読み
出した標本データをそれぞれ高速フーリエ変換して各デ
ータの周波数スペクトラムを求め、被測定データのスペ
クトラムのうち特定スペクトラムが標本データの特定ス
ペクトラムと一致するように被測定データのスペクトラ
ムを線型変換した後、被測定データのスペクトラム及び
標本データの各スペクトラムの相関をとる。この相関値
が基準値以上のときは両者を同一とみなしてその標本デ
ータを取出し、この手段の相関値が基準値以下のとき前
記標本データ記憶装置から次の標本データを読出し、被
測定データと共に前記高速フーリエ変換処理及び線型変
換を行なった後、再度相関をとって相関値が基準値以上
となる標本データを選び出す。このようにして選出され
た標本データにより被測定移動体を識別することができ
る。
(Operation) The acoustic analysis device having the above configuration converts the sound waves emitted from the moving object to be measured into an acoustic signal, and converts this acoustic signal into digital data. Here, the data when the relative velocity is zero for each moving object to be measured is stored as sample data in the sample data storage device. The data to be measured and the sample data read from the sample data storage device are each subjected to fast Fourier transform to obtain the frequency spectrum of each data, and a specific spectrum of the spectrum of the data to be measured matches the specific spectrum of the sample data. After linearly transforming the spectrum of the data to be measured so that the spectrum of the data to be measured and each spectrum of the sample data are correlated, When this correlation value is above the reference value, the two are considered to be the same and the sample data is taken out. When the correlation value of this means is below the reference value, the next sample data is read out from the sample data storage device and together with the data to be measured. After performing the fast Fourier transform processing and linear transformation, correlation is again taken and sample data whose correlation value is equal to or greater than the reference value is selected. The moving object to be measured can be identified using the sample data selected in this way.

(実施例) 以下、図面を#照してこの発明の一実施例を説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図はその構成を示すもので、11はこの装置の各構
成機器を総括的に制御するホスト計X81である。これ
は単にコントローラでもよい、12は標本データ記憶装
置で、予め被測定移動体の静止状態での標本データが記
憶される。
FIG. 1 shows its configuration, and 11 is a host computer X81 that collectively controls each component of this device. This may simply be a controller. Reference numeral 12 is a sample data storage device in which sample data of the moving body to be measured in a stationary state is stored in advance.

13は被測定移動体く発振源)で、この移動体13から
発せられる音波はマイクロホン14で電気信号に変換さ
れ、アナログ/デジタル(A/D>変換器15でデジタ
ル化される。尚、このA/D変換器15の前には必要な
周波数帯域のみを選択するためのフィルタ(第1図では
省略)が設けられている。
Reference numeral 13 denotes a moving object to be measured (an oscillation source), and the sound waves emitted from this moving object 13 are converted into electrical signals by a microphone 14, and digitized by an analog/digital (A/D>converter 15). A filter (not shown in FIG. 1) is provided in front of the A/D converter 15 to select only a necessary frequency band.

A/D変換された信号は被測定データとしてFFTIG
に送られる。
The A/D converted signal is FFTIG as the data to be measured.
sent to.

このFFT16は被測定データを高速フーリエ変換(F
FT)すると共に、ホスト計X機11を通じて標本デー
タ記憶装[12から読み出される標本データを入力し、
この標本データを高速フーリエ変換するもので、これに
よって得られた被測定データ及び標本データの各スペク
トラムは共に線形変換器17に送られる。
This FFT16 converts the measured data into a fast Fourier transform (F
FT), and inputs the sample data read out from the sample data storage device [12] through the host machine 11.
This sample data is subjected to fast Fourier transform, and the resulting spectra of the measured data and the sample data are both sent to the linear converter 17.

この線形変換器17は入力した被測定データのスペクト
ラムのうち特定スペクトラム(例えばある−室以上のレ
ベルをもつ最低周波数)が標本データの特定スペクトラ
ムと一致するように被測定データのスペクトラムを線型
変換するもので、ここで変換された被測定データのスペ
クトラムは標本データのスペクトラムと共に相関器18
に送られる。
This linear converter 17 linearly transforms the spectrum of the input data to be measured so that a specific spectrum (for example, the lowest frequency with a level higher than a certain room) of the spectrum of the input data to be measured matches the specific spectrum of the sample data. The spectrum of the measured data converted here is sent to the correlator 18 along with the spectrum of the sample data.
sent to.

相関器18は被測定データのスペクトラムと標本データ
のスペクトラムとの相関をとるものである。
The correlator 18 correlates the spectrum of the data to be measured and the spectrum of the sample data.

その相関値が基準値以上のときは両者を同一とみなし、
基準値以下のときは標本データ記憶装置12から次の標
本データを読み出し、被測定データと共に上記のFFT
処理及び線型変換を行なった後、再度相関をとって相関
値が基準値以上となる標本データを選び出す0選出され
た標本データは表示器19に送られる。この表示器19
は入力した標本データから被測定移動体の識別結果を表
示するものである。
If the correlation value is greater than the reference value, the two are considered to be the same,
When the value is below the reference value, the next sample data is read from the sample data storage device 12 and subjected to the above FFT together with the measured data.
After processing and linear transformation, correlation is again taken and sample data whose correlation value is greater than or equal to the reference value are selected.0 The selected sample data are sent to the display 19. This display 19
Displays the identification result of the moving object to be measured from the input sample data.

上記構成において、以下第2図を参照してその動作につ
いて説明する。尚、実際はデジタル処理であるが、第2
図では説明を容易にするため、アナログで示す。
The operation of the above configuration will be described below with reference to FIG. Although it is actually digital processing, the second
The figures are shown in analog form for ease of explanation.

今、被測定移動体13及び当該音響解析装置が共に静止
状態にあり、被測定移動体13から発せられる音響信号
をマイクロホン14で捕えて第2図(a)に示すような
周波数信号が得られたとする。この周波数信号をFFT
16で高速フーリエ変換すると、同図(b)に示すよう
なスペクトラムが得られる。
Now, both the moving object 13 to be measured and the acoustic analysis device are in a stationary state, and the acoustic signal emitted from the moving object 13 to be measured is captured by the microphone 14 to obtain a frequency signal as shown in FIG. 2(a). Suppose that FFT this frequency signal
16, a spectrum as shown in FIG. 16(b) is obtained.

このときのA/D変換器15で得られるデータを標本デ
ータとして予め標本データ記憶装置12に記憶しておく
The data obtained by the A/D converter 15 at this time is stored in advance in the sample data storage device 12 as sample data.

次に、上記被測定移動体13が移動すると、相対速度に
よりドツプラー効果が生じ、マイクロホン14で捕えら
れる信号の周波数が変動する。この周波数信号を被測定
データとし、FFT16で高速フーリエ変換すると、第
2図(c)に示すようなスペクトラムとなる。すなわち
、同図(b)の標本データのスペクトラムと対比すれば
わかるように、被測定データのスペクトラムは標本デー
タのスペクトラムからドツプラー効果分だけシフトして
いる。従来ではこのシフトにより両者の比較が固数で、
最大相関を与える位置が一定せず、自動解析に支障を与
えていた。
Next, when the moving object 13 to be measured moves, a Doppler effect occurs due to the relative speed, and the frequency of the signal captured by the microphone 14 fluctuates. When this frequency signal is used as data to be measured and is subjected to fast Fourier transform using FFT 16, a spectrum as shown in FIG. 2(c) is obtained. In other words, as can be seen by comparing it with the spectrum of the sample data in FIG. 2(b), the spectrum of the measured data is shifted from the spectrum of the sample data by the Doppler effect. Conventionally, due to this shift, the comparison between the two is a fixed number,
The position that gave the maximum correlation was not constant, which caused problems in automatic analysis.

そこで、この発明ではFFT16で高速フーリエ変換さ
れた標本データ及び被測定データの各スペクトラムを線
型変換器17に入力し、第2図(d)に示すように被測
定データの特定スペクトラム(図では一定レベル移動の
レベルをもつ最低周波Rf1 )が標本データの特定ス
ペクトラム(図では一定レベル移動のレベルをもつ最低
周波数f01)と一致するように被測定データのスペク
トラムを線型変換する。
Therefore, in this invention, the spectra of the sample data and the data to be measured that have been fast Fourier transformed by the FFT 16 are input to the linear converter 17, and as shown in FIG. The spectrum of the measured data is linearly transformed so that the lowest frequency Rf1 with a level shift level matches the specific spectrum of the sample data (in the figure, the lowest frequency f01 with a constant level shift level).

この線型変換は一定の周波数帯域で被測定データのスペ
クトラムを走査して標本データの特定スペクトラムとの
一致を図り、ドツプラー効果によるシフト分を除去して
移動体静止時のデータに変換する。具体的に説明すると
、まず観測された被測定データの周波数fと標本データ
の周波数f。
This linear conversion scans the spectrum of the measured data in a fixed frequency band to match the specific spectrum of the sample data, removes the shift due to the Doppler effect, and converts the data into data when the moving object is stationary. To explain specifically, first, the frequency f of the observed data to be measured and the frequency f of the sample data.

との間にf=fo ・A(Aは定数)の関係があること
を利用して上記サーチにより定数Aを求め、この定数A
を用いてf/A=fOを計算し、被測定データを静止時
の周波数に変換することによって実現される。
Using the relationship of f = fo ・A (A is a constant), find the constant A by the above search, and find this constant A.
This is realized by calculating f/A=fO using , and converting the measured data to the frequency at rest.

上記線型変換によって取得した被測定データの特定スペ
クトラムが標本データの特定スペクトラムと一致した場
合、ドツプラー効果によるシフト分が除去されたことに
なる。そこで、線型変換後の被測定データのスペクトラ
ムと標本データのスペクトラムを相関器18に送り、相
関をとる。ここで基準値以上の相関が得られた場合、同
一とみなして当該標本データから移動体識別名を求め、
表示器19に表示する。基準値以下の場合は原本データ
を変えて再度定数Aの値を求め、線型変換して相関をと
り、基準値以上の相関器が得られるまでこの動作を自動
的に繰返す。
If the specific spectrum of the measured data obtained by the linear transformation matches the specific spectrum of the sample data, it means that the shift due to the Doppler effect has been removed. Therefore, the spectrum of the measured data after linear conversion and the spectrum of the sample data are sent to the correlator 18 and correlated. If a correlation above the standard value is obtained, it is assumed that they are the same and the mobile object identification name is determined from the sample data.
It is displayed on the display 19. If the value is less than the reference value, the original data is changed, the value of the constant A is determined again, the correlation is taken by linear transformation, and this operation is automatically repeated until a correlator having the value equal to or greater than the reference value is obtained.

したがって、上記構成による音響解析装置は、移動体移
動中の被測定データを静止時のデータに置換えているの
で、ドツプラー効果による影響を除去することができ、
自動的に相関をとって容易にかつ高精度に移動体を識別
することができる。
Therefore, since the acoustic analysis device having the above configuration replaces the data to be measured while the moving object is moving with the data when the moving object is stationary, it is possible to eliminate the influence of the Doppler effect.
A moving object can be identified easily and with high accuracy by automatically taking a correlation.

尚、上記実施例では個々の処理毎に専用ハードウェアを
用いる構成としたが、A/D変換後は全てホスト計算機
11で処理できることは勿論である。
In the above embodiment, dedicated hardware is used for each individual process, but it goes without saying that all processes can be performed by the host computer 11 after A/D conversion.

[発明の効果コ 以上のようにこの発明によれば、被測定移動体との相対
速度によりドツプラー効果が生じても、このドツプラー
効果による影響を除外して、容易にかつ高精度で自動解
析できる音響解析装置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, even if the Doppler effect occurs due to the relative velocity with the moving object to be measured, the influence of the Doppler effect can be excluded and automatic analysis can be performed easily and with high precision. An acoustic analysis device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る音響解析装置の一実施例を示す
ブロック回路図、第2図は同実施例の動作を説明するた
めの図である。 11・・・ホスト計算機、12・・・標本データ記憶装
置、13・・・被測定移動体、14・・・マイクロホン
、15・・・A/D変換器、16・・・FFT、17・
・・線型変換器、18・・・相関器、19・・・表示器
。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a block circuit diagram showing an embodiment of an acoustic analysis device according to the present invention, and FIG. 2 is a diagram for explaining the operation of the embodiment. DESCRIPTION OF SYMBOLS 11... Host computer, 12... Sample data storage device, 13... Measured moving object, 14... Microphone, 15... A/D converter, 16... FFT, 17...
... Linear converter, 18 ... Correlator, 19 ... Display device. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 被測定移動体から発せられる音波を取得して音響信号に
変換する音響信号入力装置と、この音響信号入力装置で
得られた音響信号をデジタルデータに変換するアナログ
/デジタル変換器と、前記被測定移動体毎に相対速度が
ゼロのときの前記アナログ/デジタル変換器の出力デー
タを原本データとして記憶する標本データ記憶装置と、
前記被測定移動体との相対速度が生じたときの前記アナ
ログ/デジタル変換器の出力データを被測定データとし
て入力すると共に前記標本データ記憶装置から標本デー
タを読出して入力し、被測定データ及び標本データをそ
れぞれ高速フーリエ変換して各データの周波数スペクト
ラムを求める高速フーリエ変換手段と、この手段で得ら
れた被測定データ及び標本データの各スペクトラムを入
力し、被測定データのスペクトラムのうち特定スペクト
ラムが標本データの特定スペクトラムと一致するように
被測定データのスペクトラムを線型変換する線型変換手
段と、この手段で変換された被測定データのスペクトラ
ム及び標本データのスペクトラムを入力し、被測定デー
タのスペクトラムと標本データのスペクトラムとの相関
をとる相関手段と、この手段で得られた相関値が基準値
以上のときは両者を同一とみなしてその標本データを取
出し、この手段の相関値が基準値以下のとき前記標本デ
ータ記憶装置から次の標本データを読出し、被測定デー
タと共に前記高速フーリエ変換処理及び線型変換を行な
った後、再度相関をとつて相関値が基準値以上となる標
本データを選び出す標本データ選出手段とを具備し、前
記標本データ選出手段で選出された標本データにより前
記被測定移動体を識別することを特徴とする音響解析装
置。
an acoustic signal input device that acquires a sound wave emitted from a moving object to be measured and converts it into an acoustic signal; an analog/digital converter that converts the acoustic signal obtained by the acoustic signal input device into digital data; and the device to be measured. a sample data storage device that stores output data of the analog/digital converter when the relative velocity of each moving object is zero as original data;
The output data of the analog/digital converter when a relative velocity with the moving body to be measured occurs is input as the data to be measured, and the sample data is read from the sample data storage device and inputted, and the data to be measured and the sample are inputted. A fast Fourier transform means that performs fast Fourier transform on each data to obtain the frequency spectrum of each data, and each spectrum of the data to be measured and sample data obtained by this means is input, and a specific spectrum of the spectrum of the data to be measured is input. A linear transformation means linearly transforms the spectrum of the data under test so that it matches a specific spectrum of the sample data, and a spectrum of the data under test converted by this means and a spectrum of the sample data are input, and the spectrum of the data under test is converted into the spectrum of the data under test. Correlation means that calculates the correlation with the spectrum of the sample data, and when the correlation value obtained by this means is equal to or higher than the reference value, the two are considered to be the same and the sample data is extracted. When the next sample data is read from the sample data storage device, and after performing the fast Fourier transform processing and linear transformation together with the data to be measured, the sample data is correlated again and the sample data whose correlation value is equal to or greater than the reference value is selected. 1. An acoustic analysis apparatus, comprising: a selecting means, and identifying the moving body to be measured based on the sample data selected by the sample data selecting means.
JP11226888A 1988-05-09 1988-05-09 Sound analyser Pending JPH01282483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11226888A JPH01282483A (en) 1988-05-09 1988-05-09 Sound analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11226888A JPH01282483A (en) 1988-05-09 1988-05-09 Sound analyser

Publications (1)

Publication Number Publication Date
JPH01282483A true JPH01282483A (en) 1989-11-14

Family

ID=14582452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11226888A Pending JPH01282483A (en) 1988-05-09 1988-05-09 Sound analyser

Country Status (1)

Country Link
JP (1) JPH01282483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211151A (en) * 1995-02-07 1996-08-20 Tech Res & Dev Inst Of Japan Def Agency Automatic target classification and identification method
JPH08220210A (en) * 1995-02-14 1996-08-30 Tech Res & Dev Inst Of Japan Def Agency Automatic target classificational discrimination method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211151A (en) * 1995-02-07 1996-08-20 Tech Res & Dev Inst Of Japan Def Agency Automatic target classification and identification method
JPH08220210A (en) * 1995-02-14 1996-08-30 Tech Res & Dev Inst Of Japan Def Agency Automatic target classificational discrimination method

Similar Documents

Publication Publication Date Title
US4559602A (en) Signal processing and synthesizing method and apparatus
US7171007B2 (en) Signal processing system
US7895033B2 (en) System and method for determining a common fundamental frequency of two harmonic signals via a distance comparison
JP2008232861A (en) Active sonar system, reception signal processing method for sonar, and signal processing program therefor
US7277116B1 (en) Method and apparatus for automatically controlling video cameras using microphones
Guentchev et al. Learning-based three dimensional sound localization using a compact non-coplanar array of microphones
JP7428030B2 (en) Noise evaluation device and noise evaluation method
JPH01282483A (en) Sound analyser
US3983379A (en) Random sample statistical function analyzer
US11408963B2 (en) Wave-source-direction estimation device, wave-source-direction estimation method, and program storage medium
JP7000963B2 (en) Sonar equipment, acoustic signal discrimination method, and program
JPH05188105A (en) Impulse response measuring apparatus
US20230266277A1 (en) Sound inspection apparatus and sound inspection method
Papadopoulos et al. Implementation of an intelligent instrument for passive recognition and two-dimensional location estimation of acoustic targets
JP4198690B2 (en) Noise measurement method, noise measurement program, and noise measurement device
JP2707577B2 (en) Formant extraction equipment
JP3122211B2 (en) Sound source identification device
Antila et al. User centric noise source ranking
RU2050598C1 (en) Method and device for measuring characteristics of acoustic vibrations radiated by movable object
JP2000321123A (en) Vibration wave analyzing apparatus
Bagheri et al. Time-Frequency Signal Processing Based on Fractional Fourier Transform in Passive Sonar Classification
JP2020153935A (en) Acoustic characteristic measuring device and acoustic characteristic measuring method
US20210263125A1 (en) Wave-source-direction estimation device, wave-source-direction estimation method, and program storage medium
JPH0526720A (en) Recognizing apparatus of classification
JP2016161365A (en) Acoustic coordinate measurement device