JPH01282239A - Impact resistant resin composition - Google Patents

Impact resistant resin composition

Info

Publication number
JPH01282239A
JPH01282239A JP11189288A JP11189288A JPH01282239A JP H01282239 A JPH01282239 A JP H01282239A JP 11189288 A JP11189288 A JP 11189288A JP 11189288 A JP11189288 A JP 11189288A JP H01282239 A JPH01282239 A JP H01282239A
Authority
JP
Japan
Prior art keywords
rubber component
meth
weight
acrylate
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11189288A
Other languages
Japanese (ja)
Other versions
JP2652193B2 (en
Inventor
Isao Sasamoto
笹本 勲
Naoki Yamamoto
山本 直己
Akira Yanagase
柳ケ瀬 昭
Koichi Ito
公一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11189288A priority Critical patent/JP2652193B2/en
Publication of JPH01282239A publication Critical patent/JPH01282239A/en
Application granted granted Critical
Publication of JP2652193B2 publication Critical patent/JP2652193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition having excellent moldability and flowability and capable of providing moldings having excellent impact resistance, weather resistance, friction characteristics and surface appearance by blending a composite rubber having mutually combined structure with a vinyl based polymer. CONSTITUTION:The aimed composition obtained by blending (A) a composite rubber obtained by impregnating (ii) methyl acrylate, etc., into (i) a rubber latex of polyorganosiloxane obtained by subjecting the hexamethylcyclotrisiloxane, etc., to emulsion polymerization and then subjecting the component i to radical polymerization with the component ii and having 0.08-0.6mum average particle size with (B) a vinyl based polymer obtained by polymerizing either one of an aromatic alkenyl compound (e.g., styrene), vinyl cyanide (e.g., acrylonitrile) and (meth)acrylic acid ester, preferably at an amount of the component B of 5-85wt.% based on the total resin composition and kneading the blend, e. g., with a roll mill, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐衝撃性、耐候性、摩擦特性ならびに表面外観
に優れた成形物を与えかつ成形性、流動性等に優れた耐
衝撃性樹脂組成物に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an impact-resistant resin that provides molded products with excellent impact resistance, weather resistance, friction properties, and surface appearance, and has excellent moldability, fluidity, etc. The present invention relates to a composition.

〔発明の概要〕[Summary of the invention]

本発明は、ポリオルガノシロキサンゴム成分トポリアル
キル(メタ)アクリレートゴム成分とから成る複合ゴム
と芳香族アルケニル化合物、シアン化ビニル化合物及び
(メタ)アクリル酸エステルからなる群から選ばれた少
なくとも1種のビニル系単量体を主成分とするビニル系
重合体を配合することにより、耐衝撃性、耐候性、摩擦
特性ならびに表面外観等が著しく改善された成形物を与
え、成形性ならびに流動性に優れた樹脂組成物を提供す
ることができるようにしたものである。
The present invention provides a composite rubber consisting of a polyorganosiloxane rubber component and a topolyalkyl (meth)acrylate rubber component, and at least one vinyl compound selected from the group consisting of aromatic alkenyl compounds, vinyl cyanide compounds, and (meth)acrylic acid esters. By blending a vinyl polymer whose main component is a vinyl monomer, a molded product with significantly improved impact resistance, weather resistance, friction properties, and surface appearance, etc., can be obtained, and it has excellent moldability and fluidity. This makes it possible to provide a resin composition.

〔従来の技術及び発明が解決しようとする保題〕一般に
耐衝撃性樹脂は、ゴム層とマ) IJツクス層とから形
成され、そのゴム層にはできるだけガラス転移温度(以
下で6 と略記する)の低い樹脂を用いることが、衝撃
エネルギーを吸収する上で有利であると言われている。
[Problem to be solved by the prior art and the invention] In general, an impact-resistant resin is formed from a rubber layer and an IJTx layer, and the rubber layer has a glass transition temperature (hereinafter abbreviated as 6) as much as possible. ) is said to be advantageous in absorbing impact energy.

このことはTgが一55℃であるポリブチルアクリレー
ト樹脂を用いる耐衝撃性樹脂より、Tgが一80℃であ
るポリブタジェン樹脂をゴムとして用いる樹脂、すなわ
ちABS樹脂の方が、同一ゴム含量にお込て耐衝撃性能
が優れていることからも明らかである。これによりTg
が一123℃であるポリジメチルシロキサンを耐衝撃性
樹脂のゴム源として利用できるならば、ABS樹脂を上
回る優れた樹脂ができると考えられる。ところが一般て
ポリオルガノシロキサンはビニル系単量体との反応性が
乏しく、化学結合の形成が困難であった。これら画成分
間の結合形成に関して、数種の方法が開示されているが
、必ずしも満足すべきものとはいえなかった。例えば米
国特許第3898300号明細書には、ビニルンロキサ
ン又はアリルシロキサンを含有するポリジメチルシロキ
サンポリマーにビニル系単量体をグラフト重合させるこ
とにより、グラフト共重合体が形成されて衝撃強度の改
善されることが報告されている。
This means that for the same rubber content, a resin that uses polybutadiene resin with a Tg of 180°C, that is, an ABS resin, has a higher impact resistance than an impact-resistant resin that uses polybutyl acrylate resin with a Tg of 180°C. This is clear from the fact that it has excellent impact resistance. This allows Tg
If polydimethylsiloxane, which has a temperature of -123° C., can be used as a rubber source for impact-resistant resins, it is believed that a resin superior to ABS resins can be produced. However, polyorganosiloxanes generally have poor reactivity with vinyl monomers, making it difficult to form chemical bonds. Several methods have been disclosed for forming bonds between these image components, but these methods have not always been satisfactory. For example, US Pat. No. 3,898,300 discloses that a graft copolymer is formed by graft polymerizing a vinyl monomer to a polydimethylsiloxane polymer containing vinyl loxane or allyl siloxane, thereby improving impact strength. has been reported.

又米国特許第4071577号明細書には、ビニル基含
有シロキサンの代わりにメルカプト基含有ンロキサンを
用いて衝撃強度をさらに改善する方法が記載されている
。すなわちポリジメチルシロキサン−メルカプトプロビ
ルシロキサン共重合体中のメルカプト基含有により衝撃
強度が大きく変化しており、メルカプト基を介したグラ
フト共重合体の存在が、衝撃特性を向上させることを示
している。
Further, US Pat. No. 4,071,577 describes a method of using a mercapto group-containing siloxane instead of a vinyl group-containing siloxane to further improve impact strength. In other words, the impact strength changes significantly due to the inclusion of mercapto groups in the polydimethylsiloxane-mercaptoprobylsiloxane copolymer, indicating that the presence of a graft copolymer via mercapto groups improves impact properties. .

さらに、特開昭60−252613号公報にはメタクリ
ロイルオキシ基含有ポリオルガノシロキサン系グフフト
共重合体が耐衝撃性能が向上する事が示されている。
Further, JP-A No. 60-252613 discloses that a polyorganosiloxane-based Gofuft copolymer containing a methacryloyloxy group has improved impact resistance.

しかしこれらの方法では、シリコーンゴム構造の欠陥に
起因する成形物の表面外観の不良、表面硬度の不足等が
あり満足すべき成形外観ならびに耐衝撃性が得られない
However, with these methods, satisfactory molded appearance and impact resistance cannot be obtained due to defects in the surface appearance of the molded product, insufficient surface hardness, etc. due to defects in the silicone rubber structure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上述した如き現状に鑑み、耐衝撃性及び表
面外観等を改善するための樹脂組成について鋭意検討し
た結果、ポリオルガノシロキサンゴム成分とポリアルキ
ルCメタ)アクリレートゴム成分とから成る複合ゴムと
ビニル系重合体とを組合せることにより、これら各樹脂
間の相溶性が良好で、しかも耐衝撃性、耐候性、摩擦特
性ならびに表面外観が著しく改善された成形物を与え、
かつ成形性ならびに流動性等に優れた樹脂組成物が得ら
れることを見い出し本発明に到達した。
In view of the above-mentioned current situation, the present inventors conducted extensive studies on resin compositions for improving impact resistance, surface appearance, etc., and found that a composite consisting of a polyorganosiloxane rubber component and a polyalkyl C meth)acrylate rubber component. By combining rubber and vinyl polymer, we can provide a molded product that has good compatibility between these resins and has significantly improved impact resistance, weather resistance, friction properties, and surface appearance.
The inventors have now discovered that a resin composition with excellent moldability, fluidity, etc. can be obtained, and have thus arrived at the present invention.

すなわち、本発明は、(Alボリオルガノシロギサンゴ
ム成分10〜90ii%とポリアルキル(メタ)アクリ
レートゴム成分10〜9Llaftチとが分離できない
ように相互に絡み合った構at=有L、かつポリオルガ
ノシロキサンゴム成分トホリアルキル(メタ)アクリレ
ートゴム成分との合計量が100重量%である平均粒子
径α08〜a6μmの複合ゴムと (Bl 芳香族アルケニル化合物、シアン化ビニル化合
物及び(メタ)アクリル酸エステルからなる群から選ば
れた少なくとも1種のビニル系単量体70〜100重量
係とこれらと共重合可能な他のビニル系単量体0〜60
重量%を重合して得られるビニル系重合体 を配合して成る耐衝撃性樹脂組成物である。
That is, the present invention provides a structure in which (10 to 90ii% of the Al polyorganosiloxane rubber component and 10 to 9L laft of the polyalkyl (meth)acrylate rubber component are intertwined with each other so that they cannot be separated, and A composite rubber having an average particle diameter of α08 to a6 μm in which the total amount of the siloxane rubber component and the tophoralkyl (meth)acrylate rubber component is 100% by weight, and (Bl) an aromatic alkenyl compound, a vinyl cyanide compound, and a (meth)acrylic acid ester. 70 to 100 weight percent of at least one vinyl monomer selected from the group consisting of 0 to 60 weight percent of another vinyl monomer copolymerizable therewith.
This is an impact-resistant resin composition comprising a vinyl polymer obtained by polymerizing % by weight.

本発明において用因られる複合ゴム(んとは、ポリオル
ガノシロキサンゴム成分10〜90M−m s トポリ
アルキル(メタ)アクリレートゴム成分90〜10重i
%(各ゴム成分の合計量が100重量%)から構成され
両ゴム成分が相互に絡み合い実質上分離出来な込構造を
有しかつその平均粒子径がCLO8〜α6μmのもので
ある。
The composite rubber used in the present invention refers to a polyorganosiloxane rubber component of 10 to 90 M-m s and a polyalkyl (meth)acrylate rubber component of 90 to 10 M-m
% (the total amount of each rubber component is 100% by weight), and both rubber components are entangled with each other to have an indented structure that cannot be substantially separated, and the average particle size is CLO8 to α6 μm.

上記複合ゴムの代わりにポリオルガノシロキサンコム成
分及びポリアルキル(メタ)アクリレートゴム成分のい
ずれか1種類あるいはこれらの単純混合物をゴム源とし
て使用しても本発明の樹脂組成物の有する特徴は得られ
ず、ポリオルガノシロキサンゴム成分とポリアルキル(
メタ)アクリレートゴム成分が相互に絡み合い複合一体
化されてはじめて優れた耐衝撃性、耐候性、摩擦特性な
らびに成形表面外観とを有する成形物を与える樹脂組成
物を得ることができる。
The characteristics of the resin composition of the present invention cannot be obtained even if any one of a polyorganosiloxane comb component and a polyalkyl (meth)acrylate rubber component or a simple mixture thereof is used as a rubber source instead of the above composite rubber. First, polyorganosiloxane rubber component and polyalkyl (
It is only when the meth)acrylate rubber components are intertwined with each other and integrated into a composite that a resin composition can be obtained that provides a molded article with excellent impact resistance, weather resistance, friction properties, and molded surface appearance.

又複合ゴムを構成するポリオルガノシロキサンゴム成分
が90重i%を超えると、得られる樹脂組成物からの成
形物の成形表面外観が悪化し、又ポリアルキル(メタ)
アクリレートゴム成分が90重1よチを超えると、得ら
れる樹脂組成物からの成形物の耐衝撃性が悪化する。こ
のため、複合ゴムを構成する2種のゴム成分はbずれも
10〜90重量%(ただし、両ゴム成分の合計量は10
0重ff1%)の範囲であることが必要であり、さらに
20〜80重量%の範囲であることが特に好ましい。上
記複合ゴムの平均粒子径は0.08〜α6μmの範囲に
あることが必要である。平均粒子径が008μm未満に
なると得られる樹脂組成物からの成形物の耐衝撃性が悪
化し、又平均粒子径が0.6μmを超えると得られる樹
脂組成物からの成形物の耐衝撃性が悪化すると共に、成
形表面外観が悪化する。この様な平均粒子径を有する複
合ゴムを製造するには乳化重合法が最適であり、まずポ
リオルガノシロキサンゴムのラテックスをfi製L、次
にフルキル(メタ)アクリレートゴムの合成用11体を
ポリオルガノシロキサンゴムラテックスのゴム粒子に含
浸させてから前記合成用単量体を重合するのが好ましA
o 上記複合ゴムを構成するポリオルガノシロキサンゴム成
分は、以下に示すオルガノシロキサン及び架橋剤(りを
用いて乳化重合により調製することができ、その際、さ
らにグラフト交叉剤(1)を併用することもできる。
Moreover, if the polyorganosiloxane rubber component constituting the composite rubber exceeds 90% by weight, the appearance of the molded surface of the molded product from the resulting resin composition will deteriorate, and polyalkyl (meth)
When the acrylate rubber component exceeds 90 weights and 1 weight, the impact resistance of molded products obtained from the resulting resin composition deteriorates. Therefore, the difference in b between the two rubber components constituting the composite rubber is 10 to 90% by weight (however, the total amount of both rubber components is 10 to 90% by weight).
It is necessary that the amount is in the range of 0 weight ff 1%), and more preferably in the range of 20 to 80 weight %. It is necessary that the average particle diameter of the composite rubber is in the range of 0.08 to α6 μm. If the average particle size is less than 0.08 μm, the impact resistance of the molded product obtained from the resin composition will deteriorate, and if the average particle size exceeds 0.6 μm, the impact resistance of the molded product obtained from the resin composition will deteriorate. As the temperature deteriorates, the appearance of the molded surface also deteriorates. Emulsion polymerization is the most suitable method for producing composite rubber with such an average particle size.First, polyorganosiloxane rubber latex is processed into FI L, and then fullkyl (meth)acrylate rubber synthesis material 11 is processed into polyimide. It is preferable to impregnate the rubber particles of organosiloxane rubber latex and then polymerize the synthetic monomer A.
o The polyorganosiloxane rubber component constituting the above composite rubber can be prepared by emulsion polymerization using the organosiloxane and crosslinking agent shown below. You can also do it.

オルガノシロキサンとしては、3員環以上の各種の環状
体が挙げられ、好ましく用いられるのは6〜6員珊であ
る。例えばヘキサメチμシクロトリンロキサン、オクタ
メチルシクロテトラシロキサン、デカメチルシクロペン
タシロキサン、ドデカメチルシクロへキサンロキサン、
トリノナルトリフエ二Nンクロトリシロキサン、テトラ
メチルテトラフェニルシクロテトラシロキサン、オクタ
フェニルシクロテトラシロキをン等が挙げられ、これら
は単独で又は2種以上混合して用いられる。これらの使
用量はポリオルガノシロキサンゴム成分中3011fi
4以上、好ましくは70重量%以上である。
Examples of organosiloxanes include various cyclic bodies having three or more members, and 6- to 6-membered corals are preferably used. For example, hexamethyl cyclotolinoxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexaneroxane,
Examples include trinonal trifluoride diN-crotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, and the like, and these may be used alone or in a mixture of two or more. The amount used is 3011fi in the polyorganosiloxane rubber component.
4 or more, preferably 70% by weight or more.

架橋剤1’りとしては、6官能性又は4官能性のンラン
糸架橋剤、例えばトリメトキシメチルシラン、トリエト
キシフェニルシラン、テトラメトキシシラン、テトラエ
トキシシラン、テトラ−n−プロポキシシラン、テトラ
ブトキシシラン等が用いられる。特に4官能性の架橋剤
が好捷しく、この中でもテトラエトキシシランが特に好
ましい。架橋剤の使用量はポリオルガノシロキサンゴム
成分中11〜303ji量係である。
Examples of the crosslinking agent include hexafunctional or tetrafunctional crosslinking agents such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, and tetrabutoxysilane. etc. are used. Particularly preferred are tetrafunctional crosslinking agents, and among these, tetraethoxysilane is particularly preferred. The amount of crosslinking agent used is 11 to 303 ji in the polyorganosiloxane rubber component.

グラフト交叉剤(1)としては、次式 0式%) (各式中R1けメチル基、エチル基、プロピル基又はフ
ェニル基、R2は水素原子又はメチル基、nば0.1又
は2、pけ1〜6の数を示す。)で表わされる単位を形
成し得る化合物等が用いられる。式(1−1)の単位を
形成し得る(メタ)アクリロイルオキシシロキサンはグ
ラフト効率が高いため有効なグラフト鎖を形成すること
が可能であり耐衝撃性発現の点で有利である。
The grafting agent (1) is the following formula (0%) (In each formula, R1 is a methyl group, ethyl group, propyl group or phenyl group, R2 is a hydrogen atom or a methyl group, n is 0.1 or 2, p A compound or the like that can form a unit represented by (indicates the number 1 to 6) is used. (Meth)acryloyloxysiloxane that can form the unit of formula (1-1) has a high grafting efficiency, so it is possible to form an effective graft chain and is advantageous in terms of impact resistance.

なお式(1−1)の単位を形成し得るものとしてメタク
リロイルオキシシロキサンが特に好ましい。メタクリロ
イルオキシシロキサンの具体例としてはβ−メタクリロ
イルオキシエチルジメトキシメチルシヲン、γ−メタク
リロイルオキングロピルメトキシジメチルシラン、γ−
メタクリロイルオキシプロピルジメトキシメチルシラン
、γ−メタクリロイルオキシプロピルトリメトキシシラ
ン、γ−メタクリロイルオキシプロピルエトキシジエチ
ルンラン、γ−メタクリロイルオキシプロピルジェトキ
シメチルシラン、δ−メタクリロイルオキシブチルジェ
トキシメチルシラン等が挙げられる。グラフト交叉剤の
使用量ハポリオルガノシロキサンゴム成分中0〜10重
量係である。
Note that methacryloyloxysiloxane is particularly preferred as a compound capable of forming the unit of formula (1-1). Specific examples of methacryloyloxysiloxane include β-methacryloyloxyethyldimethoxymethylsilane, γ-methacryloyloxychloropylmethoxydimethylsilane, and γ-methacryloyloxyethyldimethoxymethylsilane.
Examples include methacryloyloxypropyldimethoxymethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropylethoxydiethylsilane, γ-methacryloyloxypropyljethoxymethylsilane, δ-methacryloyloxybutyljethoxymethylsilane, and the like. The amount of the grafting agent used is 0 to 10% by weight of the polyorganosiloxane rubber component.

コノポリオルガノシロキサンゴム成分のラテックスの製
造は、例えば米国特許第2891920号明細書、同第
3294725号明細書等に記載された方法を用いるこ
とができる。本発明の実施では、例えば、オルガノシロ
キサンと架橋剤(1)及び所望によりグラフト交叉剤(
1)の混合溶液とを、アルギルベンゼンスルホン酸、ア
ルキルスルホン酸等のスルホン酸系乳化剤の存在下で、
例えばホモジナイザー等を用いて水と剪断混合する方法
により製造することが好ましい。アルキルベンゼンスル
ホン酸はオルガノシロキサンの乳化剤として作用すると
同時に重合開始剤と本なるので好適である。この際、ア
ルキルベンゼンスルホン酸金属塩、アルキルスルホン酸
金属塩等を併用するとグラフト重合を行う際だポリマー
を安定に維持するのに効果があるので好ましい。
The latex of the conopolyorganosiloxane rubber component can be produced using, for example, the methods described in US Pat. No. 2,891,920 and US Pat. No. 3,294,725. In the practice of the present invention, for example, an organosiloxane and a crosslinking agent (1) and optionally a grafting agent (
1) in the presence of a sulfonic acid emulsifier such as argylbenzenesulfonic acid or alkylsulfonic acid,
For example, it is preferable to manufacture by a method of shear mixing with water using a homogenizer or the like. Alkylbenzenesulfonic acid is suitable because it acts as an emulsifier for organosiloxane and at the same time serves as a polymerization initiator. At this time, it is preferable to use an alkylbenzenesulfonic acid metal salt, an alkylsulfonic acid metal salt, or the like in combination, since this is effective in keeping the polymer stable during graft polymerization.

次に上記複合ゴムを構成するポリアルキA/(メタ)ア
クリレートゴム成分は以下に示すアルキ/L/(メタ)
アクリレート及び架橋剤(II)を用いて合成すること
ができる。
Next, the polyalky A/(meth)acrylate rubber component constituting the above composite rubber is the alkyl/L/(meth) shown below.
It can be synthesized using acrylate and crosslinking agent (II).

アルキル(メタ)アクリレートとしては、例えばメチル
アクリレート、ブチルアクリレート、n−プロピルアク
リレート、n−ブチルアクリレート、2−エチルへキシ
ルアクリレート等の7 /L/ キシルアクリレート及
びヘキンルメタクリレート、2−エチルへキシルメタク
リレート、n−ラウリルメタクリレート等のアルキルメ
タクリレートが挙げられ、特にn−ブチルアクリレート
の使用が好ましい。
Examples of the alkyl (meth)acrylate include methyl acrylate, butyl acrylate, n-propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, etc. , n-lauryl methacrylate and other alkyl methacrylates, with n-butyl acrylate being particularly preferred.

架橋剤(n)としては、例えばエチレングリコールジメ
タクリレート、プロピレンクリコールジメタクリレート
、1,5−プチレンクIJ コ−tvジメタクリレート
、1.4−ブチレングリコールジメタクリレート、アリ
ルメタクリレート、トリアリルシアヌレート、トリアリ
ルイソンアヌレート等が挙げられる。これら架橋剤は単
独又け2種以上併用して用すられる。これら架橋剤の使
用量はポリアルキル(メタ)アクリレートゴム成分中1
.1〜20重量%である。
Examples of the crosslinking agent (n) include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,5-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, allyl methacrylate, triallyl cyanurate, and Examples include allylison annulate. These crosslinking agents may be used alone or in combination of two or more. The amount of these crosslinking agents used is 1 in the polyalkyl (meth)acrylate rubber component.
.. It is 1 to 20% by weight.

ポリアルキル(メタ)アクリレートゴム成分の重合は、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等
のアルカリの水溶液の添加により中和されたポリオルガ
ノシロキサンゴム成分のラテックス中へ上記アルキル(
メタ)アクリレート及び架橋剤を添加し、ポリオルガノ
シロキサンゴム粒子へ含浸させたのち、通常のラジカル
重合開始剤を作用させて行う。重合の進行と共にポリオ
ルガノシロキサンゴムの架橋網目に相互に絡んだポリア
ルキ/L/(メタ)アクリレートゴムの架橋網目が形成
され、実質上分離できなりポリオルガノシロキサンゴム
成分トポリアルキ/L/(メタ)アクリレートゴム成分
との複合ゴムのラテックスが得られる。なお本発明の実
施に際してはこの複合ゴムとしてポリオルガノシロキサ
ンゴム成分の主骨格がジメチルシロキサンの繰り返し単
位を有し、ポリアルキル(メタ)アクリレートゴム成分
の主骨格がn−プチルアクリレートの繰り返し単位を有
する複合ゴムが好ましく用いられる。
The polymerization of the polyalkyl (meth)acrylate rubber component is
The above alkyl (
After adding meth)acrylate and a crosslinking agent and impregnating them into polyorganosiloxane rubber particles, a conventional radical polymerization initiator is applied. As the polymerization progresses, a crosslinked network of polyalkyl/L/(meth)acrylate rubber is formed that is intertwined with the crosslinked network of polyorganosiloxane rubber, and it becomes virtually impossible to separate the polyalkyl/L/(meth)acrylate rubber component. A composite rubber latex with a rubber component is obtained. In addition, when carrying out the present invention, as this composite rubber, the main skeleton of the polyorganosiloxane rubber component has repeating units of dimethylsiloxane, and the main skeleton of the polyalkyl (meth)acrylate rubber component has repeating units of n-butyl acrylate. Composite rubber is preferably used.

このようにして乳化重合により調製された複合ゴムはポ
リオルガノシロキサンゴム成分トポリアルキル(メタ)
アクリV−)ゴム成分とが強固に絡み合っているためア
セトン、トルエン等の通常の有機溶剤では抽出分離出来
ない。この複合ゴムをトルエンにより90℃で12時間
抽出して測定したゲル含量は80重its以上である。
The composite rubber thus prepared by emulsion polymerization is a polyorganosiloxane rubber component topolyalkyl (meth).
Since the acrylic resin and the rubber component are tightly intertwined with each other, it cannot be extracted and separated using ordinary organic solvents such as acetone and toluene. The gel content measured by extracting this composite rubber with toluene at 90° C. for 12 hours is 80 weight its or more.

さらに本発明において用いられるビニル系重合体(Bl
は芳香族アルケニル化合物、シアン化ビール化合物及び
(メタ)アクリル酸エステルからなる群から選ばれた少
なくとも1種のビニル系単量体70〜100重i%とこ
れらと共重合可能な他のビニル系単量体0〜30重量%
を重合して得られる単独重合体又は共重合体である。
Furthermore, the vinyl polymer (Bl
is 70 to 100% by weight of at least one vinyl monomer selected from the group consisting of aromatic alkenyl compounds, cyanated beer compounds, and (meth)acrylic acid esters, and other vinyl monomers copolymerizable with these. Monomer 0-30% by weight
It is a homopolymer or copolymer obtained by polymerizing.

芳香族アルケニル化合物の具体例としてはスチレン、α
−メチルスチレン、ビニルトルエン等が、シアン化ビニ
ル化合物の具体例としてはアクリロニトリル、メタクリ
レートリル等が、アクリル酸エステルの具体例としては
メチルアクリレート、エチルアクリレート、ブチルアク
リレート等が、メタクリル酸エステルの具体例としては
メチルメタクリレート、2−エチルへキシルメタクリレ
ート等が夫々挙げられ、これらは単独で又は2種以上組
合せて用いられる。共重合可能な他のビニル系単量体は
所望により用いられるものであシ、その使用量はビニル
系重合体(Bl中303i量チ迄である。共重合可能な
他のビニル系単量体の具体例としてはエチレン、酢酸ビ
ニル等が挙げられる。なお本発明を実施するに際しては
このビニル系重合体(Blは単独で又は2種以上組合せ
て用いることができる。ビニル系重合体(Blの製造方
法は特に限定されるものではなく、乳化重合法、懸濁重
合法あるいは塊状重合法等により得ることができる。
Specific examples of aromatic alkenyl compounds include styrene, α
- Methyl styrene, vinyl toluene, etc., specific examples of vinyl cyanide compounds include acrylonitrile, methacrylate trile, etc., specific examples of acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, etc., specific examples of methacrylic esters Examples include methyl methacrylate and 2-ethylhexyl methacrylate, which may be used alone or in combination of two or more. Other copolymerizable vinyl monomers may be used as desired, and the amount used is up to 303i in Bl. Other copolymerizable vinyl monomers Specific examples include ethylene, vinyl acetate, etc.In carrying out the present invention, this vinyl polymer (Bl can be used alone or in combination of two or more types. The manufacturing method is not particularly limited, and it can be obtained by emulsion polymerization, suspension polymerization, bulk polymerization, or the like.

本発明において用いられるビニル系重合体(Blは成形
性等の向上を目的として配合され、その配合量は全樹脂
組成物のMfkに基いて5〜85M1チの範囲が好まし
い。
The vinyl polymer (Bl) used in the present invention is blended for the purpose of improving moldability, etc., and its blending amount is preferably in the range of 5 to 85 M1ch based on the Mfk of the entire resin composition.

本発明の実施に際しては、複合ゴム(に及びビニル系重
合体(Blの各々のラテックスあるいは混合ラテックス
を塩化カルシウム又は硫酸マグネ7ウム等の金属塩を溶
解した熱水中に投入し、塩析、凝固することにより分離
回収することができる。又、複合ゴム((転)及びビニ
/L/系重合体(B)の混合ラテックスを塩析、凝固し
て回収した重合体混合物にさらに別途重合して得たビニ
/l/系重合体(Blを混合してもよい。この場合の別
途添加するビニル系重合体(Blの製造方法は特に限定
されたものではなく、乳化重合法、懸濁重合法あるAは
塊状重合法等により得ることができる。
In carrying out the present invention, latexes or mixed latexes of composite rubber (Ni) and vinyl polymer (Bl) are poured into hot water in which a metal salt such as calcium chloride or magnesium sulfate is dissolved, salting out, It can be separated and recovered by coagulating.Also, the mixed latex of composite rubber ((transfer) and vinyl/L/based polymer (B) can be salted out, coagulated, and recovered polymer mixture can be further polymerized separately. The vinyl/l/based polymer (Bl may be mixed with the vinyl polymer (Bl) obtained separately. In this case, the method for producing the vinyl polymer (Bl) that is separately added is not particularly limited, and emulsion polymerization, suspension polymerization, Legal A can be obtained by a bulk polymerization method or the like.

本発明の樹脂組成物を調製する方法としては成分(に及
ヒ(Bl ヲパンパリミキサー、ロールミル、押出機等
の公知の装置を用い機械的に混合しベレット状に賦形す
ればよい。
The resin composition of the present invention may be prepared by mechanically mixing the ingredients using a known device such as a mixer, roll mill, or extruder, and shaping the mixture into pellets.

さらに本発明の樹脂組成物には必要に応じて安定剤、可
塑剤、滑剤、難燃剤、顔料、充填剤等を配合し得る。具
体的にはトリフェニルホスファイト等の安定剤↓ポリエ
チレンワックス、ポリプロピレンワックス等の滑剤;ト
リフェニルホスフェート、トリクレジルホスフェート等
のホスフェート系難燃剤、デカブロモビフェニル、デカ
ブロモビフェニルエーテル等の臭素系難燃剤、二酸化ア
ンチモン等の焦燃剤;酸化チタン、硫化亜鉛、酸化亜鉛
等の顔料;ガラス繊維、アスベスト、ウオラストナイト
、マイカ、タルク等の充填剤等が挙げられる。
Furthermore, stabilizers, plasticizers, lubricants, flame retardants, pigments, fillers, etc. may be added to the resin composition of the present invention, if necessary. Specifically, stabilizers such as triphenyl phosphite; lubricants such as polyethylene wax and polypropylene wax; phosphate flame retardants such as triphenyl phosphate and tricresyl phosphate; brominated retardants such as decabromo biphenyl and decabromo biphenyl ether; Examples include flaming agents, pyrophoric agents such as antimony dioxide; pigments such as titanium oxide, zinc sulfide, and zinc oxide; fillers such as glass fiber, asbestos, wollastonite, mica, and talc.

〔実施例〕〔Example〕

以下本実施例により本発明を具体的に説明する。以下の
記載において「部」とあるのはすべて重量部を意味する
The present invention will be specifically explained below with reference to Examples. In the following description, all "parts" mean parts by weight.

なお各実施例、比較例での諸物性の測定法は次の方法に
よる。
The physical properties in each Example and Comparative Example were measured by the following methods.

アイゾツト衝撃強度: ASTM  D  256の方法による。Izotsu impact strength: According to the method of ASTM D 256.

(1/4″ノツチ付) ビカー軟化温度: ISOR306の方法による。(With 1/4″ notch) Vicat softening temperature: According to the method of ISOR306.

光沢: AS’l’M  D  525−62T(60°鏡面光
沢度)の方法による。
Gloss: According to the method of AS'l'MD 525-62T (60° specular gloss).

ダインスタット強度保持率: rJLN  53435の方法による。Dynstat strength retention rate: According to the method of rJLN 53435.

サンシャインウェザ−メーターに暴露前の試験片のダイ
ンスタット強度を100チとし、各暴露時間後のダイン
スタット強度の暴露前のそれに対する比を保持率とした
The dynstat strength of the test piece before exposure to the sunshine weather meter was set at 100 inches, and the ratio of the dynstat strength after each exposure time to that before exposure was defined as the retention rate.

参考例1 複合ゴム(S−1)の製造: ナト2ニドキフフ2フ2部、r−メタクリロイルオキン
プロビルジメトキシメチルシラン15部及びオクタメチ
ルシクロテトラシロキサン97.5部を混合し、ンロキ
サン混合物100部を得た。ドデシルベンゼンスルホン
酸ナトリウム及びドデシルベンゼンスルホン酸をそれぞ
れ1部を溶解した蒸留水200部に上記混合シロキサン
1oa部に加え、ホモミキサーにて10.000 rp
mで予備攪拌した後、ホモジナイザーにより300kl
il/(7)2の圧力で乳化、労政させ、オルガノシロ
キサンラテックスを得た。この混合液を、コンデンサー
及び攪拌翼を備えたセパラブルフラスコに移し、攪拌混
合しながら80℃で5時間加熱した後20℃で放置し、
48時間後に水酸化す) IJウム水溶液でこのラテッ
クスのpgを7.5に中和し、重合を完結しポリオルガ
ノシロキサンゴムラテックス−1を得た。
Reference Example 1 Manufacture of composite rubber (S-1): 2 parts of Nato 2 Nidokifu 2F, 15 parts of r-methacryloyl oxineprobyl dimethoxymethylsilane and 97.5 parts of octamethylcyclotetrasiloxane were mixed, and 100 I got the department. Add 1 oa part of the above mixed siloxane to 200 parts of distilled water in which 1 part each of sodium dodecylbenzenesulfonate and dodecylbenzenesulfonic acid have been dissolved, and mix with a homomixer at 10.000 rp.
After pre-stirring at m, 300kl was added using a homogenizer.
Emulsification was carried out under a pressure of il/(7)2 to obtain an organosiloxane latex. This mixed solution was transferred to a separable flask equipped with a condenser and a stirring blade, heated at 80°C for 5 hours while stirring and mixing, and then left at 20°C.
The pg of this latex was neutralized to 7.5 with an aqueous IJ solution to complete the polymerization and polyorganosiloxane rubber latex-1 was obtained.

得られたポリオルガノシロキサンゴムの重合率はE3a
5%であり、ポリオルガノシロキサンゴムの平均粒子径
は[L16μmであった。
The polymerization rate of the obtained polyorganosiloxane rubber was E3a.
5%, and the average particle diameter of the polyorganosiloxane rubber was [L] 16 μm.

上記ポリオルガノシロキサンゴムラテックス−1を11
9部採取し、攪拌器を備えたセパラブルフラスコr入れ
、蒸留水57.5部を加え、窒素置換をしてから30℃
に昇温し、n−ブチルアクリレート3五95部、アリル
メタクリレート1. Os 部及びLθrt−ブチルヒ
ドロペルオキシドα26部の混合液を仕込み30分間攪
拌し、この混合液をポリオルガノシロキサンゴム粒子に
浸透させた。次いで、硫酸第1鉄(1002部、エチレ
ンジアミン四酢酸二ナトリヴム塩[1006部、ロンガ
リット126部及び蒸留水5部の混合液を仕込みラジカ
ル重合を開始させ、その後内温70℃で2時間保持し重
合を完了して複合ゴムラテックスを得た。このラテック
スを一部採取し、複合ゴムの平均粒子径を測定したとこ
ろα19μmであった。又、このラテックスを乾燥し固
形物を得、トルエンで90℃、12時間抽出し、ゲル含
量を測定したところ97.3重i%であった。なおこの
ラテックスのポリマー固形分は32.4重量%であった
11 of the above polyorganosiloxane rubber latex-1
9 parts were collected, placed in a separable flask equipped with a stirrer, 57.5 parts of distilled water was added, and after purging with nitrogen, the mixture was heated at 30°C.
The temperature was raised to 3.595 parts of n-butyl acrylate and 1.5 parts of allyl methacrylate. A mixed solution of 1 part Os and 26 parts of Lθrt-butyl hydroperoxide α was charged and stirred for 30 minutes to allow this mixed solution to permeate into the polyorganosiloxane rubber particles. Next, a mixture of ferrous sulfate (1002 parts, disodium ethylenediaminetetraacetic acid disodium salt [1006 parts], Rongalit 126 parts, and 5 parts of distilled water) was charged to start radical polymerization, and then the internal temperature was maintained at 70°C for 2 hours to polymerize. By completing this process, a composite rubber latex was obtained. A portion of this latex was sampled and the average particle size of the composite rubber was measured, and it was found to be α19 μm. Also, this latex was dried to obtain a solid material, which was heated at 90°C with toluene. After extraction for 12 hours, the gel content was measured and found to be 97.3% by weight.The polymer solid content of this latex was 32.4% by weight.

参考例2 複合ゴム(S−2,5−5)の製造二 洛考例1で得たポリオルガノシロキサンゴムラテックス
−1を用いて、第1表に示すようにポリオルガノシロキ
サンゴム、n−ブチルアクリレート及びアリルメタクリ
レートの組成比の種々溝なる複合ゴムを参考例1と同じ
ような方法により製造した。製造条件及び得られた複合
ゴムの緒特性を第1表に併せて示す。
Reference Example 2 Manufacture of Composite Rubber (S-2, 5-5) Using the polyorganosiloxane rubber latex-1 obtained in Example 1, polyorganosiloxane rubber, n-butyl Composite rubbers with grooves having various composition ratios of acrylate and allyl methacrylate were produced in the same manner as in Reference Example 1. The manufacturing conditions and the properties of the composite rubber obtained are also shown in Table 1.

第1表 参考例3 複合ゴム(s−a)の製造: 参考例1においてポリオMガノシロキサンゴムの製造の
際に、γ−メタクリロイルオキシプロピルジメトキシメ
チルシラン0.5部とオクタメチルシクロテトラシロキ
サン97.5 部の代りにオクタメチルシクロテトラシ
ロキサン98部を使用する以外は参考例1と同じ条件に
より重合を行ない複合ゴム(B−4)ラテックスを得た
。この複合ゴムの平均粒子径はα19μ鳳ゲル含量は9
部0重量%であった。又、このラテックスのポリマー固
形分は32.4重量%であった。
Table 1 Reference Example 3 Manufacture of composite rubber (s-a): In Reference Example 1, during the manufacture of Polio M ganosiloxane rubber, 0.5 part of γ-methacryloyloxypropyldimethoxymethylsilane and 97 parts of octamethylcyclotetrasiloxane were added. Polymerization was carried out under the same conditions as in Reference Example 1 except that 98 parts of octamethylcyclotetrasiloxane was used instead of 0.5 parts to obtain a composite rubber (B-4) latex. The average particle diameter of this composite rubber is α19μ, and the gel content is 9
It was 0% by weight. Further, the polymer solid content of this latex was 32.4% by weight.

参考例4 複合ゴム(S−S)の製造: 参考例1においてアリルメタクリレートを使用せずにn
−ブチルアクリレートを30部とする以外は参考例1と
同じ条件により重合を行ない複合ゴム(S−5)ラテッ
クスを得た。この複合ゴムの平均粒子径はα18μm、
ゲル含量け712M12重量%た。又、このラテックス
のポリマー固形分け32.4重量%であった。
Reference Example 4 Manufacture of composite rubber (S-S): In Reference Example 1, n was produced without using allyl methacrylate.
- Polymerization was carried out under the same conditions as in Reference Example 1 except that 30 parts of butyl acrylate was used to obtain a composite rubber (S-5) latex. The average particle diameter of this composite rubber is α18μm,
The gel content was 712M and 12% by weight. The polymer solid content of this latex was 32.4% by weight.

参考例5 アクリロニトリル−スチレン共重合体(B−1)の製造
: 攪拌器を備えたセパラブルフラスコに蒸留水195部、
スチレン35部、アクリロニトリル15部、ドデシルベ
ンゼンスルホン酸ナトリウム2 m、tert−ブチル
ヒドロペルオキシドα2部を仕込み窒素置換した後60
℃に昇温し、硫酸第1鉄α002部、エチレンジアミン
四酢酸二ナトリウム塩α00<5部、ロンガリット02
6部及び蒸留水5部の混合液を仕込みラジカル重合を開
始させ、その後内温65℃でスチレン65部、アクリロ
ニトリル15部、tsrt−ブチルヒドロペルオキシド
α2部の混合液を1時間にわたって滴下し、65℃で1
時間保持し重合を完了した。得られたアクリロニトリル
−スチレン共重合体ラテックスの平均粒子径は0.12
μmであシ、ポリマー固形分は52重量%であった。
Reference Example 5 Production of acrylonitrile-styrene copolymer (B-1): In a separable flask equipped with a stirrer, 195 parts of distilled water,
After charging 35 parts of styrene, 15 parts of acrylonitrile, 2 m of sodium dodecylbenzenesulfonate, and 2 parts of tert-butyl hydroperoxide α and purging with nitrogen,
The temperature was raised to ℃, and 2 parts of ferrous sulfate α00, ethylenediaminetetraacetic acid disodium salt α00<5 parts, Rongalit 02
A mixture of 65 parts of styrene, 15 parts of acrylonitrile, and 2 parts of tsrt-butyl hydroperoxide α was added dropwise at an internal temperature of 65°C over 1 hour to start radical polymerization. 1 in °C
The polymerization was completed by holding for a certain time. The average particle diameter of the obtained acrylonitrile-styrene copolymer latex was 0.12.
The polymer solids content was 52% by weight.

参考例6 参考例1〜4で得た各種複合ゴムラテックス(s−1)
〜(S−S)と参考例5で得九アクリロニトリ々−スチ
レン共重合体ラテックスCB−1)とを第2表に示す量
の割合で混合し6種類の混合ラテックスを得た。これら
混合ラテックスを該混合ラテックスと等重量の塩化カル
シウム1.5重1%熱水中に滴下攪拌し、凝固、分離、
洗浄した後80℃で12時間乾燥し、6種類の複合ゴム
とアクリロニトリル−スチレン共重合体との混合物(M
−1)〜(M−6)を得た。なおこれら混合物(M−1
)〜(M−6)中o複合ゴムとアクリロニトリル−スチ
レン共重合体の夫々の含有量を第2表に併せて示した。
Reference Example 6 Various composite rubber latexes obtained in Reference Examples 1 to 4 (s-1)
(S-S) and nine acrylonitri-styrene copolymer latex CB-1) obtained in Reference Example 5 were mixed in the amounts shown in Table 2 to obtain six types of mixed latexes. These mixed latexes were added dropwise to the same weight of calcium chloride 1.5 weight 1% hot water and stirred, solidified, separated,
After washing and drying at 80°C for 12 hours, a mixture of six types of composite rubber and acrylonitrile-styrene copolymer (M
-1) to (M-6) were obtained. Note that these mixtures (M-1
) to (M-6) The respective contents of the medium o composite rubber and the acrylonitrile-styrene copolymer are also shown in Table 2.

第  2  表 実施例1〜6 参考例6で得た複合ゴムとアクリロニトリル−スチレン
共重合体の混合物(M−1)〜(M−6)及びクロロホ
ルム中25℃で測定した還元粘度(ワ5p10 )がα
52 dL/fのアクリロニトリル−スチレン共重合体
(アクリロニトリル/スチレン22フ重量慢/73重量
%)を夫々第5表に示す量の組成で配合し樹脂組成物を
調製した。
Table 2 Examples 1 to 6 Mixtures (M-1) to (M-6) of the composite rubber and acrylonitrile-styrene copolymer obtained in Reference Example 6 and reduced viscosity measured at 25°C in chloroform (wa 5p10) is α
A resin composition was prepared by blending 52 dL/f of acrylonitrile-styrene copolymer (acrylonitrile/styrene 22%/73% by weight) in the amounts shown in Table 5.

これら各種の樹脂組成物を押出機により溶融混練し夫々
ベレット状に賦型した。得られた夫々のベレットを乾燥
後、射出成形機(住友点機械工業■製、ゾロマツl−1
65/75型)に供給し、各種試験片を作成した。これ
らの各種試験片を用いて各種物性を評価した結果を第3
表に示す。
These various resin compositions were melt-kneaded using an extruder and shaped into pellet shapes. After drying each of the obtained pellets, an injection molding machine (manufactured by Sumitomo Machinery Co., Ltd., Zoromatsu l-1) was used.
65/75 type) to prepare various test pieces. The results of evaluating various physical properties using these various test pieces are shown in the third section.
Shown in the table.

第  5  表 第3表の結果から本発明の組成物はit衝撃性、成形表
面光沢に優れるものであることがわかる。
From the results shown in Table 5 and Table 3, it can be seen that the composition of the present invention has excellent IT impact resistance and molded surface gloss.

実施例7 実施例1で作成した試験片及び市販のABS樹脂(三菱
レイヨン■製、ダイヤベット[F]3001M)を用い
て実施例1と同様にして作成した試験片をサンシャイン
ウェザ−メーターでOWLダインスタット強度の保持率
、光沢の保持率を測定した。結果を第4表に示す。
Example 7 The test piece prepared in Example 1 and the test piece prepared in the same manner as in Example 1 using a commercially available ABS resin (manufactured by Mitsubishi Rayon ■, Diabet [F] 3001M) were subjected to OWL using a sunshine weather meter. The retention rate of Dynstat strength and the retention rate of gloss were measured. The results are shown in Table 4.

第  4  表 実施例8 実施例1で作成した試験片と市販のABS樹脂(三菱レ
イヨン@製、ダイヤベット■1001)を用いて実施例
1と同様にして作成した試験片とを摩擦・摩耗試験によ
り比較した。測定は東洋ボールドウィンKFM−111
−に型摩擦・摩耗試験機により回転側、固定側とも同一
樹脂をm−て実施した試験片はサンドベーパ−1soo
番により仕上げた。測定結果を第5表に示す。
Table 4 Example 8 A friction/wear test was performed on the test piece prepared in Example 1 and the test piece prepared in the same manner as in Example 1 using commercially available ABS resin (Diabet ■1001 manufactured by Mitsubishi Rayon@). Comparison was made by Measurement is Toyo Baldwin KFM-111
The test piece tested using the same resin on both the rotating and stationary sides using a mold friction/wear tester was Sand Vapor 1soo.
Finished by number. The measurement results are shown in Table 5.

第  5  表 第5表の結果より本発明の樹脂組成物から作成した試験
片は市販のABEi樹脂に比し優れた摩擦・摩耗特性を
有しており、動摩擦係数も小さく、比摩耗量も少な−0 実施例9〜10 参考例1.2で得た複合ゴムS−1及びS−2、!=7
 りIJ *ニトリル/α−メチルスチレン=30/7
0(重量%)なる単量体混合物を用いて別途乳化重合法
で製造したアクリロニトリル−α−メチルスチレン共重
合体とを前記複合ゴムの各々が30重量%、アクリロニ
トリル−α−メチルスチレン共重合体が70重fi%と
なるように配合して2種類の樹脂組成物を調製し、溶融
、賦形を行ないベレット化した。これら2種類のベレッ
トを用い実施例1と同様廻して各種試験片を作成した。
Table 5 From the results shown in Table 5, the test pieces made from the resin composition of the present invention had superior friction and wear properties compared to commercially available ABEi resins, had a small coefficient of dynamic friction, and had a small amount of specific wear. -0 Examples 9 to 10 Composite rubbers S-1 and S-2 obtained in Reference Example 1.2,! =7
IJ *Nitrile/α-methylstyrene = 30/7
0 (wt%) of acrylonitrile-α-methylstyrene copolymer separately produced by emulsion polymerization using a monomer mixture of 30% by weight of each of the composite rubbers, Two types of resin compositions were prepared by blending the resin compositions so that the amount was 70% by weight, and the resin compositions were melted and shaped into pellets. These two types of pellets were rotated in the same manner as in Example 1 to create various test pieces.

これらの各試験片を用いて各種物性を測定した。結果を
第6表に示す。
Various physical properties were measured using each of these test pieces. The results are shown in Table 6.

第6表 第6表の結果から明らかなように、α−メチルスチレン
を必須成分とするビニル系重合体と配合することにより
高込耐熱性と耐衝撃性能を併せて有する樹脂組成物が得
られることがわかる。因みに実施例1の樹脂組成物に係
る試験片のビカー軟化温度は100℃であった。
Table 6 As is clear from the results in Table 6, a resin composition having both high heat resistance and impact resistance can be obtained by blending with a vinyl polymer containing α-methylstyrene as an essential component. I understand that. Incidentally, the Vicat softening temperature of the test piece of the resin composition of Example 1 was 100°C.

〔発明の効果〕〔Effect of the invention〕

本発明は、本発明で規定する特定の複合ゴムとビニル系
重合体とを配合しているため耐衝撃性、耐候性、摩擦特
性ならびに表面外観に優れた成形物を与え、かつ成形性
、流動性等に優れた樹脂組成物を得ることができる。
The present invention blends the specific composite rubber specified in the present invention with a vinyl polymer, so it provides molded products with excellent impact resistance, weather resistance, friction properties, and surface appearance, and has excellent moldability and flowability. A resin composition with excellent properties and the like can be obtained.

Claims (1)

【特許請求の範囲】 1、(A)ポリオルガノシロキサンゴム成分10〜90
重量%とポリアルキル(メタ)アクリレートゴム成分1
0〜90重量%とが分離できないように相互に絡み合つ
た構造を有し、かつポリオルガノシロキサンゴム成分と
ポリアルキル(メタ)アクリレートゴム成分との合計量
が100重量%である平均粒子径0.08〜0.6μm
の複合ゴムと (B)芳香族アルケニル化合物、シアン化ビニル化合物
及び(メタ)アクリル酸エステルからなる群から選ばれ
た少なくとも1種のビニル系単量体70〜100重量%
とこれらと共重合可能な他のビニル系単量体0〜30重
量%を重合して得られるビニル系重合体 を配合して成る耐衝撃性樹脂組成物。 2、複合ゴムが、オルガノシロキサンと架橋剤及び所望
によりグラフト交叉剤とを用い乳化重合により得られた
ポリオルガノシロキサンゴム成分と、このポリオルガノ
シロキサンゴム成分にアルキル(メタ)アクリレート及
び架橋剤を含浸させてから重合させて得られたポリアル
キル(メタ)アクリレートゴム成分とから成る第1項記
載の耐衝撃性樹脂組成物。 3、ポリオルガノシロキサンゴム成分の主骨格がジメチ
ルシロキサンの繰り返し単位を有し、ポリアルキル(メ
タ)アクリレートゴム成分の主骨格がn−ブチルアクリ
レートの繰り返し単位を有する第1項又は第2項記載の
耐衝撃性樹脂組成物。 4、トルエン抽出により測定した複合ゴムのゲル含量が
80重量%以上である第1項記載の耐衝撃性樹脂組成物
[Claims] 1. (A) Polyorganosiloxane rubber component 10-90
Weight% and polyalkyl (meth)acrylate rubber component 1
0 to 90% by weight have a structure in which they are intertwined with each other so that they cannot be separated, and the total amount of the polyorganosiloxane rubber component and the polyalkyl (meth)acrylate rubber component is 100% by weight.An average particle size of 0 .08~0.6μm
and (B) 70 to 100% by weight of at least one vinyl monomer selected from the group consisting of aromatic alkenyl compounds, vinyl cyanide compounds, and (meth)acrylic acid esters.
An impact-resistant resin composition comprising: and a vinyl polymer obtained by polymerizing 0 to 30% by weight of another vinyl monomer copolymerizable with these. 2. The composite rubber is a polyorganosiloxane rubber component obtained by emulsion polymerization using an organosiloxane, a crosslinking agent, and optionally a grafting agent, and this polyorganosiloxane rubber component is impregnated with an alkyl (meth)acrylate and a crosslinking agent. 2. The impact-resistant resin composition according to item 1, comprising a polyalkyl (meth)acrylate rubber component obtained by polymerizing the polyalkyl (meth)acrylate rubber component. 3. The main skeleton of the polyorganosiloxane rubber component has repeating units of dimethylsiloxane, and the main skeleton of the polyalkyl (meth)acrylate rubber component has repeating units of n-butyl acrylate according to item 1 or 2. Impact resistant resin composition. 4. The impact-resistant resin composition according to item 1, wherein the gel content of the composite rubber measured by toluene extraction is 80% by weight or more.
JP11189288A 1988-05-09 1988-05-09 Impact resistant resin composition Expired - Lifetime JP2652193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11189288A JP2652193B2 (en) 1988-05-09 1988-05-09 Impact resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11189288A JP2652193B2 (en) 1988-05-09 1988-05-09 Impact resistant resin composition

Publications (2)

Publication Number Publication Date
JPH01282239A true JPH01282239A (en) 1989-11-14
JP2652193B2 JP2652193B2 (en) 1997-09-10

Family

ID=14572757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11189288A Expired - Lifetime JP2652193B2 (en) 1988-05-09 1988-05-09 Impact resistant resin composition

Country Status (1)

Country Link
JP (1) JP2652193B2 (en)

Also Published As

Publication number Publication date
JP2652193B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JP2608439B2 (en) Impact resistant resin composition
KR960004680B1 (en) Vinyl chloride resin composition
JP2567627B2 (en) Thermoplastic polyester resin composition
JPS6369859A (en) Polyphenylene ether resin composition
TWI789396B (en) Graft copolymer containing polyorganosiloxane, graft copolymer, thermoplastic resin composition, and molded article
WO1997010283A1 (en) Particulate silicone-modified acrylic rubber, particulate graft copolymer based on silicone-modified acrylic rubber, and thermoplastic resin composition
JP2719939B2 (en) Flame retardant polyphenylene ether resin composition
JP2558126B2 (en) Thermoplastic resin composition
JPH04239010A (en) Graft copolymer
JP2977605B2 (en) Polyester resin composition
JP2640531B2 (en) Thermoplastic resin composition
JPH0830102B2 (en) Composite rubber-based graft copolymer particles
JPH0481460A (en) Resin composition highly resistant to impact and thermal stability
JP2001139789A (en) Thermoplastic resin composition
JPH04146964A (en) Polyarylene sulfide resin composition
JP3137786B2 (en) Thermoplastic resin composition
JPH01282239A (en) Impact resistant resin composition
JP2707312B2 (en) Polyphenylene ether resin composition
JP2608469B2 (en) Impact modifier for vinyl chloride resin and vinyl chloride resin composition using the same
JP2958059B2 (en) Thermoplastic resin composition
JP2630414B2 (en) Thermoplastic resin composition
JPH10237266A (en) Method for improving slidability of resin molding and resin molding prepared thereby
JPH02245050A (en) Impact modifier for polymethacrylimide resin and polymethacrylimide resin composition containing the same
JPH028209A (en) Polyorganosiloxane thermoplastic resin
JPH0920815A (en) Complex rubber-based graft copolymer, production of its powder and thermoplastic resin composition of the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term