JPH01281803A - Cutting tool for aluminium alloy - Google Patents

Cutting tool for aluminium alloy

Info

Publication number
JPH01281803A
JPH01281803A JP11205988A JP11205988A JPH01281803A JP H01281803 A JPH01281803 A JP H01281803A JP 11205988 A JP11205988 A JP 11205988A JP 11205988 A JP11205988 A JP 11205988A JP H01281803 A JPH01281803 A JP H01281803A
Authority
JP
Japan
Prior art keywords
cutting
rake angle
chipping
tool
nose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11205988A
Other languages
Japanese (ja)
Inventor
Shigeru Yamada
茂 山田
Hisakimi Notoya
能登谷 久公
Yuzo Takatsuji
高辻 雄三
Ichizo Tsukuda
市三 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP11205988A priority Critical patent/JPH01281803A/en
Publication of JPH01281803A publication Critical patent/JPH01281803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce any wear of a tool while avoiding generation of chipping so as to get a fine cutting finish surface, by setting a rake angle and a nose radius to 6 to 30 deg. and 0.2mm or more respectively among tip shape factors, in a diamond cutting tool. CONSTITUTION:Among factors of the tip shape of a diamond tool, when a rake angle is less than 5 deg., flank wear increases, and with an increase in the wear, a cutting resistance increases and finished surface is made more rough. On the other hand, when the rake angle is more than 30 deg., there is such a tendency that chipping is easy to happen instead. Making a nose round serves to prevent chipping, but when the radius of the nose is less than 0.2mm it is same as the case of giving no roundness, and when more than 1.0mm, the cutting resistance increases. Therefore, by setting the rake angle to 5-30 deg., the radius of the nose 0.2mm or more, the tool wear and the cutting resistance can be reduced while avoiding generation of chipping, a cut and finished surface excellent in its flatness can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、アルミニウム合金(MMC,FRMなどの
アルミニウム基複合材料を含む)の切削用、特に過共晶
AΩ−31合金あるいは分散強化型アルミニウム基複合
材の切削用のダイヤモンド切削工具に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is suitable for cutting aluminum alloys (including aluminum matrix composite materials such as MMC and FRM), particularly hypereutectic AΩ-31 alloys or dispersion-strengthened aluminum matrix composites. This invention relates to a diamond cutting tool for cutting materials.

従来の技術 硬質の81粒子を含む過共晶AΩ−81合金の切削工具
としては、その材質にダイヤモンドまたはその焼結体を
用いたダイヤモンド切削工具が多く使われている。
2. Description of the Related Art As cutting tools for hypereutectic AΩ-81 alloy containing hard 81 particles, diamond cutting tools using diamond or a sintered body thereof as the material are often used.

而して、従来か\る用途に用いられる一般に市販のダイ
ヤモンド切削工具は、その刃先形状においてすくい角が
−π/36 (−5” ”)またはπ/36 (5” 
)に設定され、かつノーズに丸味を有しない形式のもの
であった。もとより、か〜る切削工具においても、その
性能として、チッピング、欠損等を生じ難いことはもち
ろん、可及的逃げ面の摩耗が少なく、かつ切削抵抗が小
さく、仕上げ面の表面粗さを小さいものとなしうること
等の綜合評価において優れていることが求められるとこ
ろであるが、従来、ダイヤモンド切削工具についてはこ
のような要請に対応するための刃先形状諸元についての
研究は未だ十分に尽されていなかったのが実情である。
Generally, commercially available diamond cutting tools used for conventional purposes have rake angles of -π/36 (-5") or π/36 (5") in their cutting edge shapes.
) and had a non-rounded nose. Of course, the performance of such a cutting tool is that it does not easily cause chipping, chipping, etc., but it also has as little wear on the flank as possible, has low cutting resistance, and has a low surface roughness on the finished surface. There is a need for excellence in comprehensive evaluation of things such as what can be done, etc., but in the past, sufficient research has not yet been done on the shape specifications of the cutting edge of diamond cutting tools to meet these demands. The reality is that there was no such thing.

発明が解決しようとする課題 従来、超硬合金切削工具においては、過共晶AQ−Si
系合金を切削する場合、刃先のすくい角をπ/9 (2
0’ )〜π/6 (30” )と大きく設定すること
により、工具摩耗を減らし、その寿命を延長しうろこと
が報告されている。
Problems to be Solved by the Invention Conventionally, in cemented carbide cutting tools, hypereutectic AQ-Si
When cutting alloys, the rake angle of the cutting edge should be set to π/9 (2
It has been reported that tool wear can be reduced and the life of the tool can be extended by setting it as large as 0') to π/6 (30'').

これに対し、ダイヤモンド切削工具の場合には、π/3
6をこえてすくい角を大きく設定すると、チッピングを
生じて使用に耐え得ないことが知られており、これを避
けるために、−膜内にはすくい角を負に設定したものが
多く用いられているのが実情である。
On the other hand, in the case of diamond cutting tools, π/3
It is known that if the rake angle is set to a large value exceeding 6, chipping will occur and the rake angle will become unusable.To avoid this, a film with a negative rake angle is often used in the film. The reality is that

ところが、前記のようなすくい角の小さい従来のダイヤ
モンド切削工具では、工具寿命の点で未だ十分な満足が
得られず、更には切削抵抗もや−大きく、かつ切削仕上
り面の表面粗さの点でも必ずしも十分な満足が得られる
ものではなく、更なる改善が望まれるところであった。
However, the conventional diamond cutting tools with small rake angles as described above are still not fully satisfactory in terms of tool life, and furthermore, the cutting force is large, and the surface roughness of the cut surface is low. However, it was not always completely satisfactory, and further improvements were desired.

この発明は、上記改善要請に応えるA2合金用ダイヤモ
ンド切削工具を提供することを目的とする。
An object of the present invention is to provide a diamond cutting tool for A2 alloy that meets the above-mentioned request for improvement.

課題を解決するための手段 この発明は、上記の目的において各種刃先諸元の異るダ
イヤモンド切削工具を製作して多くの実験を重ねた結果
、ノーズに丸味を付することによって刃先先端への応力
集中を減らし、チッピングの発生を減少しうろこと、ま
た、すくい角を大きく設定することによって工具摩耗を
減らし、その耐久性を増大しつ一切削抵抗も減少し、仕
上り面の表面粗さも小さいものとなしうろことを見出す
に至り、この発明を完成し得たものである。
Means for Solving the Problems As a result of many experiments in which diamond cutting tools with different cutting edge specifications were produced for the above-mentioned purpose, this invention was developed to reduce the stress on the tip of the cutting edge by rounding the nose. By reducing concentration and reducing the occurrence of chipping, and by setting a large rake angle, tool wear is reduced, its durability is increased, cutting force is also reduced, and the surface roughness of the finished surface is small. By discovering toshi scales, he was able to complete this invention.

即ち、この発明は、ダイヤモンド又はその焼結体からな
るダイヤモンド切削工具において、その刃先形状諸元中
、 すくい角=5〜30″ ノーズ半径:0.2rtm以上 に設定されてなることを特徴とする、アルミニウム合金
用切削工具を要旨とする。
That is, the present invention is characterized in that, in a diamond cutting tool made of diamond or a sintered body thereof, the shape specifications of the cutting edge include the following settings: rake angle = 5 to 30'', nose radius: 0.2 rtm or more. This article focuses on cutting tools for aluminum alloys.

すくい角は、これが5″未満では、工具の逃げ面摩耗量
が増大し、耐用寿命の点で好ましくない。また同時に、
工具摩耗とも関連して、摩耗進行と−もに切削抵抗が増
大し、かつ切削仕上り面の表面粗さも大きいものとなる
。一方、すくい角が30°をこえて大きすぎるものにな
ると、かえってチッピングが生じ易くなる傾向を示す。
If the rake angle is less than 5'', the flank wear of the tool will increase, which is undesirable in terms of service life.At the same time,
In relation to tool wear, the cutting resistance increases as the wear progresses, and the surface roughness of the cut surface also increases. On the other hand, if the rake angle is too large, exceeding 30°, chipping tends to occur more easily.

最も好適なすくい角の範囲は、概ね10〜20°程度で
ある。
The most suitable rake angle range is approximately 10 to 20 degrees.

一方、ノーズの丸味は、これを付することによってチッ
ピングの防止に役立つ。しかし、ノーズ半径が0. 2
rm未満では、丸味を付与しない場合とほとんど変わら
ず、改善効果を得ることができない。一方、ノーズ半径
を、1.Omをこえる大きな曲率のものに設定すると、
切削抵抗が大きくなるため好ましくない。好適なノーズ
半径の設定範囲は、概ね0,2〜1,0程度である。
On the other hand, the rounded nose helps prevent chipping. However, the nose radius is 0. 2
If it is less than rm, it is almost the same as when no roundness is imparted, and no improvement effect can be obtained. On the other hand, set the nose radius to 1. If you set it to one with a large curvature exceeding Om,
This is not preferable because cutting resistance increases. A suitable setting range for the nose radius is approximately 0.2 to 1.0.

作用 ダイヤモンド切削工具の刃先形状諸元において、ノーズ
に丸味を付することで、切削時の刃先々端への応力集中
を減少し、従ってチッピングの発生を防止しうる。この
ことも相俟って、すくい角を大きく設定することが可能
となり、該すくい角を5〜30″と設定することにより
、逃げ面の摩耗を減少し、ひいては工具寿命を増大し、
かつ仕上げ面の平滑性を向上しつる。
By rounding the nose of the working diamond cutting tool, it is possible to reduce the concentration of stress on the edges of the cutting edge during cutting, thereby preventing the occurrence of chipping. Combined with this, it is possible to set a large rake angle, and by setting the rake angle between 5 and 30'', flank wear is reduced, and tool life is increased.
It also improves the smoothness of the finished surface.

実施例 平均粒径0.3μmのダイヤモンド粒子を用い、下記A
、B、Cの各種刃先形状諸元を存するダイヤモンド切削
工具を製作した。
Example Using diamond particles with an average particle size of 0.3 μm, the following A
Diamond cutting tools with various cutting edge shape specifications of , B, and C were manufactured.

A・・・・・・前すくい角0″−横すくい角θ−前逃げ
角7”  (7π/180)−横逃げ角7″(7π/1
80)−前切刃角8”  (2π/45)−横切刃角0
°−ノーズ半径OIM。
A...Front rake angle 0'' - Side rake angle θ - Front relief angle 7'' (7π/180) - Side relief angle 7'' (7π/1
80) - Front cutting edge angle 8" (2π/45) - Side cutting edge angle 0
° - Nose radius OIM.

A−−5・・・横すくい角θ−−5’  (−π/3A
−5・・・・・・  /l  θ−5″(π/36)A
−20・・・  〃  θ−20° (π/9)A−3
0・・・  /l  θ−30’  (π/6)B・・
・・・・前すくい角−5@ (−π/36)−横すくい
角θ−前逃げ角5° (π/36)−横逃げ角5° (
π/36)−前切刃角30° (π/6)t52切刃角
0 ’ −/−ズ半径0.4IIII11゜B−−5・
・・横すくい角θ−−5”  (−π/3B−−10・
・・横すくい角θ−−10”  (−π/18) C・・・・・・前すくい角O″−横すくい角θ−前逃げ
角5° (π/36)−横逃げ角5° (π/36)−
前切刃角30e (π/6)−横切刃角Oe−ノーズ半
径0.41rJM。
A--5... Lateral rake angle θ--5' (-π/3A
-5・・・・・・ /l θ-5″(π/36)A
-20... 〃 θ-20° (π/9)A-3
0... /l θ-30' (π/6)B...
...Front rake angle - 5 @ (-π/36) - Side rake angle θ - Front relief angle 5° (π/36) - Side clearance angle 5° (
π/36) - Front cutting edge angle 30° (π/6)t52 Cutting edge angle 0' -/-Z radius 0.4III11°B--5・
・・Side rake angle θ−−5” (−π/3B−−10・
... Side rake angle θ - -10" (-π/18) C... Front rake angle O" - Side rake angle θ - Front relief angle 5° (π/36) - Side clearance angle 5° (π/36)−
Front cutting edge angle 30e (π/6) - Side cutting edge angle Oe - Nose radius 0.41rJM.

C−5・・・・・・横・すくい角θ−5° (π/36
)C−15・・・  〃  θ−15’(π/12)上
記の各種切削工具により、下記第1表に示すAρ−17
%Si合金(:A質Te)を被削材として、その切削を
行った。
C-5... Lateral/rake angle θ-5° (π/36
) C-15... 〃 θ-15' (π/12) By using the various cutting tools mentioned above, Aρ-17 shown in Table 1 below
%Si alloy (A-quality Te) was used as a work material and cutting was performed.

〔以下余白〕[Margin below]

第 1 表 (被削材) 切削条件は、切削速度V−5TrL/S、送りf−〇、
1 mttr/ rev 、切込み深さt=1.0m。
Table 1 (Work material) Cutting conditions are cutting speed V-5TrL/S, feed f-〇,
1 mttr/rev, cutting depth t=1.0 m.

潤滑なしく乾式切削)として行った。This was done as dry cutting without lubrication.

上記切削試験による結果を各評価項目に従って下記に説
明する。
The results of the above cutting test will be explained below according to each evaluation item.

〔チッピング〕[Chipping]

各切削工具A (A−−5、A−10、A−20、A−
30) 、B (B−−5、B−10)、C(C−5、
C−15)を用いて、いずれも1700 secの切削
を行い、切削終了後、切れ刃の欠け、即ちチッピングの
有無について調べた。
Each cutting tool A (A--5, A-10, A-20, A-
30), B (B--5, B-10), C (C-5,
C-15), cutting was performed for 1700 sec in each case, and after the cutting was completed, the presence or absence of chipping on the cutting edge, that is, chipping, was examined.

その結果、切削中のチッピングの発生の有無は下記第2
表のとおりであった。
As a result, the occurrence of chipping during cutting was determined by the following
It was as shown in the table.

第2表 上表のように、ノーズに丸味(以下「ノーズR」と称す
)を何しないA群の試験体にあっては、すくい角が負に
設定されたもの(A−−5)においてチッピングが生じ
ていないが、5゜(π/36)をこえてすくい角が大き
く設定されると、チッピングを生じて使用できないこと
が判った。
As shown in the upper table of Table 2, for the test specimens of Group A without any roundness (hereinafter referred to as "nose R") on the nose, the rake angle was set to be negative (A--5). Although no chipping occurred, it was found that if the rake angle was set larger than 5° (π/36), chipping occurred and the product could not be used.

これに対し、ノーズRを有するBm及び0群の試験体に
あっては、すくい角の大小に拘らず、いずれもチッピン
グを生じていない。従って、ノーズRを付することがチ
ッピング防止に有効であることを知り得た。
On the other hand, in the Bm and 0 group test specimens having a nose radius, no chipping occurred regardless of the rake angle. Therefore, it was found that adding a nose radius is effective in preventing chipping.

〔工具摩耗〕[Tool wear]

A群の試験体については、上記によりチッピングを生じ
なかったA−−5(−π/36)の試験体を選び、B群
、及び0群の試験体と\もにその逃げ面の摩耗幅の経時
的変化を調べた。
For the test specimens of group A, we selected the test specimen of A--5 (-π/36) that did not cause chipping as described above, and compared the wear width of the flank with the test specimens of group B and group 0. We investigated changes over time.

その結果を、第1図に示す。同図に示されるように、ノ
ーズRを有しないA−−5の試験体は、相対的に工具摩
耗が大きく、経時的にも摩耗量の増大傾向が大きいこと
がわかる。これに対し、ノーズRを付したB群及び0群
の試験体は、相対的に工具摩耗が少なく、しかもすくい
角が大きくなるにしたがって摩耗量が少なくなる傾向を
示す。このことは、ノーズRが付いていること\相俟っ
て、刃先々端への応力集中が小さくなる結果、工具摩耗
が少なくなるものと考えられる。
The results are shown in FIG. As shown in the same figure, it can be seen that the test specimen A--5, which does not have a nose R, has relatively large tool wear and a large tendency for the amount of wear to increase over time. On the other hand, the test specimens of group B and group 0 with nose R had relatively little tool wear, and moreover, the amount of wear tended to decrease as the rake angle increased. This is thought to be due to the fact that the nose is radiused, which reduces stress concentration on the edges of the cutting edge, resulting in less tool wear.

〔切削抵抗〕[Cutting resistance]

上記によりA群の試験体については、チッピングの発生
、または工具摩耗の大きいことからそれらを除外し、B
群及び0群の試験体について更にそれらの切削抵抗の経
時的変化状態について調べた。
As a result of the above, test specimens in group A were excluded due to occurrence of chipping or large tool wear, and
The specimens of Group 0 and Group 0 were further examined for changes in cutting resistance over time.

その結果を第2図に示す。同図により、すくい角が負に
設定されたB群試験体(B−−5、B−−10)に較べ
、すくい角の大きい0群の試験体(C−5、C−15)
の方が、相対的に主分力(Trangential f
orce )及び送り分力(Traverslng f
’orce)ともに小さく、切削中での切削抵抗増大が
小さいことがわかる。この関係は、すくい角が大きいほ
ど、工具摩耗が少ないという前記の結果と符合する。
The results are shown in FIG. According to the same figure, compared to the B group test specimens (B--5, B--10) where the rake angle was set to negative, the 0 group test specimens (C-5, C-15) have a larger rake angle.
, the principal component force (Transiential f
force) and the feed force (Traverslng f
'orce) are both small, indicating that the increase in cutting resistance during cutting is small. This relationship agrees with the above result that the larger the rake angle, the less tool wear.

〔仕上げ面粗さ〕[Finished surface roughness]

B群及び0群の各試験体について、切削時間5秒後と1
500秒後の被削体仕上げ面の表面粗さについて調べた
For each specimen of group B and group 0, after 5 seconds of cutting time and 1
The surface roughness of the finished surface of the workpiece after 500 seconds was examined.

結果を第3図に示す。同図により、すくい角と表面粗さ
の関係について明確な特徴的傾向の差異はないことを知
り得た。
The results are shown in Figure 3. From the figure, it was found that there was no clear characteristic difference in the relationship between rake angle and surface roughness.

上記のような各試験結果に基づき、チッピングの発生を
回避し、かつ工具摩耗を減少する意味においてノーズR
を付与することが好ましく、また工具摩耗を少なくし、
切削抵抗を小さくして良好な仕上げ面を得る目的におい
て、すくい角を51をこえて大きく設定することが好ま
しいことを確認し得た。なお、ノーズRは、半径0、 
2am未満ではその効果を十分果し得ないものと推n1
され、すくい角は30°をこえる大きい角度に設定する
ときは、ノーズRの付与効果を没却してチッピングの発
生を回避できなくなることを予測し得た。
Based on the above test results, the nose radius has been improved to avoid chipping and reduce tool wear.
It is preferable to give
It was confirmed that it is preferable to set the rake angle larger than 51 for the purpose of reducing the cutting resistance and obtaining a good finished surface. Note that the nose R has a radius of 0,
It is assumed that the effect cannot be fully achieved if it is less than 2 am n1
Therefore, it was predicted that when the rake angle is set to a large angle exceeding 30°, the effect of providing the nose radius will be lost and the occurrence of chipping will not be avoided.

発明の効果 この発明に係る刃先諸元を有する切削工具によれば、上
述の次第で、従来既知でありへΩ−3l系合金の切削用
に好適するものとして汎用されているダイヤモンド切削
工具に較べ、同被削体の切削に用いてチッピングの発生
を回避しながら工具摩耗を減少し、ひいてはその耐用寿
命を増大し、かつ切削抵抗を減少して、平滑性に一段と
優れた切削仕上り面を得ることを可能とする効果を奏す
る。
Effects of the Invention According to the cutting tool having the cutting edge specifications according to the present invention, as described above, compared to the conventionally known and widely used diamond cutting tool suitable for cutting Ω-3l alloys, , is used to cut the same workpiece to avoid chipping while reducing tool wear, increasing its service life, and reducing cutting resistance to obtain a cut surface with even better smoothness. It has the effect of making it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験体切削工具の逃げ面の摩耗幅の経時的変化
状態を示すグラフ、第2図は試験体切削工具の切削抵抗
の経時的変化状態を示すグラフ、第3図は試験体切削工
具による切削仕上げ面の表面粗さの変化を示すグラフで
ある。 以上 特許出願人  昭和アルミニウム株式会社 111.1
1−′、。 代理人 弁理士清水大義、、:、4..゛:、j、>、
ゝ゛パ1− Jニル・ すくt消 (A) 第3図 ;) tn削時向 (tc/s) 第1図 第2図
Figure 1 is a graph showing how the wear width of the flank face of the cutting tool under test changes over time, Figure 2 is a graph showing how the cutting resistance of the cutting tool under test changes over time, and Figure 3 shows the change over time in the wear width of the flank of the cutting tool under test. It is a graph showing a change in surface roughness of a finished surface cut by a tool. Patent applicant: Showa Aluminum Co., Ltd. 111.1
1-′,. Agent: Patent Attorney Daigi Shimizu: 4. ..゛:、j、>、
ゝ゛Pa1- J Nil Cutting (A) Fig. 3;) tn cutting direction (tc/s) Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】  ダイヤモンド又はその焼結体からなるダイヤモンド切
削工具において、その刃先形状諸元中、すくい角:5〜
30° ノーズ半径:0.2mm以上 に設定されてなることを特徴とする、アルミニウム合金
用切削工具。
[Claims] A diamond cutting tool made of diamond or a sintered body thereof, in which the rake angle is 5 to 5 among the specifications of the cutting edge shape.
A cutting tool for aluminum alloy, characterized by having a nose radius of 30°: 0.2 mm or more.
JP11205988A 1988-05-09 1988-05-09 Cutting tool for aluminium alloy Pending JPH01281803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11205988A JPH01281803A (en) 1988-05-09 1988-05-09 Cutting tool for aluminium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11205988A JPH01281803A (en) 1988-05-09 1988-05-09 Cutting tool for aluminium alloy

Publications (1)

Publication Number Publication Date
JPH01281803A true JPH01281803A (en) 1989-11-13

Family

ID=14577012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11205988A Pending JPH01281803A (en) 1988-05-09 1988-05-09 Cutting tool for aluminium alloy

Country Status (1)

Country Link
JP (1) JPH01281803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318212A (en) * 1992-05-18 1993-12-03 Nissan Motor Co Ltd Finish boring method for high-silicon aluminum bore
JP2001009602A (en) * 1999-06-28 2001-01-16 Xerox Corp Machining method for hollow cylinder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318212A (en) * 1992-05-18 1993-12-03 Nissan Motor Co Ltd Finish boring method for high-silicon aluminum bore
JP2001009602A (en) * 1999-06-28 2001-01-16 Xerox Corp Machining method for hollow cylinder
JP4624524B2 (en) * 1999-06-28 2011-02-02 ゼロックス コーポレイション Processing method of hollow cylinder

Similar Documents

Publication Publication Date Title
Ghani et al. Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool
JP3378575B2 (en) Milling cutter
JP2003311524A (en) Cemented carbide ball end mill
JP2008000885A (en) Coated milling insert
JP2005111651A (en) Tip, milling cutter, and machining method using the same
JP7142802B2 (en) Cemented carbide cutting blade
JPH01281803A (en) Cutting tool for aluminium alloy
JP4443177B2 (en) Throwaway tip
JP2005279821A (en) Throw-away tip and manufacturing method thereof
WO2010110198A1 (en) Cutting tip replacement type cutting tool
JP5612382B2 (en) Cutting insert
JP4095431B2 (en) Throwaway tip
WO2021256280A1 (en) Cemented carbide cutting blade
CN213888365U (en) MCD single crystal diamond ultra-precision milling cutter
CN213033740U (en) MCD single crystal diamond sphere mirror milling cutter
JP3298839B2 (en) Band saw
JP7142801B2 (en) Cemented carbide cutting blade
CN114472944B (en) Finishing insert for reducing tool wear
CN218487296U (en) PCD high-efficiency high-precision milling blade
JP2004098251A (en) Throw-away tip
JP4974764B2 (en) Throw away insert and cutting tool using the same
RU2201846C2 (en) Cutting tip
JPH07185908A (en) Throw away tip
JP4906690B2 (en) Throwaway tip
JP3794739B2 (en) Stainless steel broaching tool for high speed cutting