JPH0128113B2 - - Google Patents

Info

Publication number
JPH0128113B2
JPH0128113B2 JP56160598A JP16059881A JPH0128113B2 JP H0128113 B2 JPH0128113 B2 JP H0128113B2 JP 56160598 A JP56160598 A JP 56160598A JP 16059881 A JP16059881 A JP 16059881A JP H0128113 B2 JPH0128113 B2 JP H0128113B2
Authority
JP
Japan
Prior art keywords
toluene
monochlorotoluene
methyl alcohol
chloride
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56160598A
Other languages
Japanese (ja)
Other versions
JPS5861285A (en
Inventor
Yoshiharu Matsuda
Naoichi Sakota
Katsuta Nakagawa
Kenichi Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugai Chemical Industry Co Ltd
Original Assignee
Sugai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugai Chemical Industry Co Ltd filed Critical Sugai Chemical Industry Co Ltd
Priority to JP56160598A priority Critical patent/JPS5861285A/en
Publication of JPS5861285A publication Critical patent/JPS5861285A/en
Publication of JPH0128113B2 publication Critical patent/JPH0128113B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はモノクロルトルエンの製造方法に関す
る。更に詳しくはトルエンを、塩素を含む電解質
塩を用いて電解塩素化するに当たり、限られた溶
媒と塩素を含む電解質塩の組み合せによりジクロ
ロトルエンを生成させることなしに、モノクロロ
トルエンのみを製造する方法に係る。 モノクロロトルエンは染料・顔料・農薬等各種
有機化学工業の重要な原料として、或いは有機溶
剤として、多量に用いられている。現在、これら
のモノクロロトルエンはトルエンを原料として、
触媒、或いは有機溶剤の存在下で塩素を作用させ
て合成する、いわゆる化学的製造方法が主流を占
めている。例えば触媒として塩化鉄を用いる方法
(J.A.C.S 76巻5491頁 1954年)、黄鉄鉱や磁鉄鉱
などの鉄鉱石を用いる方法(特開昭50−64231)、
セレンや鉄粉を用いる方法(特公昭50−34009)、
鉄粉と硫黄化合物を用いる方法(フランス特許第
1491143〜4)等がよく知られているが、これら
の製造方法は全て有害な塩素ガスを用いる外、反
応が比較的過激なため、タール状の不明成分が生
成する副反応が進行すると同時に、目的物である
モノクロロトルエンのみの生成ではとどまらず多
量のジクロロトルエンが生成するという欠点を克
服することができない。 一方、昨今有機合成の新たな方法として注目を
集めはじめている電気化学的方法においては、一
般的に述べるならば副反応の生じにくい、選択性
の優れた方法ではあるが、電流効率があまり高く
ないために収率向上のためには理論電気量以上の
通電が行なわれることが多い。このような状況に
おいても、トルエンの電解塩素化方法として知ら
れている方法で、前述した欠点であるジクロロト
ルエンの生成が抑制された結果は未だ知られてい
ない。例えばアセトニトリル溶剤下、塩素を含む
電解質塩として塩化リチウムを、陽極金属として
白金を用いて理論電気量の2倍を通電すると10%
のジクロロ体が生体(Electro.Chim.Acta.24巻
1039頁)し、又、更に過塩素酸リチウムを加える
と、理論電気量の1.5倍の通電で50%ものジクロ
ロトルエンが生成する(同前)。 本発明者等はこれらの状況からジクロロトルエ
ンを生じさせることなしに、モノクロロトルエン
のみを選択的に製造し得る電解塩素化条件につい
て鋭意研究の結果、本発明を完成した。 即ち、本発明はトルエンを5%以下の水を含有
することもあるメチルアルコール中で、塩素を含
む電解質塩として塩化リチウム、塩化アンモニウ
ム、塩化ナトリウムのうちの1種以上を用いて、
電解塩素化することを特徴とするジクロロ化物を
生成しないモノクロロトルエンの製造方法であ
る。 電解溶剤としてメチルアルコール以外を用いた
場合、理論電気量以上通電することによつて、モ
ノクロロトルエンの収率は向上したが、同時にジ
クロロトルエン及び/又は不明成分が生成し、こ
れら副反応の抑制は外的条件の変更では不可能で
あつた。 本発明に用いられる電極材料は、一般に用いら
れるものは全て可能であるが、陽極材料として特
に好ましいものを挙げるならば、白金、黒鉛、
DSA(チタン基体の表面をルテニウム酸化物で皮
膜したもの)がある。 電解温度は常温で実施されるが、更に高温にな
つても、本発明の効果は変わることはない。しか
し、好ましくは反応中の温度変化は僅少範囲に制
御すべきである。又、陽極電圧は飽和甘汞電極に
対し、1.0及至2.5ボルト、好ましくは1.3乃至2.1
ボルトの電圧範囲がよい。溶剤としてのメチルア
ルコールに混在する水の影響は5%(容量)以下
であれば、本発明の効果を大きく削減することは
ない。又、通電量としては、トルエン1モル当
り、2乃至4フアラデー(F)の範囲で行われる。 更に付言するならば、本発明の実施における効
果として、実際の工業的方法において電解電圧を
高めることによつても、ジクロロ体を生成させる
ことなしに、モノクロロ化反応速度を早めること
ができる。 本発明の効果を更に具体的、且つ詳細に説明す
るため、以下に、実施例をあげる。 実施例 1〜9 中央にガラスフイルター隔膜を有するH型電解
槽を用い、各室に0.025モルの塩素を含む電解質
塩を30mlの溶媒(3%含水メチルアルコール)に
溶解させた溶液を入れ、陽極室には更に0.005モ
ルのトルエンを加え、恒温槽中で飽和甘汞電極に
対し、陽極の電位を一定にして電解塩素化を行つ
た。 結果については以下の表に示す。
The present invention relates to a method for producing monochlorotoluene. More specifically, when toluene is electrolytically chlorinated using an electrolyte salt containing chlorine, a method for producing only monochlorotoluene without producing dichlorotoluene by a combination of a limited solvent and an electrolyte salt containing chlorine is described. It depends. Monochlorotoluene is used in large quantities as an important raw material in various organic chemical industries such as dyes, pigments, and agricultural chemicals, or as an organic solvent. Currently, these monochlorotoluenes are produced using toluene as a raw material.
The mainstream is the so-called chemical production method, in which synthesis is performed using chlorine in the presence of a catalyst or an organic solvent. For example, a method using iron chloride as a catalyst (JACS Vol. 76, p. 5491, 1954), a method using iron ores such as pyrite and magnetite (Japanese Patent Application Laid-Open No. 1983-64231),
Method using selenium and iron powder (Special Publication No. 50-34009),
Method using iron powder and sulfur compounds (French patent no.
1491143-4) are well known, but all of these production methods use harmful chlorine gas and the reactions are relatively radical, so at the same time side reactions that produce tar-like unknown components proceed, It is not possible to overcome the drawback that not only monochlorotoluene, which is the target product, is produced, but also a large amount of dichlorotoluene is produced. On the other hand, electrochemical methods, which have recently begun to attract attention as a new method for organic synthesis, generally speaking are methods that are less likely to cause side reactions and have excellent selectivity, but their current efficiency is not very high. Therefore, in order to improve the yield, electricity is often applied in an amount greater than the theoretical amount of electricity. Even under such circumstances, the results of suppressing the production of dichlorotoluene, which is the drawback mentioned above, by the method known as the electrolytic chlorination method of toluene have not yet been known. For example, if twice the theoretical amount of electricity is applied using lithium chloride as an electrolyte salt containing chlorine and platinum as the anode metal in an acetonitrile solvent, 10%
The dichloro form of is living body (Electro.Chim.Acta.Volume 24)
(p. 1039), and when lithium perchlorate is further added, 50% of dichlorotoluene is produced by applying 1.5 times the theoretical amount of electricity (ibid.). Under these circumstances, the present inventors completed the present invention as a result of intensive research into electrolytic chlorination conditions that can selectively produce only monochlorotoluene without producing dichlorotoluene. That is, the present invention uses toluene in methyl alcohol that may contain 5% or less water, using one or more of lithium chloride, ammonium chloride, and sodium chloride as an electrolyte salt containing chlorine.
This is a method for producing monochlorotoluene that does not produce dichlorides, which is characterized by electrolytic chlorination. When using something other than methyl alcohol as the electrolytic solvent, the yield of monochlorotoluene was improved by applying more than the theoretical amount of electricity, but at the same time dichlorotoluene and/or unknown components were produced, and it was difficult to suppress these side reactions. This was not possible by changing external conditions. The electrode material used in the present invention may be any commonly used material, but particularly preferred anode materials include platinum, graphite,
There is DSA (a titanium substrate whose surface is coated with ruthenium oxide). Although the electrolysis temperature is carried out at room temperature, the effects of the present invention will not change even if the temperature is higher. However, preferably the temperature changes during the reaction should be controlled within a small range. Also, the anode voltage is 1.0 to 2.5 volts, preferably 1.3 to 2.1 volts, relative to the saturated electrode.
Good voltage range in volts. If the influence of water mixed in methyl alcohol as a solvent is 5% (by volume) or less, the effects of the present invention will not be significantly reduced. Further, the amount of current applied is in the range of 2 to 4 faradays (F) per 1 mole of toluene. Furthermore, as an effect of implementing the present invention, even by increasing the electrolytic voltage in an actual industrial method, the monochlorination reaction rate can be accelerated without producing a dichloro compound. In order to explain the effects of the present invention more specifically and in detail, examples will be given below. Examples 1 to 9 Using an H-type electrolytic cell with a glass filter diaphragm in the center, a solution of an electrolyte salt containing 0.025 mol of chlorine dissolved in 30 ml of a solvent (3% aqueous methyl alcohol) was placed in each chamber, and the anode An additional 0.005 mol of toluene was added to the chamber, and electrolytic chlorination was carried out in a constant temperature bath with the potential of the anode constant relative to the saturated Amane electrode. The results are shown in the table below.

【表】 実施例 10〜12 溶剤として1%、3%、5%の含水メチルアル
コール、塩素を含む電解質塩として塩化リチウ
ム、陽極材料として白金、電解温度を30℃とし
て、実施例1に準じて実施した。結果については
下表に示す。
[Table] Examples 10 to 12 According to Example 1, using 1%, 3%, and 5% hydrous methyl alcohol as a solvent, lithium chloride as an electrolyte salt containing chlorine, platinum as an anode material, and an electrolysis temperature of 30°C. carried out. The results are shown in the table below.

【表】 実施例 13 中央にアニオン交換膜を有するH型電解槽を用
い、陰極側に塩化ナトリウム0.0125モルを水30ml
に溶解させた溶液を入れ、陽極側に塩化リチウム
0.0125モルと、トルエン0.005モルをメチルアル
コール30mlに溶解させた溶液を入れて、30℃の恒
温槽中で飽和甘汞電極に対し陽極の電位を1.3ボ
ルトにして2.3フアラデーの電気量を通過させて
電解塩素化を行なつた。電解実験後、陽極液中に
最初溶解していたトルエンの49.6%がモノクロロ
トルエンとなつており、45.9%のトルエンが未反
応で残存していた。なおジクロロトルエンは生成
していないことをガスクロマトグラフイーで確認
した。
[Table] Example 13 Using an H-type electrolytic cell with an anion exchange membrane in the center, 0.0125 mol of sodium chloride and 30 ml of water were placed on the cathode side.
Add the solution dissolved in lithium chloride to the anode side.
A solution of 0.0125 mol of toluene and 0.005 mol of toluene dissolved in 30 ml of methyl alcohol was placed in a constant temperature bath at 30°C, and the potential of the anode was set to 1.3 volts with respect to the saturated oxidized electrode, and an amount of electricity of 2.3 fura days was passed through. Electrolytic chlorination was performed. After the electrolysis experiment, 49.6% of the toluene initially dissolved in the anolyte had become monochlorotoluene, and 45.9% of toluene remained unreacted. It was confirmed by gas chromatography that dichlorotoluene was not produced.

Claims (1)

【特許請求の範囲】[Claims] 1 トルエンを5%(容量)以下の水分を含有す
ることもあるメチルアルコール中で、塩素を含む
電解質塩として塩化リチウム、塩化アンモニウ
ム、塩化ナトリウムのうちの1種以上を用いて、
陽極電位1.0乃至2.5ボルト(対飽和甘汞電極)及
び通電量2乃至4フアラデー/モル・トルエンの
条件下に、電解塩素化することを特徴とするジク
ロロ化物を生成しないモノクロルトルエンの製造
方法。
1 Toluene in methyl alcohol that may contain 5% (by volume) or less water, using one or more of lithium chloride, ammonium chloride, and sodium chloride as an electrolyte salt containing chlorine,
A method for producing monochlorotoluene that does not produce dichlorides, characterized by carrying out electrolytic chlorination under the conditions of an anode potential of 1.0 to 2.5 volts (vs. saturated Amane electrode) and a current flow of 2 to 4 Faradays/mol of toluene.
JP56160598A 1981-10-07 1981-10-07 Chlorinating method for toluene Granted JPS5861285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160598A JPS5861285A (en) 1981-10-07 1981-10-07 Chlorinating method for toluene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160598A JPS5861285A (en) 1981-10-07 1981-10-07 Chlorinating method for toluene

Publications (2)

Publication Number Publication Date
JPS5861285A JPS5861285A (en) 1983-04-12
JPH0128113B2 true JPH0128113B2 (en) 1989-06-01

Family

ID=15718400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160598A Granted JPS5861285A (en) 1981-10-07 1981-10-07 Chlorinating method for toluene

Country Status (1)

Country Link
JP (1) JPS5861285A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165497B2 (en) * 2002-10-07 2007-01-23 E-Z-Rect Manufacturing Ltd. Track system for mobile storage apparatus
JPWO2010104028A1 (en) * 2009-03-10 2012-09-13 学校法人慶應義塾 Process for producing aromatic halogen compounds using electrolysis

Also Published As

Publication number Publication date
JPS5861285A (en) 1983-04-12

Similar Documents

Publication Publication Date Title
US4253921A (en) Electrochemical synthesis of butane-1,4-diol
US3361653A (en) Organic electrolytic reactions
JPS6328893A (en) Enhancement of purity of quaternary ammonium hydroxide
JPH04500097A (en) Improved method for producing quaternary ammonium hydroxide
US4938854A (en) Method for purifying quaternary ammonium hydroxides
JP5198457B2 (en) Improved electrochemical reduction of halogenated 4-aminopicolinic acid
CN102597328A (en) Improved silver cathode activation
JPH0128113B2 (en)
Ramaswamy et al. Electrolytically Regenerated Ceric Sulfate for the Oxidation of Organic Compounds. I. Oxidation of p-Xylene to p-Tolualdehyde
JPH01108389A (en) Production of fluorinated acrylic acid and its derivative
US3984294A (en) Electrochemical manufacture of pinacol
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
US4931155A (en) Electrolytic reductive coupling of quaternary ammonium compounds
KR910005058B1 (en) Method of p-aminophenol
US3274084A (en) Electrolytic reductive coupling process
JPH02185989A (en) Electric syntesis of aldehyde
US3627651A (en) Synthesis of n:n{40 -disubstituted bipyridylium salts
Johnson et al. The Effect of Mixing in Paired Dimerizations
US3649483A (en) Process for producing bisorganomercury compounds by the electroreduction of sulfonium compounds
JPS61238992A (en) Production of sulfonic acid group-containing diaminotriphenylmethane dye
JP2632832B2 (en) Method for producing polyfluorobenzyl alcohol
US4824533A (en) Process for preparing tetrahalopyridine
Kageyama et al. Electrolytic preparation of tetraalkylammonium bromites from the corresponding bromides.
JPH01157924A (en) Production of bromofluoromethane
JPH0160554B2 (en)