JPH01279787A - Corrosion-resistant coating - Google Patents

Corrosion-resistant coating

Info

Publication number
JPH01279787A
JPH01279787A JP5987389A JP5987389A JPH01279787A JP H01279787 A JPH01279787 A JP H01279787A JP 5987389 A JP5987389 A JP 5987389A JP 5987389 A JP5987389 A JP 5987389A JP H01279787 A JPH01279787 A JP H01279787A
Authority
JP
Japan
Prior art keywords
coating
metal
alloy
corrosive
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5987389A
Other languages
Japanese (ja)
Inventor
David J Rowcliffe
デヴイツド・ジエイ・ロウクリツフイー
Ibrahim M Allam
イブラヒム・エム・アラーム
Paul J Jorgensen
ポール・ジエイ・ヨルゲンセン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRI International Inc
Original Assignee
SRI International Inc
Stanford Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/185,087 external-priority patent/US4913980A/en
Application filed by SRI International Inc, Stanford Research Institute filed Critical SRI International Inc
Publication of JPH01279787A publication Critical patent/JPH01279787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE: To impart high corrosion resistance to a corrosive water-base medium to a metallic structure, by protectively coating a metallic structure contg. substrate metal corroded in a corrosive oxidizing environment with oxide of metallic Ti or the like.
CONSTITUTION: On the surface to be exposed to a corrosive oxidizing environment of a structure, which is the metallic one exposed to corrosive oxidizing conditions in the use and in which the greater part is composed of substrate metal to be corroded, protective coating is formed with tight adhesion. This protective coating is composed of at least one kind of oxides of metallic Ti, Zr, Ta and Nb, and e.g. in the case of TiO2, it is preferable that coating whose thickness is substantially less than about 100 micrometer is formed and Ni is not contained. In this way, the coating suitable for oxidizing treatment for contaminated industrial water can be formed.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 本願は次の我々の係属出願の一部継続である:1981
年11月27日出願S N325,504 、題名“金
属への熱障壁コーチングの適用方法および得られる生成
物”、米国特許第4,483.720号;1984年1
0月17日出願S N662,253 、題名“金属へ
のコーチング適用方法および得られる生成物°゛;19
84年10月17日出願S N662,252 、題名
“金属への硬質コーチング等の適用方法および得られる
生成物”および1987年10月21日出願S N11
l、210 、題名“金属にコーチングを適用する方法
および得られる生成物7゜ 本発明は腐蝕性水性環境にさらされる構造用鋼の腐蝕防
止方法に関する。そのような金属および条件の代表例は
工業廃水から有毒成分を除去または減少させる触媒の存
在下での該廃水の空気酸化による処理である。そのよう
な処理は構造用鋼を非常に腐蝕する。
DETAILED DESCRIPTION OF THE INVENTION This application is a continuation in part of our pending application: 1981
No. 4,483,720, filed Nov. 27, 1984, entitled "Method of Applying Thermal Barrier Coatings to Metals and Resulting Products," No. 1,984.
No. 662,253 filed on October 17, entitled “Method of applying coatings to metals and products obtained”; 19
Application S N662,252 of October 17, 1984, entitled "Method of applying hard coating etc. to metal and products obtained" and Application S N11 of October 21, 1987
1, 210, entitled "Method of Applying Coatings to Metals and Resulting Products 7" This invention relates to a method for preventing corrosion of structural steel exposed to corrosive aqueous environments. Representative examples of such metals and conditions are industrial Treatment of wastewater by air oxidation in the presence of catalysts that remove or reduce toxic components from the wastewater. Such treatment is highly corrosive to structural steel.

そのようなプロセスに使用する装置にはハステロイを使
用するのが慣例的であるが、それは非常に高価である。
It is customary to use Hastelloy for equipment used in such processes, but it is very expensive.

チタンを使用してもよいが、溶融物として適用すると、
その高融点および反応性が欠点である。
Titanium may be used, but when applied as a melt,
Its high melting point and reactivity are disadvantages.

きせ合法(タラッディング)で適用すると、タラッディ
ングは複雑な形状に適用するのが困難または不可能なの
でその使用は限られる。
When applied by the kise method (talading), its use is limited as tarading is difficult or impossible to apply to complex shapes.

高温度での酸化に対し合金を保護する酸化物被覆を与え
ることおよび/または該合金に断熱性を与えることは知
られている0例えば英国特許第1.439,947; 
1,086.708および1,396,878号参照。
It is known to provide an oxide coating that protects alloys against oxidation at high temperatures and/or provides thermal insulation properties to the alloys, eg British Patent No. 1,439,947;
See 1,086.708 and 1,396,878.

例えばガスタービンにおける高温度での酸化はより低い
温度での水性媒体中での腐蝕とは全く異なる。非常に腐
蝕性の水性媒体中の低温度腐蝕は厚い被覆を必要とせず
、均一である必要がなければ、不浸透性被覆により利益
をうる。
For example, oxidation at high temperatures in gas turbines is quite different from corrosion in aqueous media at lower temperatures. Low temperature corrosion in highly corrosive aqueous media does not require thick coatings and would benefit from impermeable coatings if uniformity is not required.

我々は二酸化チタンが、構造鋼に適当に適用されれば、
非常に腐蝕性の水性媒体中で高度の腐蝕抵抗性を提供す
ることを見出した。酸化ジルコニウム、酸化タンタルま
たは酸化ニオブのような他の金属酸化物も同様に適用し
て同様の結果を生じうる。これら酸化物の2またはそれ
以上の混合物も使用しうる。
We believe that if titanium dioxide is properly applied to structural steel,
It has been found that it provides a high degree of corrosion resistance in highly corrosive aqueous media. Other metal oxides such as zirconium oxide, tantalum oxide or niobium oxide may be applied as well to produce similar results. Mixtures of two or more of these oxides may also be used.

二酸化チタンが通用される基材金属の例は圧力容器鋼、
炭素鋼、工具鋼等である。
Examples of base metals for which titanium dioxide is commonly used are pressure vessel steel,
Carbon steel, tool steel, etc.

次の記載では二酸化チタンの適用を記載する。The following description describes the application of titanium dioxide.

上記のようにジルコニウム、タンタルまたはニオブの酸
化物も使用しうることおよび2またはそれ以上の酸化物
の混合物も使用しうることは理解されるであろう。
It will be appreciated that oxides of zirconium, tantalum or niobium may also be used, as described above, and that mixtures of two or more oxides may also be used.

チタンは鉄、ニッケルまたはコバルト、好ましくはニッ
ケル、のようなチタンを基材金属に結合するに役立つ金
属との合金の形で適用される0合金は好ましくは予め形
成されている、即ち、それはチタンと結合金属の合金と
して適用されるが、微粉砕チタンと結合金属の混合物を
適用しそして加熱してその場で合金を形成させてもよい
The titanium is applied in the form of an alloy with a metal that serves to bond the titanium to the base metal, such as iron, nickel or cobalt, preferably nickel. The alloy is preferably preformed, i.e. it is made of titanium Although applied as an alloy of pulverized titanium and bond metal, a mixture of finely ground titanium and bond metal may be applied and heated to form an alloy in situ.

適当な結合剤金属はニッケル、コバル゛ト、鋼および鉄
を含む、ニッケルが好ましい。
Suitable binder metals include nickel, cobalt, steel and iron, with nickel being preferred.

それぞれMlおよびM8で表わされるチタン(または代
替金属)と結合剤金属の割合は、Ml 90%ないし1
0%(残りはMz)の範囲であることができる、好まし
くはMlの割合は55%を越える。
The proportions of titanium (or substitute metal) and binder metal, represented by Ml and M8, respectively, range from Ml 90% to 1
Preferably the proportion of Ml is greater than 55%, which can be in the range of 0% (the remainder Mz).

百分率はすべて重量百分率である。All percentages are weight percentages.

M、とM、の合金は、金属基材を溶融合金中に浸漬する
ことにより適用することができ、または微粉末状態のM
、/M、金属合金を連発性溶剤中のスラリーの形で適用
することもできる。そのようなスラリーは米国特許4,
483,720号第41!J15〜36行に記載されて
いる。また、合金をプラズマ噴射、蒸着または火炎溶射
により適用することもできる。
The alloy of M and M can be applied by dipping the metal substrate into the molten alloy, or the alloy of M in fine powder form can be applied by dipping the metal substrate into the molten alloy.
, /M, the metal alloy can also be applied in the form of a slurry in a volatile solvent. Such slurries are disclosed in U.S. Pat.
483,720 No. 41! It is described in lines J15-36. The alloy can also be applied by plasma spraying, vapor deposition or flame spraying.

前記のようにM 1/ M z金属を、例えばスラリー
被覆法により、予め形成された合金としてまたは個々の
金属の混合物として適用することができ、加熱によりそ
の場で合金を形成させることもできる。
As mentioned above, the M 1/M z metals can be applied as preformed alloys or as mixtures of individual metals, for example by slurry coating methods, and can also be formed into alloys in situ by heating.

合金のコーチングを基材金属に適用後、それを加熱によ
り焼鈍するのが好ましい0次に焼鈍したコーチングを昇
温で選択的酸化にかけ、酸素分圧P(0りおよび温度は
、金属M+ は酸化されるが結合用金属Mlは酸化され
ないようなものである。
After applying the alloy coating to the base metal, it is preferably annealed by heating. The zero-order annealed coating is subjected to selective oxidation at elevated temperature, with the oxygen partial pressure P However, the bonding metal Ml is such that it is not oxidized.

米国特許4,483.420号に記載の手順を用いうる
The procedure described in US Pat. No. 4,483,420 can be used.

これはM+の選択的酸化を生じそしてM8例えばニッケ
ルの内層によって基材金属および中間相互作用域に結合
されたM、の酸化物例えばTi0zである外層からなる
コーチングを生ずる。
This results in selective oxidation of M+ and results in a coating consisting of an outer layer of an oxide of M, such as Ti0z, bound to the base metal and the intermediate interaction zone by an inner layer of M8, such as nickel.

代りに、合金のコーチングを例えば目的に予定された電
気化学的プロセスによってまたは使用状態によって陽極
酸化してもよい、後者の場合、合金のコーチングを有す
る金属は使用中に酸化環境にさらされ、そして金属M、
は酸化を受けるであろう。
Alternatively, the alloy coating may be anodized, for example by a purpose-designed electrochemical process or by the conditions of use, in the latter case the metal with the alloy coating is exposed to an oxidizing environment during use, and metal M,
will undergo oxidation.

即ち、合金を適用しそして次に被覆された金属を意図さ
れた目的に、例えば工業廃水の触媒の存在下での空気酸
化による処理のような工業プロセスにおける容器、管ま
たはチューブとして使用すれば足りる。これはコーチン
グを酸化にさらしてTiをT i O*に転化し、斯し
て酸化物の保護層を形成するであろう。
That is, it is sufficient to apply the alloy and then use the coated metal for its intended purpose, for example as a container, pipe or tube in an industrial process, such as the treatment of industrial wastewater by air oxidation in the presence of a catalyst. . This will expose the coating to oxidation to convert the Ti to T i O*, thus forming a protective layer of oxide.

しかし、選択的熱酸化によりチタンを二酸化チタンに酸
化するのが好ましい、そのような酸化はチタンを選択的
に酸化しそしてM8金属、および基材から抽出された鉄
をも、内部へ基材に向けて駆逐するであろう、斯してM
t金金属無いTi01の薄い外皮コーチングを適用する
ことができる。
However, it is preferred to oxidize the titanium to titanium dioxide by selective thermal oxidation; such oxidation selectively oxidizes the titanium and also transfers M8 metal, and iron extracted from the substrate, into the substrate. will drive towards M.
A thin skin coating of Ti01 without gold metal can be applied.

このようなコーチングは好ましい、何故ならば、それは
厚いコーチングよりも、コーチングと基材の熱膨張係数
の相違による破損またはスポーリングを生じ難いからで
ある。該相違は薄いコーチングにおいては厚いコーチン
グにおけるよりも破壊的でない、約100マイクロメー
ターより厚くないM1酸化物のコーチングが好ましい0
M2金属が暴露表面に不在なのも有利である。何故なら
ばそれは腐蝕性環境の攻撃を受けるからである。 Ml
が暴露表面に存在すると、この溶脱は多孔質コーチング
を生じ、それは更に攻撃を受けそして基材金属が攻撃を
受けることになる。
Such a coating is preferred because it is less prone to failure or spalling due to differences in the coefficients of thermal expansion of the coating and the substrate than thicker coatings. The difference is less destructive in thin coatings than in thicker coatings, with M1 oxide coatings no thicker than about 100 micrometers being preferred.
The absence of M2 metal from exposed surfaces is also advantageous. This is because it is attacked by a corrosive environment. Ml
If present on the exposed surface, this leaching will result in a porous coating, which will be further attacked and the base metal will be attacked.

基材金属より低い融点を有する共晶または近共晶合金を
使用して、溶融またはその他の基材表面への破壊的影響
および基材成分の保護コーチング中への望ましくない程
度の移行を避けるのが好ましい。また共晶合金はそれら
が固化する時均−組成の固相を沈着する。
Use of eutectic or near-eutectic alloys with lower melting points than the base metal to avoid melting or other destructive effects on the base material surface and undesirable degree of migration of base material components into the protective coating. is preferred. Also, eutectic alloys deposit a solid phase of uniform composition when they solidify.

適当な酸化性雰囲気はcot/co混合物でこれは高温
度で次の平衡反応を受ける。
A suitable oxidizing atmosphere is a cot/co mixture which undergoes the following equilibrium reactions at elevated temperatures.

(1)  Co□でコCot + 1/20sHオ/H
30混合物も適当でこれは高温度で次の平衡反応を受け
る。
(1) Co□dekoCot + 1/20sH O/H
30 mixtures are also suitable, which undergo the following equilibrium reactions at elevated temperatures.

(2)  HIO譚tit +1/20gしかし、好ま
しくは、酸素雰囲気は非常に少ない割合の酸素を含有す
るアルゴンのような貴ガスを使用することにより提供さ
れる。これは不所望な水素化物の生成を回避する。
(2) HIO tantit +1/20g However, preferably the oxygen atmosphere is provided by using a noble gas such as argon containing a very small proportion of oxygen. This avoids the formation of undesired hydrides.

前記のように、合金コーチングの種々の適用方法を使用
しうる。浸漬、噴射または刷毛室によるスラリーコーチ
ングが、特に大型または複雑な形状、例えば管、チュー
ブおよびタンクの内面、および反応容器に好ましいこと
が見出された。
As mentioned above, various methods of applying the alloy coating may be used. Slurry coating by dipping, spraying or brush chambers has been found to be particularly preferred for large or complex geometries, such as inner surfaces of tubes, tubes and tanks, and reaction vessels.

合金コーチングの適用およびコーチングの焼鈍は脱酸素
されたアルゴンのような不活性雰囲気中で実施するのが
好ましい。
Application of the alloy coating and annealing of the coating are preferably carried out in an inert atmosphere such as deoxygenated argon.

浸漬コーチングを用いるなら、金属を浸漬前に加熱して
合金の冷却(チリング)を回避または最小にするのが好
ましい、浸漬コーチングにおいて浸漬時間は均一でスム
ーズなコーチングを適用するに充分な長さであるが基材
から大量の金属を抽出するほど長くはないのが好ましい
If dip coating is used, it is preferable to heat the metal before dipping to avoid or minimize cooling of the alloy; in dip coating, the dipping time is long enough to apply a uniform and smooth coating. preferably, but not so long as to extract large amounts of metal from the substrate.

選択的熱酸化において使用する温度はM1以外の金属の
酸化を回避するに足る高さであるべきである。
The temperature used in selective thermal oxidation should be high enough to avoid oxidation of metals other than M1.

コーチングがスラリー法による場合には、被覆された基
材をまず加熱して溶剤を蒸発させそしてM + / M
 z合金を溶融させて連続的表面コーチングを形成させ
る0次に合金コーチングを焼鈍しそして選択的に酸化す
る。
If the coating is by a slurry method, the coated substrate is first heated to evaporate the solvent and M + /M
The zero-order alloy coating is annealed and selectively oxidized by melting the z-alloy to form a continuous surface coating.

被覆すべき表面を好ましくはコーチング前に例えばアセ
トンでの超音波洗浄により清浄にし、次に空気乾燥し、
次にHCI溶液に浸漬して表面酸化物を除去し、次に脱
イオン水で洗浄する。
The surface to be coated is preferably cleaned before coating by ultrasonic cleaning, for example with acetone, and then air dried;
It is then soaked in HCI solution to remove surface oxides and then rinsed with deionized water.

基材を溶融合金中に浸漬することによるコーチングでは
、基材の温度を溶融合金のそれにまたはその近くにもっ
ていくのが好まし0゜基材と浸漬中に溶融合金を入れて
おく容器の寸法が許すなら、これは基材を溶融合金上に
、それを合金の温度までまたはその近くまでもっていく
に充分な時間保持することによりなしうる。そのような
手順は基材からの金属の抽出を最小にする0代表的な場
合、基材を1150’Cの溶融合金上に2時間保持し、
次に合金中に15秒浸漬し、次に取出しそして溶融合金
上に3秒間保持しそして15秒間再浸漬した。
For coating by dipping the substrate into the molten alloy, it is preferred to bring the temperature of the substrate to or near that of the molten alloy. If permitted, this may be accomplished by holding the substrate over the molten alloy for a sufficient period of time to bring it to or near the temperature of the alloy. Such a procedure minimizes metal extraction from the substrate. In the typical case, the substrate is held above the molten alloy at 1150'C for 2 hours;
It was then dipped into the alloy for 15 seconds, then removed and held on the molten alloy for 3 seconds and re-dipped for 15 seconds.

次の例は本発明の詳細な説明する。温度は摂氏である。The following example provides a detailed explanation of the invention. Temperatures are in degrees Celsius.

ガス導管を除いては密閉された室中の空気をアルゴンで
置換した。温度を1000°Cまたはそれ以上に上げた
。この室は溶融した共晶合金(Ti −28,5Ni、
即ち、71.5%Tiおよび28.5Ni)を含む、百
分率はすべて重量百分率である。
The air in the chamber, which was sealed except for the gas line, was replaced with argon. The temperature was raised to 1000°C or more. This chamber contains a molten eutectic alloy (Ti-28,5Ni,
(i.e., 71.5% Ti and 28.5Ni), all percentages are weight percentages.

室を電気で加熱した。試料(1つの場合A315度素鋼
、他の場合へ612炭素鋼)を徐々に溶融合金中に下げ
、10秒間浸漬し、引出し、そして同様に浸漬しそして
再び引出した。焼鈍は試料を室中で溶融合金上に保持す
ることにより実施した。
The room was heated electrically. The samples (A315 degree plain steel in one case, 612 carbon steel in the other case) were gradually lowered into the molten alloy, dipped for 10 seconds, withdrawn, and similarly dipped and withdrawn again. Annealing was performed by holding the sample above the molten alloy in a chamber.

被覆された試料を浸漬室から取出しそして他の室に入れ
てそこで酸素をIQ−16気圧の分圧で含有するアルゴ
ンの雰囲気に5時間さらした。
The coated samples were removed from the immersion chamber and placed in another chamber where they were exposed to an atmosphere of argon containing oxygen at a partial pressure of IQ-16 atmospheres for 5 hours.

l  好棗シ公浸1工皿 例1に記載の浸漬装置中で、試料を1150”CのTI
 28.5Ni合金の溶融物上で2時間保持し、次に1
5秒間浸漬し、次に取出しそして溶融物上で1時間まで
の時間焼鈍し、次に炉を室温に冷却した。酸素分圧は1
04S気圧以下に維持した。
1. In the immersion apparatus described in Example 1, the sample was heated to a TI of 1150"C.
28.5Ni alloy melt for 2 hours, then 1
Immersed for 5 seconds, then removed and annealed on the melt for up to 1 hour, then the furnace was cooled to room temperature. Oxygen partial pressure is 1
The pressure was maintained below 04S atmospheric pressure.

このようにして被覆された試料の検査は4つの明確な領
域を次の順序で示した:(1)fil基材;(2)無パ
ーライト域;(3)相互作用域および(4)浸漬被y1
層。
Examination of samples coated in this way showed four distinct areas in the following order: (1) fil substrate; (2) pearlite-free area; (3) interaction area and (4) dip coating. y1
layer.

貫裏 下記第1表はT i −N i合金でそれぞれ被覆され
た2つの型の鋼の腐蝕の結果を示す0文字“0”および
“D”はそれぞれコーチングの熱酸化および浸漬コーチ
ングのままを示す、即ち、゛O″コーチングは1150
°Cで浸漬しそしてp(Ox)10−’蟲気圧で100
0’Cで20時間酸化したものであり、一方″D”コー
チングは1150°Cで浸漬したが他の点では未処理の
ものである。
Table 1 below shows the corrosion results of two types of steel respectively coated with Ti-Ni alloys. The letters "0" and "D" represent the thermal oxidation of the coating and the as-is dip coating, respectively. i.e. ``O'' coaching is 1150
immersed at °C and p(Ox) 10-' 100 at
The "D" coating was oxidized for 20 hours at 0'C, while the "D" coating was soaked at 1150C but otherwise untreated.

水性試験溶液は次の通りである: (1) 0.01  N MCI + 0.099 M
 NaC1(2)中性水中の0.I M NaxS*0
s(3) 0.1 M N13  +硫黄(4)中性水
中の0.1 M Na5CN(以下余白) 肛 サイクル腐蝕試験を同様の被覆鋼試料で例3のHCI/
KCI溶液を使用しておよびまたPH1O,5のNH,
OH溶液を使用して実施した。試験は被覆試料をオート
クレーブ中で270@と100 ’Cの間で20サイク
ルにかけることを含んだ、各サイクルの加熱部(100
°Cから270 ’Cへ)は約30分かかり、そしてサ
イクルの冷却部(熱源のスイッチ切により始まる)は約
5時間であった。
The aqueous test solution is as follows: (1) 0.01 N MCI + 0.099 M
NaCl (2) 0.0 in neutral water. I M NaxS*0
s (3) 0.1 M N13 + Sulfur (4) 0.1 M Na5CN in neutral water (blank below) An annular cycle corrosion test was performed on a similar coated steel sample using the HCI/
using KCI solution and also PH1O,5NH,
Performed using OH solution. The test involved subjecting the coated sample to 20 cycles between 270 and 100'C in an autoclave, with a heating section (100'C) for each cycle.
°C to 270'C) took about 30 minutes, and the cooling part of the cycle (starting with switching off the heat source) was about 5 hours.

結果を第2表に示す。The results are shown in Table 2.

(以下余白) 前述のように、コーチングの金属M1の選択的熱酸化に
おいて、温度および酸素分圧は金属M1だけの酸化物が
生成するように選ぶべきである。
(Left below) As described above, in the selective thermal oxidation of the metal M1 of the coating, the temperature and oxygen partial pressure should be selected so that an oxide of only the metal M1 is produced.

添付図にはニッケル酸化物(NjO)、鉄酸化物(Fe
d)およびチタン酸化物(T i Ot )の安定性が
示されている。N軸は酸素圧力の対数を表わし、横軸は
温度を表わす0例として、チタン/ニッケル合金のコー
チング中に鉄が不在と仮定しておよび鉄のような他のよ
りノーブルな金属がコーチング中に存在しないと仮定し
て、500 ’Cでは約10−”3気圧以下の酸素分圧
は酸化ニッケルが生成しないことおよび生成する唯一の
酸化物はTtOzであろうことを保証するが、一方10
00’Cでは約10−16気圧の酸素分圧で事は足りる
であろう0図の曲線は利用しうる熱力学的データに基い
ておりそして概略の指標として役立たせることを意図す
るものである。鉄が、例えばコーチング合金の固化前に
それにより基材から抽出される故に存在しそうなら、F
eOの曲線も考慮すべきである。FeTiOsのような
他の酸化物も存在しうる、それでも、図の曲線は指標と
して有用である。
The attached diagram shows nickel oxide (NjO) and iron oxide (Fe).
d) and the stability of titanium oxide (T i Ot ). The N-axis represents the logarithm of the oxygen pressure and the horizontal axis represents the temperature.As an example, assuming the absence of iron during the coating of titanium/nickel alloys and other more noble metals such as iron during the coating. Assuming no oxygen is present, an oxygen partial pressure of less than about 10-3 atmospheres at 500'C will ensure that no nickel oxide will form and that the only oxide that will form will be TtOz, whereas 10
At 00'C, an oxygen partial pressure of about 10-16 atm would suffice.The curves in Figure 0 are based on available thermodynamic data and are intended to serve as a rough guide. . If iron is likely to be present, e.g. because it is extracted from the substrate before solidification of the coating alloy, then F
The eO curve should also be considered. Other oxides such as FeTiOs may also be present, but the curves in the figure are nevertheless useful as an indicator.

温度およびp(Ox)の選択は十分に図によって示され
る範囲内であるべきである。
The selection of temperature and p(Ox) should be well within the ranges indicated by the diagram.

従って、腐蝕性酸化性環境中で腐蝕抵抗性の新規且つ有
用な保護コーチングが金属例えば構造鋼に提供されたこ
とおよび新規且つ有用な該コーチング製造法が提供され
たことは明らかであろう。
It should therefore be apparent that there has been provided a new and useful protective coating for metals, such as structural steel, that is resistant to corrosion in corrosive oxidizing environments, and that there has been provided a new and useful method of making the coating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はニッケル、鉄およびチタンの酸化物の安定性を
示す線図である。 代理人の氏名   川原1)−穂 300   4oo   si    700   1
000    2000う1曳(6C〕
FIG. 1 is a diagram showing the stability of oxides of nickel, iron and titanium. Agent's name Kawahara 1) - Ho 300 4oo si 700 1
000 2000 U1 Hiki (6C)

Claims (13)

【特許請求の範囲】[Claims] (1)使用中に腐蝕性且酸化性条件にさらされることが
意図される金属構造物であって、該構造物は構造物の大
部分を形成しそして意図される使用条件下で通常腐蝕さ
れる基材金属を含み、該構造物は腐蝕性酸化性環境にさ
らされる表面上に保護コーチングを有し、該コーチング
は金属チタン、ジルコニウム、タンタルおよびニオブの
うちの少なくとも1種の酸化物であり、該コーチングは
基材に密着しそして水溶液の腐蝕性成分に対する障壁を
提供する前記金属構造物。
(1) A metal structure that is intended to be exposed to corrosive and oxidizing conditions during use, the structure forming a major part of the structure and normally corroding under the intended use conditions. the structure has a protective coating on the surface exposed to the corrosive oxidizing environment, the coating being an oxide of at least one of the metals titanium, zirconium, tantalum and niobium; , the metal structure wherein the coating adheres to the substrate and provides a barrier to corrosive components of the aqueous solution.
(2)基材金属が合金鉄である特許請求の範囲第1項記
載の構造物。
(2) The structure according to claim 1, wherein the base metal is a ferroalloy.
(3)基材金属が構造鋼でありそして構造物が汚染され
た工業用水の酸化処理における使用に適当であり且意図
される特許請求の範囲第2項記載の構造物。
(3) A structure according to claim 2, wherein the base metal is structural steel and the structure is suitable and intended for use in the oxidation treatment of contaminated industrial water.
(4)金属酸化物がTiO_2である特許請求の範囲第
3項記載の構造物。
(4) The structure according to claim 3, wherein the metal oxide is TiO_2.
(5)TiO_2が約100マイクロメーターより実質
的に厚くないコーチングを形成しそしてよりノーブルな
金属を実質的に含まない特許請求の範囲第4項記載の構
造物。
5. The structure of claim 4 wherein the TiO_2 forms a coating substantially no thicker than about 100 micrometers and is substantially free of nobler metals.
(6)TiO_2の薄いコーチングがよりノーブルな金
属によって基材に結合されている特許請求の範囲第5項
記載の構造物。
6. The structure of claim 5, wherein the thin coating of TiO_2 is bonded to the substrate by a nobler metal.
(7)該よりノーブルな金属がニッケルである特許請求
の範囲第6項記載の構造物。
(7) The structure according to claim 6, wherein the nobler metal is nickel.
(8)腐蝕性酸化性水性環境にさらされることが意図さ
れる金属構造物の表面に保護コーチングを適用する方法
であって、該方法は (a)該表面にM_1、とM_2の合金または物理的混
合物を通用し、M_1は金属チタン、ジルコニウム、タ
ンタルおよびニオブの少なくとも1種であり、M_2は
M_1より熱安定性の低い酸化物を生ずる金属であり、
そしてM_1とM_2が物理的混合物であるなら適用さ
れたコーチングを加熱して金属を溶融させ、(b)次に
M_2の実質的酸化無しにコーチングのM_1成分の酸
化を起こさせること、 を含む前記適用方法。
(8) A method of applying a protective coating to the surface of a metal structure intended to be exposed to a corrosive oxidizing aqueous environment, the method comprising: (a) applying an alloy or physical coating of M_1 and M_2 to the surface; M_1 is at least one of the metals titanium, zirconium, tantalum and niobium; M_2 is a metal that produces an oxide with lower thermal stability than M_1;
and (b) heating the applied coating to melt the metal if M_1 and M_2 are a physical mixture, and then causing oxidation of the M_1 component of the coating without substantial oxidation of M_2. Method of applying.
(9)M_1およびM_2金属を溶融合金の形で適用す
る特許請求の範囲第8項記載の方法。
(9) A method according to claim 8, in which the M_1 and M_2 metals are applied in the form of molten alloys.
(10)M_1およびM_2金属を揮発性液体中に分散
された微粉砕状態で用い、液体を蒸発させそして得られ
るM_1/M_2コーチングを加熱してM_1/M_2
合金を金属構造物の表面に適用する特許請求の範囲第8
項記載の方法。
(10) Using the M_1 and M_2 metals in a finely divided state dispersed in a volatile liquid, evaporating the liquid and heating the resulting M_1/M_2 coating to
Claim 8, in which the alloy is applied to the surface of a metal structure
The method described in section.
(11)合金コーチングを適用した後且それを酸化する
前にそれを焼鈍する特許請求の範囲第9または10項記
載の方法。
(11) A method according to claim 9 or 10, wherein the alloy coating is annealed after it is applied and before it is oxidized.
(12)合金コーチングを、M_2成分を酸化すること
なくM_1成分を酸化する選択的熱酸化にかける特許請
求の範囲第8項記載の方法。
(12) The method of claim 8 in which the alloy coating is subjected to selective thermal oxidation that oxidizes the M_1 component without oxidizing the M_2 component.
(13)合金コーチングをその意図された使用中の環境
により酸化する特許請求の範囲第8項記載の方法。
(13) A method according to claim 8, wherein the alloy coating is oxidized by the environment during its intended use.
JP5987389A 1988-04-22 1989-03-14 Corrosion-resistant coating Pending JPH01279787A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US185,087 1988-04-22
US07/185,087 US4913980A (en) 1981-11-27 1988-04-22 Corrosion resistant coatings

Publications (1)

Publication Number Publication Date
JPH01279787A true JPH01279787A (en) 1989-11-10

Family

ID=22679538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5987389A Pending JPH01279787A (en) 1988-04-22 1989-03-14 Corrosion-resistant coating

Country Status (1)

Country Link
JP (1) JPH01279787A (en)

Similar Documents

Publication Publication Date Title
US4913980A (en) Corrosion resistant coatings
CA1198128A (en) Protective aluminum-silicon coating composition for metal substrates
US5035957A (en) Coated metal product and precursor for forming same
US4369233A (en) Process to apply a protecting silicon containing coating on specimen produced from superalloys and product
EP0510950B1 (en) Treatment of sintered alloys
US4935073A (en) Process for applying coatings of zirconium and/or titantuim and a less noble metal to metal substrates and for converting the zirconium and/or titanium to an oxide, nitride, carbide, boride or silicide
US4266987A (en) Process for providing acid-resistant oxide layers on alloys
US4943485A (en) Process for applying hard coatings and the like to metals and resulting product
JPS6039173A (en) High temperature protecting layer
US4055706A (en) Processes for protecting refractory metallic components against corrosion
EP0294558B1 (en) Method for treating stainless steel surface by high temperature oxidation
Miller et al. Development of oxidation resistance of some refractory metals
Shirvani et al. The role of silicon on microstructure and high temperature performance of aluminide coating on superalloy In-738LC
US3443978A (en) Method of coating metals with a silicide layer and an outer layer of aluminasilicate
US4857116A (en) Process for applying coatings of zirconium and/or titanium and a less noble metal to metal substrates and for converting the zirconium and/or titanium to a nitride, carbide, boride, or silicide
US3047419A (en) Method of forming titanium silicide coatings
JPH01279787A (en) Corrosion-resistant coating
US3263325A (en) Method of coating and bonding refractory-base-metal articles
US4715902A (en) Process for applying thermal barrier coatings to metals and resulting product
JPS62500574A (en) Method of applying coatings to metals and products obtained thereby
JPS5934230B2 (en) Metal surface treatment method
US3800406A (en) Tantalum clad niobium
US5015535A (en) Article formed from a low carbon iron alloy having a corrosion resistant diffusion coating thereon
US3186070A (en) Protective coatings and process for producing the same
US4654237A (en) Process for chemical and thermal treatment of steel workpieces