JPH01279433A - Optical pickup - Google Patents

Optical pickup

Info

Publication number
JPH01279433A
JPH01279433A JP63107575A JP10757588A JPH01279433A JP H01279433 A JPH01279433 A JP H01279433A JP 63107575 A JP63107575 A JP 63107575A JP 10757588 A JP10757588 A JP 10757588A JP H01279433 A JPH01279433 A JP H01279433A
Authority
JP
Japan
Prior art keywords
light
incident
diffraction grating
recording medium
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63107575A
Other languages
Japanese (ja)
Inventor
Shingo Ishihara
石原 真悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63107575A priority Critical patent/JPH01279433A/en
Publication of JPH01279433A publication Critical patent/JPH01279433A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain small size and light weight for an optical pickup by adopting the constitution so that beam shaping and beam separation are implemented by one diffraction grating. CONSTITUTION:A light L1 radiated from a light source 1 is collimated into a collimated light L2 by a collimate lens 2. In this case, the intensity distribution of the collimated light L2 is elliptic. The collimated light L2 is made incident in a diffraction grating 8, the collimated light L2 is diffracted with a high efficiency and becomes an incident light L3 to an objective lens 6. The incident light L3 has a circular intensity distribution. The incident light L3 passes through a pi/4 plate 5 and the objective lens 6 and is focused on the optical disk 9. In this case, the incident light L3 is converted into a circularly polarized light L4. A reflected light L5 including the information from the disk 9 passes through the pi/4 plate 5 and is converted again into a linearly polarized light L6 and made incident in the grating 8. In this case, the diffraction efficiency of the incident light 6 at the grating 8 is low in the direction of polarization, the incident light L6 passes through the grating 8 without any modification and is led to a photodetector 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ディスク等の情報記録媒体との間で情報の
記録あるいは再生を行う為の光ピックアップに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical pickup for recording or reproducing information from or to an information recording medium such as an optical disk.

〔従来の技術〕[Conventional technology]

光ディスクの記録、再生に用いられる従来の光ピックア
ップは、第6図に示す様に、半導体レー9#1、コリメ
ートレンズ2、プリズム3、ビームスグリツタ4、四分
の一波長板(以下、λ/4板と略す)5、対物レンズ6
、光検知器7等からなる。
A conventional optical pickup used for recording and reproducing optical discs, as shown in FIG. /4 plate) 5, Objective lens 6
, a photodetector 7, etc.

光源1から発射され、コリメートレンズ2により平行光
に変換でれた光は長円形の強度分布を示す、7′リズム
3は、光の屈折によシ、長円形の光の強度分布を円形に
整形する。ビームスプリッタ4は、偏光の状態によシ元
をほぼ100%透過あるいは反射する特性を持っておシ
、光源からの光と、λ/4板により偏光状態を変換され
た光ディスクからの反射光との分離ヲ行なう。
The light emitted from the light source 1 and converted into parallel light by the collimating lens 2 exhibits an elliptical intensity distribution. 7' Rhythm 3 changes the intensity distribution of the elliptical light into a circular one due to the refraction of the light. Shape. The beam splitter 4 has the property of transmitting or reflecting almost 100% of the source depending on the state of polarization, and splits the light from the light source and the reflected light from the optical disk whose polarization state has been converted by the λ/4 plate. Perform the separation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の光ピックアラ7″は、光の強度分布の長
円形から円形への整形および半導体レーデからの光と元
ディスクからの反射光の分離のために、複数のガラス裂
プリズムを有し、かつそれらを空間中に配置する必要が
ある。この複数のガラス部品の為、装置の小型化、軽量
化が困難であシ、製造工程も長くなり、高コストとなる
。また各部品の相互位置の調整が煩雑という問題があっ
た。
The conventional optical pick-up device 7'' described above has a plurality of glass-split prisms in order to shape the light intensity distribution from an oval to a circular shape and to separate the light from the semiconductor radar and the reflected light from the original disk. Moreover, it is necessary to arrange them in a space. Because of these multiple glass parts, it is difficult to make the device smaller and lighter, and the manufacturing process becomes longer and higher cost. Also, the mutual position of each part is difficult to make. There was a problem that the adjustment was complicated.

本発明は、上記従来の問題点全解決し、ビーム整形とビ
ームの分離を一枚の回折格子で行う小型、軽量でしかも
製造が谷易な光ピックアラ7′Jを提供する事を目的と
する。
The present invention aims to solve all of the above-mentioned conventional problems and to provide an optical pick-up device 7'J that is small, lightweight, and easy to manufacture, in which beam shaping and beam separation are performed using a single diffraction grating. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、光源と、前記光源からの発散光を平行光に変
えるコリメートレンズと、前記コリメートレンズからの
光の強度分布音長円形から円形に整形し且つ光の偏光状
態の違いにより前記コリメートレンズから情報記録媒体
へ回かう光と前記情報記録媒体からの反射光とを分離す
る回折格子と、前記情報記録媒体からの反射光の偏光状
態を入射時と偏光面が90°回転した直線偏光に変える
〔作用〕 透過形の回折格子は、その周期を適正に選ぶと入射波の
偏光の状態に応じて、回折効率が大きくできる。この現
像を、光の分離に用いる。
The present invention provides a light source, a collimating lens that converts diverging light from the light source into parallel light, and a collimating lens that shapes the intensity distribution of the light from the collimating lens from an oval to a circular shape and using a difference in the polarization state of the light. a diffraction grating that separates the light circulating from the information recording medium to the reflected light from the information recording medium, and the polarization state of the reflected light from the information recording medium to linearly polarized light whose polarization plane is rotated by 90 degrees from the time of incidence. Changing [Effect] If the period of a transmission type diffraction grating is appropriately selected, the diffraction efficiency can be increased depending on the state of polarization of the incident wave. This development is used for light separation.

光源からの光を、回折格子へ入射させる時には、筒幼率
の回折がおこる偏光状態を選ぶ事で、回折を発生させ、
光の進行方向を変え、これにより、光の強度分布を長円
形から円形へ整形する。回折格子の周期、光源からの光
の回折格子への入射角、回折光の出射角を選ぶ事で、円
形の強度分布’thつ光を作れる。また回折格子の溝の
深さを選ぶ事で、高い回折効率も得られる。次に、光デ
ィスクからの反射光が、回折格子へ入射する時VCに、
偏光状態を選ぶ事で、光が回折音はとんど起さず、回折
格子で方向を変えずに、透過して行く様にできる。これ
により、光ディスクからの反射光を、光源刀≧らの光と
分離して、光検知器へ導く事ができる。
When light from a light source is incident on a diffraction grating, diffraction is generated by selecting a polarization state that causes diffraction of the cylindrical index.
The direction of light travel is changed, thereby shaping the light intensity distribution from an oval to a circle. By selecting the period of the diffraction grating, the angle of incidence of light from the light source on the grating, and the output angle of the diffracted light, a circular intensity distribution of light can be created. High diffraction efficiency can also be obtained by selecting the depth of the grooves in the diffraction grating. Next, when the reflected light from the optical disk enters the diffraction grating, it becomes VC.
By selecting the polarization state, the light can be transmitted through the diffraction grating without causing any diffraction sound and without changing its direction. This makes it possible to separate the reflected light from the optical disc from the light from the light source and guide it to the photodetector.

〔実施例〕〔Example〕

以下、本発明の実施例を、図面を参照しながら説明する
。第1図および第2図において、要部は、光@1、コリ
メートレンズ2、ビームスグリツタ10、λ/4板5、
対物レンズ6、光検知器7、で構成されている。
Embodiments of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, the main parts are a light @ 1, a collimating lens 2, a beam sinter 10, a λ/4 plate 5,
It is composed of an objective lens 6 and a photodetector 7.

光源1は、半導体レーデ、あるいはHe−Neレーデの
F、yなガスレーでか好ましい。特に半導体レーずはガ
スレーずに比べて小型で光ピックアップ全体の小型化の
為に好ましい。七の出射光に、第5図に示す様に、長円
形の強度分布であり、その偏光方向は強度分布の長円の
竹輪方向と平行となる。
The light source 1 is preferably a semiconductor radar or a He-Ne radar F,y gas ray. In particular, semiconductor lasers are smaller than gas lasers and are preferable for downsizing the entire optical pickup. As shown in FIG. 5, the output light of No. 7 has an oval intensity distribution, and its polarization direction is parallel to the bamboo ring direction of the oval of the intensity distribution.

コリメートレンズ2は通常のガラスレンズ、7し洋ルレ
ンズ、あるいはホログラム素子などが利用され、光源1
との距l@全焦点距啼にツーることにより、光源1から
の発散光を平行光に変える。その際に、コリメートレン
ズ2の焦点距離fc、光源1の出射光のビームの広がり
角を第6図に示す様に、それぞれθ↓ θ11って表わ
すと、コリメートレンズ2ft通過した平行光の強度分
布の長円の長軸径を上、短軸径tl+ はそれぞれ、I
J+−fc Htaneよ LH−fc ・tane11・ の関係が成立する。
The collimating lens 2 is a normal glass lens, a Western-style lens, or a hologram element.
By changing the distance l@total focal length from the light source 1 to the total focal length, the diverging light from the light source 1 is changed into parallel light. At that time, if the focal length fc of the collimating lens 2 and the spread angle of the beam of the light emitted from the light source 1 are expressed as θ↓ θ11, as shown in Figure 6, then the intensity distribution of the parallel light passing through the collimating lens 2ft is The upper and shorter axis diameters of the ellipse are I
The relationship J+-fc Htane to LH-fc ・tane 11 ・ is established.

回折格子8は、光の強度分布の整形、及び光源1からの
光と光ディスクからの分1lfliヲ行なうもので、レ
ーデ光の波長に対してl/2倍から1倍の周期を待ち、
電子ビームにより電子線レジストに描画されたもの、ホ
ログラフの手法によりホトレジストに作製されたもの、
あるいは上記の手段で作製されたレジストパターンをマ
スクとしてエツチングによう基板に転写されたもの、あ
るいは上記の手法によシ作製された回折格子を原盤とし
て射出成形法で複層されたものが用いられる。
The diffraction grating 8 shapes the intensity distribution of the light and separates the light from the light source 1 and the optical disk, and waits for a period of 1/2 to 1 times the wavelength of the LED light.
Those drawn on electron beam resist using an electron beam, those created on photoresist using holographic techniques,
Alternatively, a resist pattern prepared by the above method may be used as a mask and transferred onto a substrate by etching, or a multilayer structure may be used by injection molding using a diffraction grating prepared by the above method as a master. .

第3図に示されるように、強度分布の整形率の関係は、
半導体レーデから入射する光の入射角、回折格子で回折
した光の出射角から決まる。回折格子の周期が一定の時
には、入射角と出射角の関係は回折関係よシ求まる。又
、それとは別に、光源の特性によって決まる長円形の光
のジ匣分布を円形にすることから、必要な入射角と出射
角の関係が求する。
As shown in Figure 3, the relationship between the shaping rate of the intensity distribution is as follows:
It is determined by the incident angle of the light incident from the semiconductor radar and the exit angle of the light diffracted by the diffraction grating. When the period of the diffraction grating is constant, the relationship between the incident angle and the output angle can be determined from the diffraction relationship. Separately, since the oval light distribution determined by the characteristics of the light source is made circular, the necessary relationship between the incident angle and the output angle can be determined.

第4図に示されるように、回折格子8の溝の方向と、入
射光の偏光の方向を一致させる(S偏向)と高い回街効
率を示し、入射した光のほとんどは、方向を変えて出射
していく。この時、入射光の波長λ、回折格子のピッチ
41人射光の入射角θ1、出射光の出射角θ。とすると
、 sin  θ1  +  sin  θ。 = λ /
 dの関係が成立する。又、光軸と、回折格子の法線が
作る平面内の、入射時のビーム径D1、出射時のビーム
径り。と1−ると、 cosσ0/ Cogθj = Do/ Djとなる。
As shown in Fig. 4, when the direction of the grooves of the diffraction grating 8 matches the direction of polarization of the incident light (S polarization), high polarization efficiency is exhibited, and most of the incident light changes its direction. It emits light. At this time, the wavelength λ of the incident light, the pitch 41 of the diffraction grating, the incident angle θ1 of the human incident light, and the output angle θ of the emitted light. Then, sin θ1 + sin θ. = λ /
The relationship d holds true. Also, the beam diameter D1 at the time of incidence and the beam diameter D1 at the time of exit in the plane formed by the optical axis and the normal line of the diffraction grating. and 1-, cosσ0/Cogθj = Do/Dj.

光軸を含む上記の面に垂直な面内のビーム径は回折格子
を通過しても変わらない。従って、回折格子の溝の方向
と、入射光の偏光方向を一致させ、かつ入射角θ0、出
射角θ。を、cos tJ(3/ cosθi −Do
 / Di −zll/LLとなる様、回折格子全配置
する事で、効率良く回折せしめ、ビームの方向を変え、
かつ強度分布を長円形から円形へ整形する事ができる。
The beam diameter in a plane perpendicular to the above-mentioned plane containing the optical axis does not change even after passing through the diffraction grating. Therefore, the direction of the grooves of the diffraction grating is made to match the polarization direction of the incident light, and the incident angle is θ0 and the output angle is θ. , cos tJ(3/cosθi −Do
/ Di -zll/LL By arranging all the diffraction gratings, efficient diffraction is achieved, the direction of the beam is changed,
Moreover, the intensity distribution can be shaped from an oval to a circle.

↓/4λ板5は、主軸方向を入射光の偏光面と45°ず
らして、回折格子8と光ディスク9の間に配置され、直
線偏光である入射光を円偏光に変え、光ディスク9から
の反射光の偏光状態を円偏光から直線偏光に戻し、これ
によって回折格子8の光源側から入射する光と、光デイ
スク9側から入射する光の偏光状態t90’回転させる
The ↓/4λ plate 5 is arranged between the diffraction grating 8 and the optical disk 9 with its principal axis direction shifted by 45 degrees from the polarization plane of the incident light, and converts the linearly polarized incident light into circularly polarized light, which is reflected from the optical disk 9. The polarization state of the light is returned from circular polarization to linear polarization, thereby rotating the polarization states t90' of the light entering from the light source side of the diffraction grating 8 and the light entering from the optical disk 9 side.

対物レンズ6はi/4λ板5と元ディスク9との間で、
元ディスク9との間隔をその焦点距離にして配置されて
いる。
The objective lens 6 is located between the i/4λ plate 5 and the original disk 9,
It is arranged with the distance from the original disk 9 as its focal length.

光ディスク9からの反射信号(RF倍信号およびエラー
信号を検出する光検知器7としてはグレーディングカッ
プラーと光導波路とホトダイオードが一体となった光I
Ci利用したもの、おるいは工2−検出法としてブツシ
ュゾル法や臨界角法、ナイフェツジ法等全利用したもの
を用いるが挙げられる。特に装置全体の軽量、小型化に
il″lr、元ICを用いるのが好ましい。
The photodetector 7 that detects the reflected signal (RF multiplied signal and error signal) from the optical disk 9 is an optical I which is integrated with a grading coupler, an optical waveguide, and a photodiode.
Examples include those that utilize Ci, and those that utilize all of them, such as the Bushzol method, the critical angle method, and the Naifezi method, as two-detection methods. In particular, it is preferable to use il''lr or original IC in order to reduce the weight and size of the entire device.

光源1から光検知器7に至る光の牟動をまとめると、光
源1から出射した光L1は、コリメートレンズ2により
平行光L2に変換される。その際に、半導体レーデすな
わち光源1の特性よジ、平行光L2の強度分布に、長円
形をしている。平行光L2は、回折格子8へ入射するが
、この時平行光L2の偏光の方向に、回折格子8の溝の
方向と平行にしである為、平行光L2は高効率で回折さ
れ、進行方向が変わシ、対物レンズ6への入射光L6と
なる。入射光L6は、進行方向が変わったため、円形の
強度分布全潰している。入射光L6は、λ/4板5、対
物レンズ6を通過して、光デイスク9上で焦点を結ぶ。
To summarize the movement of light from the light source 1 to the photodetector 7, light L1 emitted from the light source 1 is converted into parallel light L2 by the collimating lens 2. At this time, due to the characteristics of the semiconductor radar, that is, the light source 1, the intensity distribution of the parallel light L2 has an oval shape. The parallel light L2 is incident on the diffraction grating 8, but at this time, since the direction of polarization of the parallel light L2 is parallel to the direction of the grooves of the diffraction grating 8, the parallel light L2 is diffracted with high efficiency, and the traveling direction changes and becomes incident light L6 to the objective lens 6. Since the traveling direction of the incident light L6 has changed, the circular intensity distribution has completely collapsed. The incident light L6 passes through the λ/4 plate 5 and the objective lens 6, and is focused on the optical disk 9.

その際にL3は、λ/ 44板5t−通る事によって直
線偏光から、円偏光の光L4へと変わる。光ディスク9
からの情報を含んだ反射光L5は、L4と同じ円偏光で
あるが、λ/4ri14ffi通過する事で、再度、直
線偏光L6に変換さn回折格子8へ入射する。その際に
回折格子8への入射光L6の偏光の方向は、回折格子8
の溝の方向と重文する方向となっているため、入射光L
6の回折格子8での回す効率か低く、入射光L6は回折
格子8をそのまま透過し、光検知器17へ導かれる。
At this time, the light L3 changes from linearly polarized light to circularly polarized light L4 by passing through the λ/44 plate 5t. optical disc 9
The reflected light L5 containing information from the ray L4 is the same circularly polarized light as L4, but by passing through λ/4ri14ffi, it is converted into linearly polarized light L6 again and enters the n diffraction grating 8. At that time, the polarization direction of the incident light L6 to the diffraction grating 8 is
Since the direction is important to the direction of the groove, the incident light L
The rotation efficiency of the diffraction grating 8 of 6 is low, and the incident light L6 passes through the diffraction grating 8 as it is and is guided to the photodetector 17.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、光の強度分布の整形、及び半導体レ
ーずからの光と、光ディスクからの反射光の分離の機能
を、従来の光ピックアップでは複数のプリズム全使用し
ていたものを、本発明では1枚の回折格子で実現したの
で、光ピックアップの小型軽量化が可能となり、部品点
数が減少したので、低価格化も達成されるとともに、精
度も向上した。
As explained above, the function of shaping the light intensity distribution and separating the light from the semiconductor laser and the reflected light from the optical disk has been improved from the conventional optical pickup that uses multiple prisms. In the invention, since this was realized using a single diffraction grating, it became possible to make the optical pickup smaller and lighter, and the number of parts was reduced, resulting in lower costs and improved accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の基本栴成を示す斜視図、第
2図は上記実施例の模式断面図、第3図は回折格子の周
期によシ決まる入射角と出射角の関係、及び入射角と出
射角より決まるビーム整形率を示すグラフ、第4図は入
射光の波長と回折格子の周期との比と回折効率との関係
?示すグラフ、第5図μ半導体レーずの出射光の強度分
布を示す斜視図、第6図は従来の光ピックアップの光学
系の例を示″を概略構成図である。 1・・・光tメ 2・・・コリメートレンズ、3・・・
プリズム4・・・ビームスプリッタ 5・・・λ/4板
 6・・・対物レンズ 7・・・光検知器 8・・・回
折格子 9・・・元ディスク 10・・・ビームスグリ
ツタ 特許出願人 旭化成工業株式会社 第 1 図 第2図 第3図 第4図 」1尤のJ−W回折梧+の周期 第5図 R1 □ 第6図 手続補正書(自発) 昭和63年8月17 日 特許庁長官 吉 1)文 毅 殿 1、事件の表示 昭和63年特許願第107575号 26発明の名称 3、補正をする者 事件上の関係  特許出願人 大阪府大阪市北区堂島浜1丁目2番6号5、補正の対象 明細書の「発明の詳細な説明」の欄 6、補正の内容 1、明細書第2頁第8行の「スプリッタ4」を「スプリ
ッタ10」に訂正する。 2、明細書第5頁第4〜5行の「ビームスプリッタ10
Jを「回折格子8」に訂正する。 3、明細書第5真下より3行目の「第6図」を「穿5図
」に訂正する。 4、明細書第6頁第6行の「光ディスクからの分顯を「
光ディスクからの反射光の分離」に訂正する5、明細書
第8真下より4行目の「ものを用いる力挙げJを「もの
が挙げ」に訂正する。 6、明細書第9真下より5行目の「14」を「5」に訂
正する。 7、明細書第10頁第2行の「17」を「7」に君−正
する。 以1
Fig. 1 is a perspective view showing the basic construction of an embodiment of the present invention, Fig. 2 is a schematic sectional view of the above embodiment, and Fig. 3 is the relationship between the incident angle and the output angle determined by the period of the diffraction grating. , and a graph showing the beam shaping rate determined by the incident angle and the output angle. Figure 4 shows the relationship between the ratio of the wavelength of the incident light and the period of the diffraction grating and the diffraction efficiency. FIG. 5 is a perspective view showing the intensity distribution of emitted light from a μ semiconductor laser, and FIG. 6 is a schematic diagram showing an example of the optical system of a conventional optical pickup. 1. Light t Me 2...Collimating lens, 3...
Prism 4...Beam splitter 5...λ/4 plate 6...Objective lens 7...Photodetector 8...Diffraction grating 9...Original disk 10...Beam splitter patent applicant Asahi Kasei Kogyo Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 1-Year J-W Diffraction Go+ Period Figure 5 R1 □ Figure 6 Procedural Amendment (Spontaneous) August 17, 1988 Patent Director General Yoshi 1) Takeshi Moon 1, Indication of the case, Patent Application No. 107575, filed in 1988, Name of the invention 3, Person making the amendment Relationship in the case Patent applicant: 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture No. 5, "Splitter 4" in column 6 of "Detailed Description of the Invention" of the specification to be amended, content of amendment 1, line 8 of page 2 of the specification, is corrected to "splitter 10". 2. "Beam splitter 10" on page 5, lines 4-5 of the specification
Correct J to "diffraction grating 8". 3. Correct "Figure 6" in the third line from the bottom of No. 5 of the specification to "Figure 5". 4. In the specification, page 6, line 6, ``Separation from optical disc''
5. In the 4th line from the bottom of No. 8 of the specification, ``J to raise the force using an object'' is corrected to ``separation of reflected light from an optical disk.'' 6. Correct "14" in line 5 from the bottom of No. 9 of the specification to "5". 7. Correct "17" in the second line of page 10 of the specification to "7". Below 1

Claims (1)

【特許請求の範囲】 光源と、前記光源からの光を情報記録媒体に導きかつ前
記情報記録媒体からの反射光を光検知器に導く光路系と
、前記光検知器を有する光ピックアップにおいて、 前記光源からの発散光を平行光に変えるコリメートレン
ズと、前記コリメートレンズからの光の強度分布を長円
形から円形に整形し且つ光の偏光状態の違いにより前記
コリメートレンズから情報記録媒体へ向かう光と前記情
報記録媒体からの反射光とを分離する回折格子と、前記
情報記録媒体からの反射光の偏光状態を入射時と偏光面
が90゜回転した直線偏光に変える1/4λ板と、前記
情報記録媒体からの反射光を検出する光検知器を備えた
ことを特徴とする光ピックアップ。
[Scope of Claims] An optical pickup having a light source, an optical path system that guides light from the light source to an information recording medium and guides reflected light from the information recording medium to a photodetector, and the photodetector, comprising: a collimating lens that converts diverging light from a light source into parallel light; and a collimating lens that shapes the intensity distribution of the light from the collimating lens from an ellipse to a circular shape, and the light that travels from the collimating lens toward an information recording medium due to the difference in the polarization state of the light. a diffraction grating that separates the reflected light from the information recording medium; a 1/4λ plate that changes the polarization state of the reflected light from the information recording medium into linearly polarized light whose plane of polarization is rotated by 90 degrees from that at the time of incidence; and the information recording medium. An optical pickup characterized by being equipped with a photodetector that detects reflected light from a recording medium.
JP63107575A 1988-05-02 1988-05-02 Optical pickup Pending JPH01279433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63107575A JPH01279433A (en) 1988-05-02 1988-05-02 Optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63107575A JPH01279433A (en) 1988-05-02 1988-05-02 Optical pickup

Publications (1)

Publication Number Publication Date
JPH01279433A true JPH01279433A (en) 1989-11-09

Family

ID=14462651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63107575A Pending JPH01279433A (en) 1988-05-02 1988-05-02 Optical pickup

Country Status (1)

Country Link
JP (1) JPH01279433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459764A2 (en) * 1990-05-29 1991-12-04 Sharp Kabushiki Kaisha Optical head device
US5202869A (en) * 1990-04-20 1993-04-13 Sharp Kabushiki Kaisha Optical head device including diffraction grating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202869A (en) * 1990-04-20 1993-04-13 Sharp Kabushiki Kaisha Optical head device including diffraction grating
EP0459764A2 (en) * 1990-05-29 1991-12-04 Sharp Kabushiki Kaisha Optical head device

Similar Documents

Publication Publication Date Title
US6947213B2 (en) Diffractive optical element that polarizes light and an optical pickup using the same
EP0253403B1 (en) Diffraction grating using birefringence and optical head in which a linearly polarized beam is directed to a diffraction grating
US6366548B1 (en) Optical pickup having two laser beam sources having wave lengths different from each other and optical device including the optical pickup
US5115423A (en) Optomagnetic recording/reproducing apparatus
US5058981A (en) Light source device
JPH06139612A (en) Optical head and manufacture thereof
JPH1139705A (en) Optical pickup device
JP2002109778A (en) Optical pickup device
JPH01279433A (en) Optical pickup
US20030185137A1 (en) Optical pick-up apparatus and optical disc unit therefor
US5353273A (en) Multi-channel optical head and data storage system
JP2002196123A (en) Dual-wavelength diffraction optical element, dual wavelength light source device and optical head device
JP2009043311A (en) Optical pickup device and optical disk drive
EP1562186B1 (en) Double-wavelength light source unit and optical head device
JPH0661566A (en) Optical device and its manufacture
JPS62139145A (en) Optical pickup
US20060118704A1 (en) Optical pickup device and optical element
KR0170521B1 (en) A beam circulation device of optical pickup system
JP2580726B2 (en) Optical head device
JPS63191328A (en) Optical head device
KR100421012B1 (en) Optical pickup comprising a beam splitter formed a hologram and method of compensating optical axes using the same
JPH0746439B2 (en) Optical head device
JPS6319602A (en) Light beam expander
JPH03157828A (en) Optical pickup device
JPH01251439A (en) Light source unit