JPH01278714A - Atomic layer planar doping method - Google Patents

Atomic layer planar doping method

Info

Publication number
JPH01278714A
JPH01278714A JP10877488A JP10877488A JPH01278714A JP H01278714 A JPH01278714 A JP H01278714A JP 10877488 A JP10877488 A JP 10877488A JP 10877488 A JP10877488 A JP 10877488A JP H01278714 A JPH01278714 A JP H01278714A
Authority
JP
Japan
Prior art keywords
dopant
compound semiconductor
molecular beam
doping
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10877488A
Other languages
Japanese (ja)
Inventor
Toshiaki Kinosada
紀之定 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10877488A priority Critical patent/JPH01278714A/en
Publication of JPH01278714A publication Critical patent/JPH01278714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make it possible to remarkably increase the doping quantity of dopant when compared with that heretofore in use by a method wherein, when a dopant is doped on a compound semiconductor by discontinuing the epitaxial growth while a III-V compound semiconductor is being grown using a molecular beam epitaxial growing method, a specific N-type dopant is used. CONSTITUTION:When a dopant is doped using an atomic layer planar doping method while a compound semiconductor is being formed by conducting a molecular beam epitaxial growing method, laticematching can be improved by using Si1-xGex as an N-type dopant in comparison with the case where Si is used as a dopant. Also, the mixture ratio of Si1-xGex is provided separately for Si cell and Ge cell, which can be obtained by adjusting the strength ratio of each molecular beam. At this point, if the molecular beam strength ratio JGe/Jsi of Ge and Si is set small, the vapor pressure of the adhered substance becomes low sufficiently, it is hardly sublimated by the heat coming from the substrate and the cells, and no effect is given to the quality of the film grown on the compound substrate. As a result, the doping quantity of the dopant can be increased remarkably while the quantity of the compound semiconductor film is being maintained, and the doping quantity of the dopant can be increased remarkably when compared with that heretofore in use.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はGaAsをはじめとする■−v族化合物半導体
の分子線エピタキシ(MBE)におけるn型ドーパント
の原子層プレーナドーピング法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an atomic layer planar doping method of an n-type dopant in molecular beam epitaxy (MBE) of ■-v group compound semiconductors such as GaAs.

〈従来の技術〉 原子層プレーナドーピング(以下APD)法はiドーピ
ングともパルスドーピングとも呼ばれているもので、字
句通りホスト結晶の1原子層にのみドーパントをドーピ
ングする方法である(参考文献; E、 F、 5ch
ubert and K、 Ploag : Jpn、
 J。
<Prior art> The atomic layer doping (APD) method is also called i-doping or pulse doping, and is literally a method of doping only one atomic layer of a host crystal with a dopant (References: E , F, 5ch
ubert and K, Ploag: Jpn,
J.

Appl、 Phys、 25 (1985) L60
8 )、ここでGaAsのMBE成長を例にとり、AP
D法の特徴について説明する。先ず、アンドープGaA
sを成長している途中でGaセルシャッタを閉じ、Ga
Asの成長を中断させる。この時、Asセルシャソタハ
開いたままにし、GaAs結晶表面にAs分子線を十分
に照射してGaAs結晶表面をAs安定化面状態に保つ
。次にn型ドーパントのセルシャノタヲ開け、GaAs
表面にドーパント分子線を照射すると、GaAs表面が
As安定化面状態にあるため結晶表面に飛来し付着した
ドーパント原子はほとんどGaサイトに入る。こうして
通常の均一ドープでは実現が困難な極めて高濃度のn型
単原子層を得ることができる。GaAsのn型ドーパン
トとしてはSi、Ge、Sn、及びS等が一般的である
が、1)低補償度である、11)偏析等の問題がなく急
峻なドーピングプロファイルを得ることができる、in
)純度のよいものを入手し易い、等の理由によりSiが
最もよく用いられている。
Appl, Phys, 25 (1985) L60
8), here, taking MBE growth of GaAs as an example, AP
The characteristics of method D will be explained. First, undoped GaA
The Ga cell shutter is closed during the growth of Ga.
The growth of As is interrupted. At this time, the As cell surface is kept open and the GaAs crystal surface is sufficiently irradiated with an As molecular beam to maintain the GaAs crystal surface in an As-stabilized surface state. Next, open the n-type dopant cell structure, GaAs
When the surface is irradiated with a dopant molecular beam, since the GaAs surface is in an As-stabilized plane state, most of the dopant atoms that fly and adhere to the crystal surface enter the Ga sites. In this way, an extremely highly concentrated n-type monoatomic layer, which is difficult to achieve with normal uniform doping, can be obtained. Si, Ge, Sn, and S are commonly used as n-type dopants for GaAs.
) Si is most often used because it is easily available with high purity.

ところで、APD法により形成される高濃度単原子層(
以下APD層)はその特性を生かしてデバイス特性の向
上のために種々応用されている。
By the way, a highly concentrated monoatomic layer (
The APD layer (hereinafter referred to as APD layer) is used in various ways to improve device characteristics by taking advantage of its characteristics.

例えばAPD層を金属−半導体電界効果トランジスタ(
MESFET)のチャネル層として用いると、APD層
が高不純物極薄膜であるため、高い相互コンダクタンス
(2m)をもつMESFETを得る(1:。
For example, the APD layer can be used as a metal-semiconductor field effect transistor (
When used as a channel layer of a MESFET (1:.

とができる。また、変調ドープ(MOD)FETの電子
供給層のドーピングKAPD法を適用することにより、
高相互コンダクタンス、高ゲート耐圧を有したMODF
ETを得ることができる。更にAPD層をGaAs表面
に形成することにより、ノン・アロイ・オーばツクを得
ることができる。そして、APD層のシート不純物濃度
が高い程、上記性能。
I can do it. In addition, by applying the doping KAPD method of the electron supply layer of the modulation doped (MOD) FET,
MODF with high mutual conductance and high gate breakdown voltage
You can get ET. Furthermore, by forming an APD layer on the GaAs surface, non-alloy overburden can be obtained. The higher the sheet impurity concentration of the APD layer, the better the above performance.

効果は高くなる。The effect will be higher.

〈発明が解決しようとする課題〉 上述の如く、APD法はGaAs等の化合物半導体をM
BE成長させている途中で成長を中断させ、ドーパント
をホスト結晶である化合物半導体の1原子層にのみドー
プさせる方法であり、n型ドーパントとしては通常Si
が用いられる。ところでGaAS(100)面において
Ga原子の面密度は約6.25X10  ato町塚で
ある。従ってAPD法によるシート不純物濃度は原理的
には最大的6.25X1014atoms/iである。
<Problem to be solved by the invention> As mentioned above, the APD method is capable of converting compound semiconductors such as GaAs into M
This is a method in which the growth is interrupted during BE growth and the dopant is doped into only one atomic layer of the compound semiconductor, which is the host crystal, and the n-type dopant is usually Si.
is used. By the way, the surface density of Ga atoms on the GaAS (100) plane is approximately 6.25×10 ato Machizuka. Therefore, the sheet impurity concentration according to the APD method is theoretically maximum 6.25×10 14 atoms/i.

しかしながら、実際にはI X 10  atoms 
/ca以上にSiをドープすると、GaAs/Si  
の熱膨張係数の差異を含めた格子不整により格子不整転
位及びこれに伴う深い電子トラップが発生してAPD層
近傍のGaAs結晶の結晶学的、電気的特性が著しく劣
化する。
However, in reality I X 10 atoms
When Si is doped to more than /ca, GaAs/Si
Due to the lattice misalignment including the difference in the thermal expansion coefficients, lattice misalignment and accompanying deep electron traps occur, and the crystallographic and electrical properties of the GaAs crystal in the vicinity of the APD layer are significantly deteriorated.

一方、Geは上述のようにSi同様n型ドーパントとし
て用いることができ、またGaAsとの格子整合もよい
。しかしながらGeをMBE成長チャンバ内で大量に放
出すると、チャンバが以下の如(Geで汚染されて、以
降成長したアンドープGaAsがn型に固定されるとい
う事態を引き起こす。これはGeの蒸気圧が他のドーパ
ントに比べて高いため、チャンバ内壁や基板操作用マチ
ビュレータ等に付着したGeが基板や蒸発源(セル)の
加熱による影響を受けて昇華し、GaAs成長膜に取り
込まれることにより生じる。従ってGeをAPD法の高
濃度ドーパントとして用いることはMBE装置の保守、
運用上好ましくない。
On the other hand, as mentioned above, Ge can be used as an n-type dopant like Si, and also has good lattice matching with GaAs. However, if a large amount of Ge is released in the MBE growth chamber, the chamber will become contaminated with Ge and the subsequently grown undoped GaAs will be fixed to n-type. This is caused by Ge adhering to the inner walls of the chamber, the matibulator for substrate manipulation, etc., sublimating under the influence of the heating of the substrate and evaporation source (cell), and being incorporated into the GaAs growth film. The use of MBE as a high-concentration dopant in the APD method is useful for maintenance of MBE equipment,
Not recommended for operation.

このように高性能デバイスを得るためにAPD層のシー
ト不純物濃度を高くしようとすると、種々の問題が生じ
実用に適さないという問題がある。
In this way, when trying to increase the sheet impurity concentration of the APD layer in order to obtain a high-performance device, various problems arise and the method is not suitable for practical use.

く課題を解決するための手段〉 本発明は上述する問題点を解決するためになされたもの
で、■−v族化合物半導体をMBE成長法にて成長中、
成長を中断させて前記化合物半導体にドーパントをドー
プする際、 n型ドーパントとしてSi1.xGex(0<x<1)
を用いてなるAPD法を提供するものである。
Means for Solving the Problems> The present invention has been made to solve the above-mentioned problems.
When the growth is interrupted and the compound semiconductor is doped with a dopant, Si1. xGex(0<x<1)
This provides an APD method using the following.

く作 用〉 上述の如く、化合物半導体をMBE成長にて形成途中に
、APD法にてドーパントをドーピングする際、n型ド
ーパントとして5in−xGe)(を用いることにより
、Siをドーパントとする時に比べて格子整合性力S向
上する。また、Si1−xGezの混合比はSiセル、
Geセルを別々に設け、各々の分子線の強度比を調整す
ることにより、得ることができる(両者の付着係数は共
にほぼ1である)。
As mentioned above, when doping a compound semiconductor with a dopant using the APD method during the formation of a compound semiconductor by MBE growth, by using 5in-xGe) (as the n-type dopant), compared to when Si is used as the dopant. In addition, the mixing ratio of Si1-xGez is
This can be obtained by separately providing Ge cells and adjusting the intensity ratio of each molecular beam (both the adhesion coefficients are approximately 1).

Geセルからチャンバ内に放出されたGe原子のうち化
合物半導体基板に達しなかったものはチャンバ内壁やマ
テビュレータ等に付着するが、ドルパントがGeだけの
場合と異なり、そのほとんどはSiと結合した形で付着
する。ここで、GeとSiの分子線強度比JGe / 
J s iを小さく設定すれば、付着物の蒸気圧は十分
低くなり、基板やセルからの発熱によっても昇華し難く
、化合物半導体の成長膜質に何ら影響を及ぼさない。
Of the Ge atoms released into the chamber from the Ge cell, those that do not reach the compound semiconductor substrate adhere to the chamber inner wall, matebulator, etc., but unlike when the dolphant is only Ge, most of them are bonded to Si. adhere to. Here, the molecular beam intensity ratio of Ge and Si is JGe /
If J s i is set to a small value, the vapor pressure of the deposit will be sufficiently low, and it will be difficult to sublimate even when heat is generated from the substrate or the cell, and will not affect the quality of the compound semiconductor grown film in any way.

従って、化合物半導体膜の膜質を維持しつつ、従来に比
べて飛躍的にドーパントのドーピング量を増大させるこ
とができる。
Therefore, while maintaining the film quality of the compound semiconductor film, the amount of dopant doped can be dramatically increased compared to the conventional method.

〈実施例〉 以下、本発明の実施例を図面を参照しながら説明するが
、本発明はこれて限定されるものではない。
<Examples> Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.

図は本発明の一実施例を説明するためのAIGaAs/
GaAsMODGaAs層2図である。先ず、半絶縁性
GaAs(100)基板(LEC法、1070m以上)
1の一生面上に有機洗浄及び硫酸系エッチャントによる
化学エツチングを施した後、前記基板工をMBE成長チ
ャンバに導入する。次にAs分子線を基板1に照射しな
がら基板1の温度を620℃まで高め、30分間その状
態を維持して基板1表面の酸化物を除去し、清浄なGa
As表面を出す。
The figure is an AIGaAs/
FIG. 2 is a diagram of a GaAs MOD GaAs layer. First, a semi-insulating GaAs (100) substrate (LEC method, 1070m or more)
After performing organic cleaning and chemical etching with a sulfuric acid-based etchant on the surface of the substrate 1, the substrate is introduced into an MBE growth chamber. Next, while irradiating the substrate 1 with an As molecular beam, the temperature of the substrate 1 was raised to 620°C, and this state was maintained for 30 minutes to remove oxides on the surface of the substrate 1 and clean Ga.
Expose the As surface.

次いで基板1の温度を580℃に降温した後、チャンバ
内に配置したGaセルシャッタを開けて基板l上にアン
ドープGaAs層2を1μm成長させる。この時、Ga
As層2の成長速度は1μm/h。
Next, after lowering the temperature of the substrate 1 to 580° C., a Ga cell shutter placed in the chamber is opened to grow an undoped GaAs layer 2 of 1 μm on the substrate 1. At this time, Ga
The growth rate of the As layer 2 was 1 μm/h.

V/III比は6に設定する。続いてチャンバ内に配置
したAIセルシャッタを開けて前記GaAs層2上にア
ンドープAlGaAs層3を50久成長させた後、fl
[eA +セルシャッタ及びGaセルシャッタを閉じ、
成長を中断させる。
The V/III ratio is set to 6. Next, the AI cell shutter placed in the chamber was opened and an undoped AlGaAs layer 3 was grown on the GaAs layer 2 for 50 minutes, and then fl
[Close the eA + cell shutter and Ga cell shutter,
disrupt growth.

次に、上記AlGaAs層3上に2分間As分子線のみ
照射し、AlGaAs層3結晶表面を平坦化した後、チ
ャンバ内に配置した第1のSiセルシャッタとGeセル
シャッタを開けて100秒間基板1へのドーピングを行
ない、APD層4を形成する。この時Si及びGeの分
子線強度は夫々2.8X10  atoms−m  −
5ec 、7X10  atoms−m −5ecとし
、S i □、BG e O,2に設定する。次いで、
再びAIセルシャッタとGaセルシャッタを開ケて前記
APD層4上にアンドープAlGaAs層5を400λ
成長させ、続いて前記AIセルシャッタを閉じ、チャン
バ内に配置された第2のSiセルシャッタを開けてn+
G a A s層(n+濃度:2×1018crn−3
)6を1000大成長させ、MBE成長チャンバにおけ
る成長が完了する。
Next, the AlGaAs layer 3 was irradiated with only an As molecular beam for 2 minutes to flatten the crystal surface of the AlGaAs layer 3, and then the first Si cell shutter and Ge cell shutter placed in the chamber were opened and the substrate was exposed for 10 seconds. 1 to form an APD layer 4. At this time, the molecular beam intensities of Si and Ge are each 2.8×10 atoms-m −
5ec, 7X10 atoms-m-5ec, and set S i □, BG e O,2. Then,
The AI cell shutter and the Ga cell shutter are opened again, and an undoped AlGaAs layer 5 with a thickness of 400λ is deposited on the APD layer 4.
Then, the AI cell shutter is closed and the second Si cell shutter placed in the chamber is opened to allow n+
G a As layer (n+ concentration: 2×1018 crn-3
) 6 was grown by 1000 to complete the growth in the MBE growth chamber.

ここで、上記n”G a A s層6を電極形状にパタ
ーニングし、Van der Pauw法で2次元電子
ガスの移動度μ及びシートキャリア濃度nsを測定した
Here, the n''GaAs layer 6 was patterned into an electrode shape, and the two-dimensional electron gas mobility μ and sheet carrier concentration ns were measured using the Van der Pauw method.

300K(室温)における2次元電子ガスの移動度μ(
300K)=1500cIV%’sec、シートキャリ
ア濃度n5(300K)=1.2X10  cm  で
あり、77K(液体窒素温度)における2次元電子ガス
の移動度pc77K)=6000tJ/fsec、’/
−トキャリア濃度n5(77K)=1.lX10  c
m  であった。一方、参照試料として上記工程のうち
APD層形成時VcSi分子線のみを133秒間照射(
総Si原子数を上記実施例におけるSiとGeの原子数
の和と等しく設定)したものを作成して該参照試料の2
次元電子ガスの移動度μ′及びシートキャリア濃度ns
’を測定した。300Kにおける2次元電子ガスの移動
度1t’ (300K) = 3000cr+!/V−
see 、シートキャリア濃度ns’(300K)=4
X10  cm  であり、顕著な光応答が観測された
が、これは転位などの格子欠陥により深い電子トラップ
準位が大量に発生した結果であると考えられる。このよ
うにAPD法においてn型ドーパントとして5in−、
(Gexを用いることによりAPD層のドーピングレベ
ルヲ従来のSiドーパントを用いた場合に比べて1桁以
上に向上できる。また、本発明をM OD構造における
電子供給層のドーピングに用いることにより、2次元電
子ガスの/−トキャリア濃度を画期的に増大できる。
The mobility μ(
300K) = 1500cIV%'sec, sheet carrier concentration n5 (300K) = 1.2X10 cm, and mobility of two-dimensional electron gas at 77K (liquid nitrogen temperature) pc77K) = 6000tJ/fsec,'/
- carrier concentration n5 (77K) = 1. lX10c
It was m. On the other hand, as a reference sample, only the VcSi molecular beam was irradiated for 133 seconds during the APD layer formation in the above steps (
The total number of Si atoms was set equal to the sum of the number of Si and Ge atoms in the above example.
Dimensional electron gas mobility μ′ and sheet carrier concentration ns
' was measured. Mobility of two-dimensional electron gas at 300K 1t' (300K) = 3000cr+! /V-
see, sheet carrier concentration ns' (300K) = 4
X10 cm , and a remarkable photoresponse was observed, but this is thought to be the result of the generation of a large number of deep electron trap levels due to lattice defects such as dislocations. In this way, in the APD method, 5in-,
(By using Gex, the doping level of the APD layer can be improved by more than one order of magnitude compared to the case where conventional Si dopants are used. Also, by using the present invention for doping the electron supply layer in the MOD structure, The carrier concentration of dimensional electron gas can be dramatically increased.

ここで、Si1−zGex ドーパントによるAPD法
  4を実施した後、チャンバ内汚染の影響を調べるた
めに、アンドープAlGaAs層を成長させて、そのキ
ャリア濃度及び移動度を検査したが、APD法実施前の
GaAs層との差異は認められなかった。
Here, after APD method 4 using Si1-zGex dopant was performed, an undoped AlGaAs layer was grown and its carrier concentration and mobility were examined in order to investigate the influence of contamination inside the chamber. No difference from the GaAs layer was observed.

上記本実施例においてAPD法を実施する化合物半導体
としてAlGaAsを用いたが、本発明はこれに限定さ
れるものではなく、GaAs、 InGaAs等他の■
−等地化合物半導体にも適用可能である。
Although AlGaAs was used as the compound semiconductor for carrying out the APD method in the above embodiment, the present invention is not limited thereto, and other materials such as GaAs, InGaAs, etc.
- Applicable to isogeological compound semiconductors as well.

また、上記本実施例においてn型ドーパントとしてSi
O,BGe□、2を用いたが、本発明はこれに限定され
るものではなく、5il−xGez において混合比X
はO(x (1の範囲内で任意に設定可能である。
In addition, in this embodiment, Si is used as the n-type dopant.
O, BGe□, 2 was used, but the present invention is not limited thereto, and the mixing ratio
can be set arbitrarily within the range of O(x (1).

〈発明の効果〉 本発明により、化合物半導体膜の膜質を維持しつつ、従
来に比べて飛躍的にドーパントのドーピング量を増大さ
せることができるため、このAPD層の特性を生かして
M E S F E T或いはMODFET等種々のデ
バイスの特性を向上させることが可能となる。
<Effects of the Invention> According to the present invention, while maintaining the film quality of the compound semiconductor film, it is possible to dramatically increase the doping amount of the dopant compared to the conventional method. It becomes possible to improve the characteristics of various devices such as ET or MODFET.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を説明するためのAlGaAs/
GaAs MOD構造を有するエピタキシャル成長層断
面図である。
The figure is for explaining one embodiment of the present invention.
FIG. 2 is a cross-sectional view of an epitaxially grown layer having a GaAs MOD structure.

Claims (1)

【特許請求の範囲】 1、III−V族化合物半導体を分子線エピタキシャル成
長法にて成長中、成長を中断させて前記化合物半導体に
ドーパントをドープする際、 n型ドーパントとしてSi_1_−_xGe_x(0<
x<1)を用いてなることを特徴とする原子層プレーナ
ドーピング法。
[Claims] 1. When growing a III-V compound semiconductor by molecular beam epitaxial growth, when the growth is interrupted and the compound semiconductor is doped with a dopant, Si_1_-_xGe_x (0<
An atomic layer planar doping method characterized in that x<1).
JP10877488A 1988-04-30 1988-04-30 Atomic layer planar doping method Pending JPH01278714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10877488A JPH01278714A (en) 1988-04-30 1988-04-30 Atomic layer planar doping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10877488A JPH01278714A (en) 1988-04-30 1988-04-30 Atomic layer planar doping method

Publications (1)

Publication Number Publication Date
JPH01278714A true JPH01278714A (en) 1989-11-09

Family

ID=14493141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10877488A Pending JPH01278714A (en) 1988-04-30 1988-04-30 Atomic layer planar doping method

Country Status (1)

Country Link
JP (1) JPH01278714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038841A3 (en) * 2000-08-31 2003-05-01 Micron Technology Inc Atomic layer doping apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038841A3 (en) * 2000-08-31 2003-05-01 Micron Technology Inc Atomic layer doping apparatus and method
US6746934B2 (en) 2000-08-31 2004-06-08 Micron Technology, Inc. Atomic layer doping apparatus and method

Similar Documents

Publication Publication Date Title
TWI686498B (en) Epitaxial substrate for semiconductor element, semiconductor element and method for manufacturing epitaxial substrate for semiconductor element
Akiyama et al. Growth of high quality GaAs layers on Si substrates by MOCVD
US5030580A (en) Method for producing a silicon carbide semiconductor device
JP6896063B2 (en) Semiconductor material growth of high resistance nitride buffer layer using ion implantation
Studtmann et al. Pseudomorphic ZnSe/n‐GaAs doped‐channel field‐effect transistors by interrupted molecular beam epitaxy
WO2017077989A1 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
US5532184A (en) Method of fabricating a semiconductor device using quantum dots or wires
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US11417523B2 (en) Amphoteric p-type and n-type doping of group III-VI semiconductors with group-IV atoms
JP2764049B2 (en) Method of manufacturing compound semiconductor device, compound semiconductor device and field effect transistor
Bennett et al. Materials growth for InAs high electron mobility transistors and circuits
US5232862A (en) Method of fabricating a transistor having a cubic boron nitride layer
JPS6086872A (en) Semiconductor device
JPH01278714A (en) Atomic layer planar doping method
EP0196245B1 (en) Compound semiconductor layer having high carrier concentration and method of forming same
JP3438116B2 (en) Compound semiconductor device and method of manufacturing the same
Miyamoto et al. Improvement of electrical properties by insertion of AlGaN interlayer for N-polar AlGaN/AlN structures on sapphire substrates
JPS59116192A (en) Crystal growth method by molecular beam
US7687798B2 (en) Epitaxy with compliant layers of group-V species
Peterson et al. Kilovolt-Class β-Ga2O3 MOSFETs on 1-inch Bulk Substrates
JP2555885B2 (en) Germanium / gallium arsenide junction manufacturing method
Rahman et al. Gating of InAs/GaSb quantum wells using a silicon monoxide gate insulator
JPS596054B2 (en) Method for manufacturing semiconductor devices
JPS62115831A (en) Manufacture of semiconductor device
KR0170189B1 (en) Lattice mismatched high electron mobility transistor