JPH01278598A - Electroviscous fluid - Google Patents

Electroviscous fluid

Info

Publication number
JPH01278598A
JPH01278598A JP10828188A JP10828188A JPH01278598A JP H01278598 A JPH01278598 A JP H01278598A JP 10828188 A JP10828188 A JP 10828188A JP 10828188 A JP10828188 A JP 10828188A JP H01278598 A JPH01278598 A JP H01278598A
Authority
JP
Japan
Prior art keywords
fluid
dispersed particles
aqueous liquid
weight
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10828188A
Other languages
Japanese (ja)
Other versions
JP2573994B2 (en
Inventor
Junji Nagahori
永堀 淳司
Takatoshi Akatsuka
孝寿 赤塚
Jiro Toyama
外山 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP63108281A priority Critical patent/JP2573994B2/en
Publication of JPH01278598A publication Critical patent/JPH01278598A/en
Application granted granted Critical
Publication of JP2573994B2 publication Critical patent/JP2573994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electroviscous fluid having excellent storing properties at high temperature and exhibiting remarkable Winslow effect by dispersing the surface-treated dispersing particle with non-water liquid into an electrical insulating fluid. CONSTITUTION:Dispersing particle of the surface-treated cellulose, etc., with non-water liquid such as multihydric alcohol, etc., dispersed into an electrical insulating fluid composed of silicone oil, vegetable oil, fluorine oil, diphenyl chloride, mineral oil, dibutyl sebacate, toluene or benzene, etc., to afford the aimed fluid. Besides, adsorption of non-water liquid adsorbed on the dispersing particle is >=3wt.% (the most preferably >=5wt.%) to weight of the dispersing particle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電気粘性流体に関し、さらに詳細には、外部
電界により応答してその粘性か変化する電気粘性流体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to electrorheological fluids, and more particularly to electrorheological fluids whose viscosity changes in response to an external electric field.

〔従来の技術〕[Conventional technology]

特定の分散媒に固体粒子を混合・分散させた分散液にお
いて、外部電界によってその分散液の粘性が著しく変動
する現象は、いわゆるウィンズロ効果として知られてる
In a dispersion liquid in which solid particles are mixed and dispersed in a specific dispersion medium, the phenomenon in which the viscosity of the dispersion liquid changes significantly due to an external electric field is known as the so-called Winslow effect.

このようなウィンズロ効果を示す流体として、塩化ジフ
ェニル、塩化ベンゼン、セハンン酸ジブチル、シリコー
ンオイルなどの分散媒に、微結晶セルロース、ンリカケ
ル、大豆カセイン、デンプン、イオン交換樹脂などの分
散質を混合・分散した電気粘性流体が知られている。従
来ては、水を吸着させたンリカなとの分散質を用いるこ
とか提案されてる(特公昭45−1.0048号公報お
よび特開昭48−17806号公報など)。
Fluids exhibiting this Winslow effect include mixing and dispersing dispersoids such as microcrystalline cellulose, soybean casein, starch, and ion exchange resin in dispersion media such as diphenyl chloride, benzene chloride, dibutyl sehanate, and silicone oil. Electrorheological fluids are known. Conventionally, it has been proposed to use a dispersoid of phosphorus adsorbed with water (Japanese Patent Publication No. 45-1.0048 and Japanese Patent Application Laid-open No. 17806/1983, etc.).

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、従来の電気流体では、電界強度の変化の
割合に対して粘度変化の割合が少なく、ウィンズロ効果
が顕著に現れず、また、吸着した水分か遊離することに
より、ウィンズロ効果か急速に減少して消滅することが
多く、従って、高温での保存特性に著しく劣り、経時的
に粘度変化か減少する。
However, in conventional electric fluids, the ratio of viscosity change to the ratio of electric field strength change is small, so the Winslow effect does not appear significantly, and the Winslow effect rapidly decreases due to the release of adsorbed water. Therefore, the storage properties at high temperatures are significantly poor, and the viscosity changes or decreases over time.

この発明は、」二記の背景に基づきなされたものであり
、その1」的とするところは、高温での保存特性に優れ
、顕著なウィズロ効果を示す電気粘性流体を提供するこ
とである。
This invention has been made based on the following two backgrounds, and the first objective is to provide an electrorheological fluid that has excellent storage characteristics at high temperatures and exhibits a remarkable Withro effect.

〔課題を解決するための手段〕[Means to solve the problem]

本発明名らは上記問題点を解決すべく種々の検討した結
果、分散質として、非水液を吸着した分散粒子を用いれ
ば、この発明の目的達成に有効であることを見出し、こ
の発明を完成するに至った。
As a result of various studies to solve the above-mentioned problems, the inventors of the present invention discovered that it is effective to achieve the object of the present invention by using dispersed particles adsorbing a non-aqueous liquid as the dispersoid. It was completed.

すなわち、この発明の電気粘性流体は、非水液で表面処
理した分散粒子を、電気絶縁性流体に分散してなること
を特徴とするものである。
That is, the electrorheological fluid of the present invention is characterized in that dispersed particles whose surface has been treated with a non-aqueous liquid are dispersed in an electrically insulating fluid.

この発明の好ましい態様において、非水液として多価ア
ルコールを、また、分散粒子として、セルロースを用い
ることかできる。
In a preferred embodiment of this invention, polyhydric alcohol can be used as the non-aqueous liquid and cellulose can be used as the dispersed particles.

この発明のより具体的な態様において、分散粒子に吸着
されている非水液の吸呑量を、分散粒子に対して3重量
%以上、より好ましくは4重量%以上、最も好ましくは
5重量%以上に限定することかできる。
In a more specific embodiment of the present invention, the amount of nonaqueous liquid adsorbed on the dispersed particles is 3% by weight or more, more preferably 4% by weight or more, and most preferably 5% by weight based on the dispersed particles. It is possible to limit the above.

この発明の好ましい態様において、電気絶縁性流体とし
て、シリコンオイル、植物油、フッ素オイル、塩化ジフ
ェニル、鉱油、セバシン酸ジブチル、トルエン、または
ベンセンから選ばれた少なくとも1種の流体を用いるこ
とかできる。
In a preferred embodiment of the invention, at least one fluid selected from silicone oil, vegetable oil, fluorine oil, diphenyl chloride, mineral oil, dibutyl sebacate, toluene, or benzene can be used as the electrically insulating fluid.

以下、この発明を、より詳細に説明する。This invention will be explained in more detail below.

分散粒子 この発明に於いて用いられる分散粒子は、非水液で表面
処理されたものである。
Dispersed Particles The dispersed particles used in this invention are surface-treated with a non-aqueous liquid.

具体的に用いるものことかできる非水液として、グリセ
リン、ベンンルアルコールなとのアルコール、メチルホ
ルムアミドなとのアミド類、ホルムアルデヒドなどのア
ルデヒド類、その他などがあり、また、導電性を向」ニ
させるために、数種類の液体を混合したものがある。こ
の発明で用いることかできる好ましい非水液には、アル
コール、特にグリセリンなどの多価アルコールがある。
Specific examples of non-aqueous liquids that can be used include glycerin, alcohols such as benzyl alcohol, amides such as methylformamide, aldehydes such as formaldehyde, and others. Some liquids are made by mixing several types of liquids to achieve this. Preferred non-aqueous liquids that can be used in this invention include alcohols, especially polyhydric alcohols such as glycerin.

非水液の処理量、すなわち、分散粒子に対する非水液の
吸着量は、非水液の種類、分散粒子の種類などに応じて
適宜変更選択することができ、多価アルコールの場合、
分散粒子に吸着されている非水液の吸着量を、分散粒子
に対して3重量%以上、より好ましくは4重量%以上、
最も好ましくは5重量%以上に限定することができる。
The amount of non-aqueous liquid to be treated, that is, the amount of non-aqueous liquid adsorbed to the dispersed particles, can be changed and selected as appropriate depending on the type of non-aqueous liquid, the type of dispersed particles, etc. In the case of polyhydric alcohol,
The adsorption amount of the non-aqueous liquid adsorbed on the dispersed particles is 3% by weight or more, more preferably 4% by weight or more, based on the dispersed particles.
Most preferably, it can be limited to 5% by weight or more.

この発明で用いることができる非水液には、導電性を向
上もしくは調製するために塩類などの添加物を含めても
よい。
The non-aqueous liquid that can be used in this invention may contain additives such as salts in order to improve or adjust conductivity.

非水液での表面処理の方法は、種々の方法で実施するこ
とができ、例えば、分散粒子を乾燥し、揮発性有機溶媒
で非水液の処理溶液を調製し、次いで、この処理溶液に
分散粒子を浸漬し、浸漬した分散粒子を加熱し、揮発性
有機溶媒を蒸発除去して得ることかできる。
The method of surface treatment with a non-aqueous liquid can be carried out in various ways, for example, by drying the dispersed particles, preparing a non-aqueous treatment solution with a volatile organic solvent, and then adding the treated solution to the non-aqueous liquid. It can be obtained by immersing dispersed particles, heating the immersed dispersed particles, and evaporating off the volatile organic solvent.

非水液で表面処理される分散粒子は、例えば、1〜10
0μm5好ましくは10〜40μmの平均粒径を持つも
のであり、その祠質として、例えば、微結晶セルロース
、シリカゲル、大豆カセイン、デンプン、イオン交換樹
脂などかあり、好ましい具体例として、セルロースがあ
る。
Dispersed particles whose surface is treated with a non-aqueous liquid are, for example, 1 to 10
It has an average particle size of 0 μm5, preferably 10 to 40 μm, and its abrasive materials include, for example, microcrystalline cellulose, silica gel, soybean casein, starch, and ion exchange resin, and a preferred specific example is cellulose.

電気粘性流体 この発明の電気粘性流体は、前記に詳説した非水液処理
分散粒子の粉末を、電気絶縁性流体に分散してなる。
Electrorheological Fluid The electrorheological fluid of the present invention is made by dispersing the powder of the non-aqueous liquid treated dispersion particles detailed above in an electrically insulating fluid.

この発明において用いることができる電気絶縁性流体に
は、例えば、樹脂油、脂肪油、パラフィン系炭化水素、
ナフテン系炭化水素、オレフィン系炭化水素、塩素化油
、ンリコーンオイル、フッ素オイルなとかあり、好まし
いものとして、シリコンオイル、植物油、フッ素オイル
、塩化ジフェニル、鉱油、セバシン酸ジブチルなどかあ
る。
Electrically insulating fluids that can be used in this invention include, for example, resin oils, fatty oils, paraffinic hydrocarbons,
These include naphthenic hydrocarbons, olefinic hydrocarbons, chlorinated oils, licorice oils, and fluorine oils, and preferred ones include silicone oils, vegetable oils, fluorine oils, diphenyl chloride, mineral oils, and dibutyl sebacate.

また、上記の絶縁面に加えて、トルエン、ベンセンなど
の溶剤を用いることかでき、史に、比重調整のために上
記の液体を組合せて用いることができる。
Further, in addition to the above-mentioned insulating surface, a solvent such as toluene or benzene can be used, and a combination of the above-mentioned liquids can be used to adjust the specific gravity.

分散粒子の粉末と、電気絶縁性流体との配合割合は、用
途、種類などに応じて適宜選択することかできる。例え
ば、電気絶縁性流体100重量部に対して、分散粒子の
粉末を1〜40重量部、好ましくは、10〜30重量部
にすることができる。
The blending ratio of the dispersed particle powder and the electrically insulating fluid can be appropriately selected depending on the application, type, etc. For example, the amount of dispersed particle powder can be 1 to 40 parts by weight, preferably 10 to 30 parts by weight, based on 100 parts by weight of the electrically insulating fluid.

分散粒子の粉末の電気絶縁性流体への分散は、種々の方
法で実施することかできる。そのような方法として、振
動ミル、ボールミルなどの手段がある。
Dispersion of the powder of dispersed particles into an electrically insulating fluid can be accomplished in a variety of ways. Examples of such methods include vibration mills and ball mills.

この発明において、分散粒子以外に、電気絶縁性流体に
1」的に応じて種々の添加物を含めることができる。
In this invention, in addition to the dispersed particles, various additives can be included depending on the electrically insulating fluid.

〔作 用〕[For production]

上記に述べた技術的構成を有するこの発明では、理論的
に必ずしも明らかではないが、多価アルコールなどの非
水液で表面処理した分散粒子が、電気絶縁性流体に分散
されているので、分散粒子に導電性か付与され、外部電
界によってその分散液の粘性が著しく変動する現象は、
いわゆるウィンズロ効果を示す。
In this invention having the above-mentioned technical configuration, although it is not necessarily theoretically clear, dispersed particles whose surface has been treated with a non-aqueous liquid such as polyhydric alcohol are dispersed in an electrically insulating fluid. The phenomenon in which conductivity is imparted to particles and the viscosity of the dispersion changes significantly due to an external electric field is
This shows the so-called Winslow effect.

〔発明の効果〕〔Effect of the invention〕

この発明により次の効果を得ることかできる。 With this invention, the following effects can be obtained.

請求項]による電気粘性流体では、分散質表面か非水液
で処理されているので、外部電界によってその分散液の
粘性か著しく変動し、従来の水吸着に比べ電界強度の変
化の割合に対して粘度変化の割合が大きい。
In the electrorheological fluid according to claim 1, since the surface of the dispersoid is treated with a non-aqueous liquid, the viscosity of the dispersion varies significantly depending on the external electric field, and compared to conventional water adsorption, the viscosity of the dispersion varies significantly compared to the rate of change in electric field strength. The rate of viscosity change is large.

請求項2および3による電気粘性流体では、処理液とし
て高沸点の多価アルコールを用いるので高温における蒸
気圧は水に比べて著しく低く、分散質としてセルロース
か用いられるので、顕著なウィンズロ効果を示し、より
良好な耐熱性を有する電気粘性流体を得ることかできる
In the electrorheological fluid according to claims 2 and 3, since a polyhydric alcohol with a high boiling point is used as the processing liquid, the vapor pressure at high temperatures is significantly lower than that of water, and since cellulose is used as the dispersoid, a remarkable Winslow effect is exhibited. , an electrorheological fluid with better heat resistance can be obtained.

C実施例〕 この発明を例を示して具体的に説明する。C Example] This invention will be specifically explained by showing an example.

実施例] セルロース粒子(MERCK社製、Avuce1233
1、商標)に対してグリセリン(和光純薬製、特級)を
1.3.5.10,15、および20重量%、下記の方
法で吸着させた。
Examples] Cellulose particles (manufactured by MERCK, Avuce1233
1.3.5.10, 15, and 20% by weight of glycerin (manufactured by Wako Pure Chemical Industries, Ltd., special grade) were adsorbed on Glycerin (trademark) by the following method.

セルロース粒子を100℃、2時間以上乾燥して分散粒
子原料として調製した。また、非水液としてのグリセリ
ンを所定の割合でメチルアルコール(和光純薬製、特級
)で希釈し、前記の乾燥セルロースを浸漬し、撹拌後に
、80℃のオーブン中でメチルアルコールを除去した。
Cellulose particles were dried at 100°C for 2 hours or more to prepare a raw material for dispersed particles. Further, glycerin as a non-aqueous liquid was diluted with methyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., special grade) at a predetermined ratio, and the dried cellulose was immersed therein, and after stirring, the methyl alcohol was removed in an oven at 80°C.

得られたセルロースの分散粒子のグリセリン吸@量を天
秤で確認後、得られたセルロースの分散粒子をシリコー
ンオイル(信越シリコーン製、K F 96、粘度、1
0cs)中に分散して粒子ニオイルの重量比が30ニア
0の分散液を振動ミルで撹拌して調製した。
After checking the amount of glycerin absorbed by the obtained cellulose dispersed particles using a balance, the obtained cellulose dispersed particles were mixed with silicone oil (manufactured by Shin-Etsu Silicone, K F 96, viscosity: 1
A dispersion liquid having a weight ratio of 30 niOcs) was prepared by stirring with a vibrating mill.

得られたこの発明による電気粘性液体を、第1図に示す
測定装置を用いて、電界強度変化による粘度変化を測定
した。
The viscosity change of the obtained electrorheological liquid according to the present invention due to the change in electric field strength was measured using the measuring device shown in FIG.

第2図に、グリセリン吸着量と、電界強度変化による粘
度変化の関係を示す。この図より、分散粒子に対して3
重量%以上、より好ましくは4重量%以上、最も好まし
くは5重量%以上の吸着量であることかわかる。
FIG. 2 shows the relationship between the adsorbed amount of glycerin and the viscosity change due to the change in electric field strength. From this figure, it can be seen that 3
It can be seen that the adsorption amount is at least 4% by weight, more preferably at least 4% by weight, and most preferably at least 5% by weight.

更に、得られたこの発明による電気粘性液体(15%吸
着量)について、105°Cの耐熱試験をした。その結
果を第3図に示す。このグラフより、害られた電気粘性
流体は、顕著なウィンズロ効果を示し、また、高温の条
件で放置された電気粘性流体も特性が劣化することかな
いことか分かる。
Furthermore, the obtained electrorheological liquid (15% adsorption amount) according to the present invention was subjected to a heat resistance test at 105°C. The results are shown in FIG. From this graph, it can be seen that the damaged electrorheological fluid exhibits a remarkable Winslow effect, and that the characteristics of the electrorheological fluid left under high temperature conditions do not deteriorate.

比較例 非水液で表面処理せず、水を空気中で約5重量%吸着さ
せたこと以外、実施例1と同様に電気粘性液体を調製し
、耐熱試験をした。
Comparative Example An electrorheological liquid was prepared in the same manner as in Example 1, except that the surface was not treated with a non-aqueous liquid and about 5% by weight of water was adsorbed in the air, and a heat resistance test was conducted.

その結果を第3図に示す。この結果から、数時間で劣化
し始めて耐熱性に劣ることか分かる。
The results are shown in FIG. From this result, it can be seen that it begins to deteriorate in a few hours and has poor heat resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で用いたδ1り定装置の概略図、第2図
は、グリセリン吸着量と、電界強度変化による粘度変化
の関係を示すグラフ、第3図は実施例1および比較例で
得られた電気粘性液体の耐熱試験の結果を示すグラフで
ある。 出m1人代理人  佐  藤  −雄 第1図
Figure 1 is a schematic diagram of the δ1 determination device used in the examples, Figure 2 is a graph showing the relationship between the adsorbed amount of glycerin and viscosity changes due to changes in electric field strength, and Figure 3 is a schematic diagram of the δ1 determination device used in the examples. It is a graph showing the results of a heat resistance test of the obtained electrorheological liquid. Figure 1: 1 representative, Mr. Sato

Claims (1)

【特許請求の範囲】 1、非水液で表面処理した分散粒子を、電気絶縁性流体
に分散してなる電気粘性流体。 2、非水液が、多価アルコールからなる、請求項1記載
の電気粘性流体。 3、分散粒子がセルロースである、請求項1または2記
載の電気粘性流体。 4、分散粒子に吸着されている非水液の吸着量が、分散
粒子に対して3重量%以上である、請求項1、2または
3記載の電気粘性流体。 5、電気絶縁性流体が、シリコンオイル、植物油、フッ
素オイル、塩化ジフェニル、鉱油、セバシン酸ジブチル
、トルエン、またはベンゼンから選ばれた少なくとも1
種の流体である、請求項1、2、3または4記載の電気
粘性流体。
[Claims] 1. An electrorheological fluid obtained by dispersing dispersed particles whose surface has been treated with a non-aqueous liquid in an electrically insulating fluid. 2. The electrorheological fluid according to claim 1, wherein the non-aqueous liquid comprises a polyhydric alcohol. 3. The electrorheological fluid according to claim 1 or 2, wherein the dispersed particles are cellulose. 4. The electrorheological fluid according to claim 1, 2 or 3, wherein the amount of the non-aqueous liquid adsorbed on the dispersed particles is 3% by weight or more based on the weight of the dispersed particles. 5. The electrically insulating fluid is at least one selected from silicone oil, vegetable oil, fluorine oil, diphenyl chloride, mineral oil, dibutyl sebacate, toluene, or benzene.
5. The electrorheological fluid of claim 1, 2, 3 or 4, which is a seed fluid.
JP63108281A 1988-04-30 1988-04-30 Electrorheological fluid Expired - Lifetime JP2573994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108281A JP2573994B2 (en) 1988-04-30 1988-04-30 Electrorheological fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108281A JP2573994B2 (en) 1988-04-30 1988-04-30 Electrorheological fluid

Publications (2)

Publication Number Publication Date
JPH01278598A true JPH01278598A (en) 1989-11-08
JP2573994B2 JP2573994B2 (en) 1997-01-22

Family

ID=14480671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108281A Expired - Lifetime JP2573994B2 (en) 1988-04-30 1988-04-30 Electrorheological fluid

Country Status (1)

Country Link
JP (1) JP2573994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284595A (en) * 1988-05-12 1989-11-15 Tonen Corp Electroviscous fluid excellent in high-temperature stability and response

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646093A (en) * 1987-06-29 1989-01-10 Asahi Chemical Ind Electrical viscous fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646093A (en) * 1987-06-29 1989-01-10 Asahi Chemical Ind Electrical viscous fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284595A (en) * 1988-05-12 1989-11-15 Tonen Corp Electroviscous fluid excellent in high-temperature stability and response

Also Published As

Publication number Publication date
JP2573994B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
Yang et al. Thermal and rheological properties of carbon nanotube-in-oil dispersions
US5087382A (en) Electroviscous fluid
Ponmozhi et al. Thermodynamic and transport properties of CNT-water based nanofluids
JP2625488B2 (en) Electrorheological fluid
JPH01278598A (en) Electroviscous fluid
JPH0335095A (en) Electroviscous fluid
JPH0489893A (en) Electro-rheological fluid
Sakurai et al. Suspension of layered particles: an optimum electrorheological fluid for dc applications
JPH01278599A (en) Production of electroviscous fluid
US5779880A (en) Carbonaceous powder to be dispersed in electrorheological fluid and electrorheological fluid using the same
JPH0366799A (en) Production of electrically viscous fluid
JPH03166295A (en) Electro-viscous fluid having improved dispersibility
JPH03160094A (en) Easily dispersible electroviscous fluid
Awua et al. Investigation of thermal conductivity of palm kernel fiber nanofluid using de-ionized water and ethylene glycol mixed at ratio of 50: 50 and 60: 40
US20010015421A1 (en) Electro-rheological fluid comprising dried water-soluble starch as a conductive particle
JP2699404B2 (en) Electrorheological fluid
JPH04164996A (en) Electroviscous fluid
CN109679724B (en) Lubricant, method for preparing the same, and method for reducing viscosity of fluid
JPH0384093A (en) Electro-viscous fluid
JPH01236291A (en) Electroviscous fluid
JP3115672B2 (en) Manufacturing method of electrorheological fluid composition
RU2663299C1 (en) Method of producing magnetic oil
JPH11349978A (en) Electroviscous fluid
JPH03139599A (en) Electroviscous fluid
Shul'Man et al. Effect of structure formation in a constant electric field on the thermal conductivity of a suspension of aerosil in cetane