JPH01278252A - Multipolar linear dc motor - Google Patents

Multipolar linear dc motor

Info

Publication number
JPH01278252A
JPH01278252A JP10571588A JP10571588A JPH01278252A JP H01278252 A JPH01278252 A JP H01278252A JP 10571588 A JP10571588 A JP 10571588A JP 10571588 A JP10571588 A JP 10571588A JP H01278252 A JPH01278252 A JP H01278252A
Authority
JP
Japan
Prior art keywords
core
movable
motor
thrust
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10571588A
Other languages
Japanese (ja)
Inventor
Fumio Tabata
文夫 田畑
Hidenori Sekiguchi
英紀 関口
Toru Kamata
徹 鎌田
Yuji Sakata
裕司 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10571588A priority Critical patent/JPH01278252A/en
Publication of JPH01278252A publication Critical patent/JPH01278252A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a thrust irregularity generated by the end effect of a movable core by varying the shape of the core. CONSTITUTION:The movable core 5' and the coil 4 of a linear DC motor are attached to a movable section 2 of a stage or the like, and a direct-move guiding mechanism for guiding in the moving direction of the motor of the stage is provided. Magnets 7 for generating alternating magnetic field are aligned on a stationary core 6 at the stationary side, and its magnetic flux is circulated through a path passing the core 5' and again returning to the magnet 7. A current flowing to the coil 4 is switched in response to the direction of the magnetic flux to generate a thrust of the same direction. In this motor, the core 5' is formed at both end faces in a crest shape, and when the length of one magnet 7 is represented by (a), the height of the crest represented by (x) is set to (a)-2a. Thus, thrust irregularity generated by the end effect of the core 5' is reduced to easily position it accurately.

Description

【発明の詳細な説明】 〔概要〕 多極型リニア直流モータに関し、 可動部コアの端効果で生じる推力ムラを低減させる多極
型リニアDCモータを提供することを目的とし、 可動部コアが移動し、且つ可動部コアと磁石の間に吸引
力が働くような多極型リニア直流モータであって、前記
可動部コアの進行方向と直交する該可動コアの端を山形
にして構成する。
[Detailed Description of the Invention] [Summary] Regarding a multi-polar linear DC motor, an object of the present invention is to provide a multi-polar linear DC motor that reduces thrust unevenness caused by the end effect of the movable part core. The present invention is also a multi-polar linear DC motor in which an attractive force acts between the movable core and the magnet, and the end of the movable core that is orthogonal to the traveling direction of the movable core is formed into a chevron shape.

〔産業上の利用分野〕[Industrial application field]

本発明は多極型リニア直流(D C)モータに関する。 The present invention relates to a multipolar linear direct current (DC) motor.

多極型のリニアDCモータは、従来の回転モータとボー
ルネジを組み合わせたアクチュエータと比較して、直接
推力が発生でき、且つ長い可動範囲を非接触で駆動可能
であることから、精密位置決めを必要とするX−Xステ
ージ等に用いられている。
Compared to conventional actuators that combine a rotary motor and a ball screw, multi-pole linear DC motors can generate direct thrust and drive over a long range of motion without contact, so they require precise positioning. It is used for the XX stage etc.

上記多極型のリニアDCモータは、可動部コアとコイル
を取り付けたステージ等の可動部と、固定部コアの上に
交番磁界を発生する磁石を並べた固定部とで構成されて
いる。この構成では、可動部のコアが固定部の磁石の総
合の長さより短いため、可動部のコアの端効果によって
生じる推力ムラが高精度位置決めを阻害するので、推力
ムラの少ないものが要望される。
The above multi-polar linear DC motor is composed of a movable part such as a stage to which a movable part core and a coil are attached, and a fixed part in which magnets that generate an alternating magnetic field are arranged on the fixed part core. In this configuration, since the core of the movable part is shorter than the total length of the magnets in the fixed part, the uneven thrust caused by the end effect of the core of the movable part impedes high-precision positioning, so something with less uneven thrust is desired. .

〔従来の技術〕[Conventional technology]

第5図は従来の片側式多極型リニアDCモータの図であ
る。
FIG. 5 is a diagram of a conventional single-sided multipolar linear DC motor.

図において、コイル可動型片側式(片側のみに固定部コ
アを持つ)リニアDCモータ1は、可動部2と固定部3
より構成され、可動部2にはコイル4と可動部コア5が
あり、固定部3には固定部コア6の上に、交番磁界を発
生する磁石7が並べられている。磁石7から出た磁束は
可動部コア5を通って再び磁石7に戻る径路を循環する
。又コイル4に流す電流を磁束の向きに応じて切り換え
ることにより、同一方向の推力を発生することができる
構成である。
In the figure, a coil movable one-sided linear DC motor 1 (having a fixed core on only one side) has a movable part 2 and a fixed part 3.
The movable part 2 has a coil 4 and a movable part core 5, and the fixed part 3 has magnets 7 arranged on the fixed part core 6 to generate an alternating magnetic field. The magnetic flux emitted from the magnet 7 circulates through a path that passes through the movable part core 5 and returns to the magnet 7 again. Furthermore, by switching the current flowing through the coil 4 according to the direction of the magnetic flux, thrust in the same direction can be generated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記片側式多極型リニアDCモータ1は、可動部2に直
接コイル4と可動部コア5を固定できるので、コイル4
の支持が容易で且つ支持部の剛性を高くとれる特徴があ
る。しかし、この方式は、可動部コア5が固定部3の磁
石7の総合の長さより短いため、可動部コア5の端が一
枚の磁石7の中間でとどまる様な力が働くと云う欠点が
ある。
In the single-sided multipolar linear DC motor 1, the coil 4 and the movable part core 5 can be directly fixed to the movable part 2.
It has the characteristics that it is easy to support and the rigidity of the support part can be high. However, this method has the disadvantage that since the movable part core 5 is shorter than the total length of the magnets 7 of the fixed part 3, a force is applied such that one end of the movable part core 5 stays in the middle of one magnet 7. be.

即ち、固定部3の磁石7に対して、第6図(a)のよう
な相対位置にある可動部コア5が、第6図(b)の様に
図の左方に少し変位すると、端効果により元の第6図(
a)の状態に戻らうとするFlの様な力が働き、又第6
図(C)の様に逆方向に変位しても、やはり元の第6図
(a)の状態に戻らうとするF2のような力が働くこと
になる。
That is, when the movable part core 5, which is in a relative position as shown in FIG. 6(a) with respect to the magnet 7 of the fixed part 3, is slightly displaced to the left in the figure as shown in FIG. 6(b), the end Due to the effect, the original Figure 6 (
A force like Fl acts to return to the state of a), and the 6th
Even if it is displaced in the opposite direction as shown in Fig. 6(C), a force like F2 will still act to return it to its original state as shown in Fig. 6(a).

この力は、結果的にリニアDCモータの推力ムラとなっ
て、高精度位置決めを阻害していたと云う問題があった
There was a problem in that this force resulted in uneven thrust of the linear DC motor, which obstructed high-precision positioning.

そこで、本発明は可動部コアの端効果によって生じる推
力ムラを#、滅する多極型リニアDCモータを提供する
ことを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a multipolar linear DC motor that eliminates thrust unevenness caused by the end effect of the movable core.

〔課題を解決するための手段〕[Means to solve the problem]

前記問題点は、第1図(a)(b)に示されるように、
可動部コア5′が移動し、且を可動部コア5′と磁石7
の間に吸引力が働くような多極型リニア直流モーフであ
って、 前記可動部コア5′の進行方向と直交する該可動コア5
′の端を山形にした本発明の多極型リニア直流モータに
よって解決される。
The above problem is as shown in FIGS. 1(a) and (b).
The movable part core 5' moves, and the movable part core 5' and the magnet 7
The movable core 5 is a multipolar linear DC morph in which an attractive force acts between the movable core 5' and the movable core 5'.
This problem is solved by the multi-polar linear DC motor of the present invention, in which the ends of ``are chevron-shaped.''

〔作用〕[Effect]

本発明は可動部コア5′の端を山形とし、端効果による
推力ムラを低減している。その推力ムラの発生原理につ
いて説明する。簡単のため、第3図、(a)のように1
個の磁石7の幅と同じ幅を持つ可動部コア5を考える。
In the present invention, the end of the movable core 5' is formed into a chevron shape to reduce thrust force unevenness due to the end effect. The principle behind the occurrence of thrust unevenness will be explained. For simplicity, 1 as shown in Figure 3 (a)
Consider a movable core 5 having the same width as each magnet 7.

第3図(a)のように可動部コア5の中心が磁石7の境
目にある状態では、可動部コア5に流れ込む磁束■と可
動部コア5から流れ出す磁束■が釣り合っており、且つ
可動部コア5の両側から漏れる磁束■′■′も等しいこ
とから、可動部コア5は両側から等しいFlで引かれ、
左右いずれの方向へも動かない。
When the center of the movable core 5 is located at the boundary between the magnets 7 as shown in FIG. 3(a), the magnetic flux ■ flowing into the movable core 5 and the magnetic flux ■ flowing from the movable core 5 are balanced, Since the magnetic flux ■'■' leaking from both sides of the core 5 is also equal, the movable part core 5 is pulled by the same Fl from both sides,
It does not move in either direction.

しかし、第3図(b)のように可動部コア5が右へ僅か
に変位すると、可動部コア5に流れ込む磁束■が減少す
るために、漏れ磁束■′が多くなる反面、可動部コア5
から流れ出す磁束■が多くなり、漏れ磁束■′が減少す
る。可動部コア5を左右に引張る力は、はぼ漏れ磁束の
磁束密度の2乗に比例して大きくなるから、可動部コア
5を左側へ引張る力Flは、可動部コア5を右側に引張
る力F2に比べて大きくなる。従って、可動部コア5は
、第3図(a)の状態に戻る様な力を受けることになる
。可動部コア5が逆側にずれた場合も同様である。
However, when the movable core 5 is slightly displaced to the right as shown in FIG.
The amount of magnetic flux (■) flowing out from the magnetic flux increases, and the leakage magnetic flux (■') decreases. The force that pulls the movable core 5 left and right increases in proportion to the square of the magnetic flux density of the leakage magnetic flux, so the force Fl that pulls the movable core 5 to the left is the force that pulls the movable core 5 to the right. It is larger than F2. Therefore, the movable core 5 is subjected to a force that returns it to the state shown in FIG. 3(a). The same applies when the movable part core 5 shifts to the opposite side.

もし、第3図(b)の状態のまま、可動部コア5をさら
に右へ変位させると、第3図(c)の状態となり、今度
は別の磁石7から磁束■′が流れ込む様になる。この状
態でも可動部コア5を左側に引張る力F1は、右側に引
張るF2に比べて大きいが、右側から可動部コア5に流
れ込む磁束■′が多くなるために、FlとF2の差が小
さくなってくる。
If the movable core 5 is further displaced to the right while maintaining the state shown in FIG. 3(b), the state shown in FIG. 3(c) will occur, and magnetic flux ■' will now flow from another magnet 7. . Even in this state, the force F1 that pulls the movable core 5 to the left is larger than the force F2 that pulls it to the right, but since the magnetic flux ■' flowing into the movable core 5 from the right side increases, the difference between Fl and F2 becomes smaller. It's coming.

そして、第3図(d )の状態まで可動部コア5を変位
させると、可動部コア5に左右から流れ込む磁束■′■
′が等しくなり、可動部コア5は第3図(a)と同様に
等しい力Fl′で左右に引張られることになる。ところ
が、この状態から可動部コア5が左右僅かに変位すれば
、左右の変位した方の引張り力が大きくなり、やはり第
3図(a)の状態に戻ってしまい、図(a)の状態が安
定になる。よって、この第3図(a)の状態に戻る力が
、推力ムラとなる。
Then, when the movable core 5 is displaced to the state shown in FIG. 3(d), magnetic flux flows into the movable core 5 from the left and right.
' become equal, and the movable core 5 is pulled left and right by the same force Fl', as in FIG. 3(a). However, if the movable core 5 is slightly displaced to the left or right from this state, the tensile force on the displaced side becomes larger, and the state returns to the state shown in FIG. 3(a). It becomes stable. Therefore, the force that returns to the state shown in FIG. 3(a) causes thrust unevenness.

いま、第3図(a”)の状態を真上から見ると、第4図
のようになり、漏れ磁束■′■′が可動部コア5の進行
方向8と一致しているため、この漏れ磁束■′■′によ
る引張力の差IF八−FB  Iが、推力に影響を与え
ることがわかる。従って、漏れ磁束■′■′の向きを、
進行方向となるべく直角に近くなる様にすればよい。
Now, if the state shown in Fig. 3 (a'') is viewed from directly above, it becomes as shown in Fig. 4, and since the leakage magnetic flux ■'■' coincides with the moving direction 8 of the movable part core 5, this leakage It can be seen that the difference in the tensile force IF8-FB I due to the magnetic flux ■'■' affects the thrust. Therefore, the direction of the leakage magnetic flux ■'■' is
What is necessary is to make it as close to perpendicular to the direction of travel as possible.

本発明は、可動部コア5の端面を山形にし、この漏れ磁
束■′■′の方向が進行方向と異なる様にしたものであ
る。第1図(a)(b)にその原理を示す。可動部コア
5′の端を山形にすることにより、漏れ磁束の向きは■
′■′の様に変化する。従って、漏れ磁束■′■′によ
る引張り力FA、FBの向きは、同図に示すように進行
方向から角度θだけ傾けているから、推力に与える影響
は、 l FA COS θ−FBCO5θ1となり、第4図
の従来例と比較してCOSθ倍だけ推力ムラが低減され
たことになる。なお、可動部コア5′の端を山形にする
ことにより、進行方向と直交する方向にも力FAsin
 θ−FBsin θを受けるが、これは山形の両辺で
相殺し合うために、可動部コア5′には力がかからない
ことになる。
In the present invention, the end face of the movable core 5 is formed into a chevron shape so that the direction of this leakage magnetic flux is different from the direction of movement. The principle is shown in FIGS. 1(a) and 1(b). By making the end of the moving part core 5' into a chevron shape, the direction of the leakage magnetic flux is
Changes like ′■′. Therefore, the directions of the tensile forces FA and FB due to the leakage magnetic flux ■'■' are tilted by an angle θ from the traveling direction as shown in the same figure, so the influence on the thrust is l FA COS θ−FBCO5θ1, and the Compared to the conventional example shown in FIG. 4, the thrust force unevenness is reduced by a factor of COSθ. Note that by making the end of the movable core 5' into a chevron shape, the force FAsin can also be applied in the direction perpendicular to the direction of movement.
θ-FBsin θ is applied, but since this cancels out each other on both sides of the chevron, no force is applied to the movable portion core 5'.

よって、可動部コア5′の端を山形にすることにより、
端効果で生じる推力ムラを低減することができる。
Therefore, by making the end of the movable part core 5' into a chevron shape,
Thrust force unevenness caused by end effects can be reduced.

〔実施例〕〔Example〕

本発明の一実施例を第2図に示す。なお、全図を通し共
通する符号は同一対象物を示す。
An embodiment of the present invention is shown in FIG. Note that common symbols throughout all figures indicate the same objects.

第2図において、可動部コア5′は両端面を山形とし、
実施例ではこの山形を、例えば磁石7の一枚分の長さを
a、山形の高さx=a〜2aとした。この可動部コア5
′とコイル4は、ステージ等の可動部2に取り付けられ
ており、さらに、ステージ等には多極型リニアDCモー
タの進行方向に案内する直動案内機構(図示せず)が設
けられている。又固定側には固定部コア6の上に、交番
磁界を発生する磁石7が並べられており、磁石7から出
た磁束は、可動部コア5′を通って再び磁石に戻る径路
を循環している。又各コイル4に流す電流を磁束の向き
に応じて切り換えることにより、同一方向の推力を発生
することができる。
In FIG. 2, the movable part core 5' has both end faces in a chevron shape,
In the embodiment, the length of this chevron is, for example, a for one magnet 7, and the height of the chevron is x=a to 2a. This moving part core 5
' and the coil 4 are attached to a movable part 2 such as a stage, and the stage etc. is further provided with a linear guide mechanism (not shown) that guides the multipolar linear DC motor in the traveling direction. . Furthermore, on the fixed side, magnets 7 that generate an alternating magnetic field are arranged above the fixed part core 6, and the magnetic flux emitted from the magnet 7 circulates through a path that passes through the movable part core 5' and returns to the magnet. ing. Further, by switching the current flowing through each coil 4 according to the direction of the magnetic flux, thrust in the same direction can be generated.

この多極型リニアDCモータにおいて、可動部コア5′
の両端を山形にすることにより、実験においても、実施
前では±530gfあった推力ムラを、±50 gfに
まで低減することができた。
In this multipolar linear DC motor, the movable part core 5'
By making both ends into a chevron shape, it was possible to reduce the thrust unevenness, which was ±530 gf before the experiment, to ±50 gf in the experiment.

従って、可動部コアの端効果によって生じる推力ムラが
低減されることにより、可動部側にあるX−Yステージ
等の高精度位置決めが容易になる。
Therefore, the thrust force unevenness caused by the end effect of the movable part core is reduced, thereby facilitating high-precision positioning of the X-Y stage and the like on the movable part side.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、可動部コアの端効
果によって生じる推力ムラを、コア形状を変化させると
いう簡単な方法で低減できる。実験において、従来の推
力ムラを約90%程度低減できた。
As explained above, according to the present invention, thrust force unevenness caused by the end effect of the movable part core can be reduced by a simple method of changing the core shape. In experiments, it was possible to reduce the conventional thrust unevenness by about 90%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の詳細な説明する図、 第2図は本発明の一実施例を説明する図、第3図(a)
〜(d)は推力ムラの発生原理を説明する図、 第4図は漏れ磁束の向きを説明する図である。 第5図は従来の片側式多極形リニアDCモータの図、 第6図(a)〜(c)はリニアDCモータの推力ムラを
説明する図である。 図において、 1′は多極型リニアDCモータ、 2は可動部、 3は固定部、 4はコイル、 5′は可動部コア、 6は固定部コア、 (α) 推力乙うグ撥5t/!、理2言先萌す6図第 5 図 ン扇成植オJ用自ざとg先明す6図 第 4 図 イ菱釆の片伯・j武多決セ對ニアDc七−りn図第 5
 図 堆〃変1方向 CC) リニ?DC七−か夕え力Zうを8?Hすう2第 6 図
Figures 1 (a) and (b) are diagrams explaining the present invention in detail, Figure 2 is a diagram explaining one embodiment of the present invention, and Figure 3 (a)
-(d) are diagrams explaining the principle of occurrence of thrust unevenness, and FIG. 4 is a diagram explaining the direction of leakage magnetic flux. FIG. 5 is a diagram of a conventional single-sided multipolar linear DC motor, and FIGS. 6(a) to (c) are diagrams illustrating thrust unevenness of the linear DC motor. In the figure, 1' is a multipolar linear DC motor, 2 is a moving part, 3 is a fixed part, 4 is a coil, 5' is a moving part core, 6 is a fixed part core, (α) Thrust force 5t/ ! , Logic 2 word first moesu figure 6 figure 5 Fifth
Figure 1 change 1 direction CC) Lini? DC 7-or Yue Riki Z Uwo 8? Hsu 2 Figure 6

Claims (1)

【特許請求の範囲】  可動部コア(5′)が移動し、且つ可動部コア(5′
)と磁石(7)の間に吸引力が働くような多極型リニア
直流モータであって、 前記可動部コア(5′)の進行方向と直交する該可動コ
ア(5′)の端を、山形にしたことを特徴とする多極型
リニア直流モータ。
[Claims] The movable part core (5') moves and the movable part core (5'
) and a magnet (7), the end of the movable core (5') perpendicular to the direction of movement of the movable core (5'), A multi-polar linear DC motor characterized by its chevron shape.
JP10571588A 1988-04-28 1988-04-28 Multipolar linear dc motor Pending JPH01278252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10571588A JPH01278252A (en) 1988-04-28 1988-04-28 Multipolar linear dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10571588A JPH01278252A (en) 1988-04-28 1988-04-28 Multipolar linear dc motor

Publications (1)

Publication Number Publication Date
JPH01278252A true JPH01278252A (en) 1989-11-08

Family

ID=14415033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10571588A Pending JPH01278252A (en) 1988-04-28 1988-04-28 Multipolar linear dc motor

Country Status (1)

Country Link
JP (1) JPH01278252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265656A (en) * 1988-08-31 1990-03-06 Matsushita Electric Ind Co Ltd Coreless linear motor
JP2002165434A (en) * 2000-11-21 2002-06-07 Yaskawa Electric Corp Coreless linear motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265656A (en) * 1988-08-31 1990-03-06 Matsushita Electric Ind Co Ltd Coreless linear motor
JP2002165434A (en) * 2000-11-21 2002-06-07 Yaskawa Electric Corp Coreless linear motor

Similar Documents

Publication Publication Date Title
JP2534586B2 (en) Small single-phase electromagnetic actuator
US6236124B1 (en) Linear motor
JP4508999B2 (en) Linear drive
JPS5827749B2 (en) linear motor
US4905031A (en) Axial magnetic actuator
JPH01278252A (en) Multipolar linear dc motor
KR101798548B1 (en) Linear motor
US5296767A (en) Efficient magnetic motor armatures
US4908592A (en) Electromagnetic actuating device
WO2004059821A1 (en) Driving unit
JPH0435984B2 (en)
WO2019234980A1 (en) Linear motor and lens barrel equipped with same, and image capturing device
US4847726A (en) Magnetic actuator
JP2879934B2 (en) Stage equipment
JPH02193562A (en) Actuator
JP2004096952A (en) Compound voice coil type linear motor
JP2002136084A (en) Power generating method of generator
JPS62114463A (en) Linear motor
JPH0564413A (en) Linear actuator
KR0122980Y1 (en) A voice coil motor
JPH02108995A (en) Linear motor stage mechanism
KR0121687Y1 (en) Voice coil motor
JP2005176591A (en) Hybrid motor
JPH0125309B2 (en)
JPH01286767A (en) Movable magnet linear dc motor