JPH01278224A - Conductive anomaly monitoring device for transformative equipment - Google Patents

Conductive anomaly monitoring device for transformative equipment

Info

Publication number
JPH01278224A
JPH01278224A JP63103937A JP10393788A JPH01278224A JP H01278224 A JPH01278224 A JP H01278224A JP 63103937 A JP63103937 A JP 63103937A JP 10393788 A JP10393788 A JP 10393788A JP H01278224 A JPH01278224 A JP H01278224A
Authority
JP
Japan
Prior art keywords
infrared
tank
infrared camera
radiation thermometer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63103937A
Other languages
Japanese (ja)
Inventor
Yoichi Oshita
陽一 大下
Takeshi Hashimoto
橋本 斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63103937A priority Critical patent/JPH01278224A/en
Publication of JPH01278224A publication Critical patent/JPH01278224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the measurement error that will be caused by the direction of measurement, by providing a polarization means to polarize the incident infrared rays to the front face of an infrared camera of an infrared radiation thermometer. CONSTITUTION:When localized heating is caused due to conduction anomaly to a conductor section 7, the temperature above the anomorous section of a tank 6 is raised through insulating gas 8. In order to detect the conduction anomaly, the surface temperature distribution of the tank 6 is measured with an infrared radiation thermometer 13 composed of an infrared camera 3 and a processor 12. A Brewsten window 15 as a polarization means 14 of incident infrared rays is provided by a fitting frame 16 to the front face of the infrared camera 3. The polarized components (S waves) vertical to the plane which contains the line connecting the tank 6 to the infrared camera 3 and the normal of tank surface in the tank 6 are removed, but only the polarized components (P waves) parallel to that plane are caused to pass, so that the P waves are received with the infrared camera 3 and the temperature distribution is found.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遮断器の通電異常監視装置に係り、特に、赤外
線放射温度計を用いて、タンク表面温度分布を測定し内
部の局所過熱を検出するものの測定精度向上に好適な装
置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a circuit breaker energization abnormality monitoring device, and in particular, uses an infrared radiation thermometer to measure the temperature distribution on the tank surface and detect local overheating inside. The present invention relates to a device suitable for improving the measurement accuracy of things that are measured.

〔従来の技術〕[Conventional technology]

ガス遮断器、ガス絶縁開閉機器の内部に遮断部の不完全
投入等何らかの原因で通電異常が生じたとき、赤外線放
射温度計を用いてタンク表面温度を測定し、異常な温度
上昇から通電異常に基づく居所過熱を検出する手法は公
知であり、例えば。
When an abnormality in energization occurs due to some reason such as incomplete closing of the circuit breaker inside a gas circuit breaker or gas-insulated switchgear, an infrared radiation thermometer is used to measure the tank surface temperature, and the abnormal temperature rise is detected as an abnormality in energization. Techniques for detecting home overheating based on are known, e.g.

昭和62年電気学会全国大会講演Nα1331等にも述
べられている。この様な測定法では、後述のように、放
射率の角度分布が測定誤差として影響することが明らか
となった。この角度分布そのものについては、既に、R
,Siegel他−名著Hem1sphere Pub
lishing Corp発行ThermalRadi
ation Heat Transfer(1981)
等に考え方が明らかにされている。
It is also mentioned in Lecture Nα1331 of the National Conference of the Institute of Electrical Engineers of Japan in 1988. In such a measurement method, it has become clear that the angular distribution of emissivity affects the measurement error, as will be described later. Regarding this angular distribution itself, we have already explained that R
, Siegel et al. - Masterpiece Hem1sphere Pub
ThermalRadi published by lishing Corp
ation Heat Transfer (1981)
The way of thinking is clarified.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の赤外線放射温度計を用いてガス遮断器のタンク表
面温度分布を測定すると背景温度の影響により測定誤差
が大きくなる問題が生じた。一般に、ガス遮断器は変電
所構内に屋外設置された水平方向の円筒形状であり、赤
外線放射温度計の計測部であるカメラは地面上に設置さ
れるため、水平方向からガス遮断器を望むことが多くな
る。このとき、特に、晴天時に測定誤差が大きくなり、
タンク上部の温度が低く観測される。この現象を詳細に
検討した結果、次の二つが原因となっていることが判っ
た。一つは、タンク表面からの赤外線放射率がタンク表
面の法線力゛向からの角度に依存し、法線方向では大き
く、斜め方向では小さくなる特性によるものである。実
際に放射率を測定した例を第2図に示す。第2図(a)
の横軸角度0は第2図(b)に示す。タンク表面1の法
線方向2に対する赤外線カメラ3の望む方向4のなす角
度である。縦軸放射率εは同温度の黒体として扱かった
とき、放射される赤外線エネルギ理論値に対する実際に
放射されるエネルギの比である。
When measuring the temperature distribution on the tank surface of a gas circuit breaker using the above-mentioned infrared radiation thermometer, a problem arose in that the measurement error became large due to the influence of the background temperature. Generally, gas circuit breakers have a horizontal cylindrical shape and are installed outdoors within the premises of a substation, and the camera that measures the infrared radiation thermometer is installed on the ground, so it is impossible to view the gas circuit breaker from the horizontal direction. will increase. At this time, the measurement error becomes large, especially when the sky is clear.
The temperature at the top of the tank is observed to be low. As a result of a detailed study of this phenomenon, it was found that the following two causes were involved. One is that the infrared emissivity from the tank surface depends on the angle from the normal force direction of the tank surface, and is large in the normal direction and small in the oblique direction. An example of actual emissivity measurement is shown in Figure 2. Figure 2(a)
The horizontal axis angle 0 is shown in FIG. 2(b). This is the angle formed by the desired direction 4 of the infrared camera 3 with respect to the normal direction 2 of the tank surface 1. The emissivity ε on the vertical axis is the ratio of the actually radiated energy to the theoretical value of the radiated infrared energy when treated as a black body at the same temperature.

放射率が角度によらず一定の場合は、温度が既知の同一
材質の物体で測定した結果等から適切な手法によって求
めた補正値を掛けることにより真値を求めることは簡単
であり、通常測定器内にその機能は内蔵されている。第
2図に示す特性に対しては、通常同筒形状である遮断器
のタンク表面では測定位置毎に放射率が異なるので、そ
のプロセスは簡単ではない。第二の原因は環境温度の反
射である。物体の反射率は放射率の1に対する補数であ
り、 反射率=1−放射率 の関係で表わされ、反射率が大きくなる程環境から来る
赤外線の反射が大きくなる。このとき、例えば、屋内測
定のように周囲温度と被測定物の温度の差が小さいとき
は誤差が小さいが、晴天時の屋外測定では青空の温度は
赤外線的に見て等価温度−20°〜−40℃と低く被対
象物との温度差が大きいので反射による誤差は大きくな
る。水平配置の円筒形タンクを一定する場合、タンク表
面に対し赤外線カメラの望む角度の浅くなるタンク 、
上部で誤差が大きく、実際よりも低温に観測される。
If the emissivity is constant regardless of the angle, it is easy to find the true value by multiplying it by a correction value obtained by an appropriate method from the results of measurements on objects made of the same material whose temperature is known, and it is usually difficult to measure. The function is built into the device. Regarding the characteristics shown in FIG. 2, the process is not simple because the emissivity differs depending on the measurement position on the tank surface of the circuit breaker, which is usually in the same cylindrical shape. The second cause is a reflection of the environmental temperature. The reflectance of an object is the complement of 1 of the emissivity, and is expressed by the relationship: reflectance = 1 - emissivity, and the greater the reflectance, the greater the reflection of infrared rays coming from the environment. At this time, for example, when the difference between the ambient temperature and the temperature of the object to be measured is small, as in indoor measurements, the error is small, but in outdoor measurements on sunny days, the temperature of the blue sky is the equivalent temperature -20° to Since the temperature difference between the temperature and the target object is as low as -40° C., the error due to reflection becomes large. When a horizontally arranged cylindrical tank is fixed, the desired angle of the infrared camera to the tank surface becomes shallower,
The error is large in the upper part, and the temperature is observed to be lower than it actually is.

本発明の目的は測定する方向によって生じる測定誤差を
極力小さくし、精度よくタンクの表面温度分布を測定す
ることによって内部の通電異常の検出精度を向上するこ
とにある。
An object of the present invention is to minimize measurement errors caused by measurement directions and to improve the accuracy of detecting internal energization abnormalities by accurately measuring the surface temperature distribution of a tank.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、赤外線カメラの前面に偏光フィルタを挿入
し、被測定点と赤外線カメラを結ぶ線、及び、被測定点
におけるタンク表面の法線を含む面に垂直な偏光成分(
S波)を除去し、その面に平行な偏光成分(P波)のみ
通過させ、P波を赤外線カメラで受光して温度分布を求
めることにより達成される。
The above purpose is to insert a polarizing filter in front of the infrared camera, and to connect the line connecting the measurement point and the infrared camera, and the polarization component (
This is achieved by removing the S wave), passing only the polarized light component parallel to the surface (P wave), and receiving the P wave with an infrared camera to determine the temperature distribution.

〔作用〕[Effect]

物質表面における赤外線の挙動は既に明らかにされてお
り、例えば、 R,Siegel他−名著tlemis
phere Publishing Corp、発行T
hermalRadiation Heat Tran
sfer (1981)等に記されている。それによる
とP波、及び、S波の反射率P/(θ)、P上(0)は
それぞれ 但し、n2は媒体2(ここではタンク表面塗料)の屈折
率、nlは媒体1 (ここでは大気)の屈折率。
The behavior of infrared rays on material surfaces has already been clarified, for example, by R. Siegel et al.
here Publishing Corp, Publisher T
medical radiation heat tran
Sfer (1981) and others. According to this, the reflectance of P wave and S wave is P/(θ) and P (0) are respectively, where n2 is the refractive index of medium 2 (tank surface paint in this case), nl is medium 1 (in this case refractive index of the atmosphere).

θは第2図(b)で定義したものと同一の角度である。θ is the same angle as defined in FIG. 2(b).

偏りのない等方的な赤外線、いわゆる、非偏光に対する
反射率ρ (θ)は ρ(θ)=−(ρ〃(θ)+ρ工(θ))であるから、
これらの関係を表わすと第3図のようになる。なお、屈
折率の値は遮断器塗料では経験的にnz/nt=1.5
  とすると実測値とよく一致するので、ここではその
値を用いた。図中曲線a、b、QはP波、S波、非偏光
に対応する放射率、それぞれ1−ρ //(θ)、1−
ρ1(θ)。
Since the reflectance ρ (θ) for unbiased isotropic infrared light, so-called non-polarized light, is ρ (θ) = - (ρ〃 (θ) + ρ(θ)),
These relationships are shown in Figure 3. In addition, the value of the refractive index for circuit breaker paint is empirically determined as nz/nt=1.5.
Since it agrees well with the actual measured value, that value was used here. Curves a, b, and Q in the figure are emissivities corresponding to P waves, S waves, and unpolarized light, respectively, 1-ρ // (θ) and 1-
ρ1(θ).

1−ρ(θ)に対応している。赤外線放射温度計を用い
た通常の測定では曲線Cに基づいて測定していることに
なり、放射率0.9 以上となるのは角度62度以下、
0.8 以上となるのは角度72度以下の範囲に対応し
ている。これは、例えば、被測定物の温度が20℃、背
景温度が一20℃のとき、前述の補正を施して誤差約2
℃、及び5℃で測定できる範囲に対応している。赤外線
カメラの前面に偏光フィルタを設け、P波のみ入射する
構成にすると放射率の角度分布が第3図曲aaに改善さ
れ上述の範囲はそれぞれ75度、79度までそれぞれ1
3度及び7度広がる。この結果、円筒形遮断器タンクを
望む赤外線カメラの視野の中で上述の放射率を下廻わる
領域はそれぞれ30%及び40%に縮小され、等価的に
タンク周辺部での放射率を上げることができ、タンク表
面からの放射エネルギの低下を防ぎ、環境からくる赤外
線の反射を低下させることにより、タンク表面の温度分
布測定精度を向上することができる。
1-ρ(θ). In normal measurements using an infrared radiation thermometer, measurements are taken based on curve C, and emissivity of 0.9 or higher is at an angle of 62 degrees or less.
A value of 0.8 or more corresponds to an angle of 72 degrees or less. For example, when the temperature of the object to be measured is 20°C and the background temperature is 120°C, the error will be approximately 2 after applying the above correction.
℃, and corresponds to the range that can be measured at 5℃. If a polarizing filter is installed in front of the infrared camera to allow only P waves to enter, the angular distribution of emissivity will be improved to curve aa in Figure 3, and the above ranges will be reduced by 1 to 75 degrees and 79 degrees, respectively.
Spread 3 degrees and 7 degrees. As a result, in the field of view of the infrared camera looking at the cylindrical circuit breaker tank, the areas below the above emissivity are reduced to 30% and 40%, respectively, which equivalently increases the emissivity around the tank. By preventing a drop in radiant energy from the tank surface and reducing the reflection of infrared rays coming from the environment, it is possible to improve the accuracy of temperature distribution measurement on the tank surface.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。図は
ガス遮断器のタンク表面温度分布を赤外線放射温度計に
より測定する一般的な場合の全体構成を示す、遮断器i
(断面)はタンク6内に導体部7が絶縁支持され、°絶
縁性ガス8が気密封入されている。タンク6は脚9架台
10により地面11上に設置されている。導体部7に通
電異常が生じ局部過熱が生じる゛と絶縁性ガス8を介し
てタンク6の異常部上方の温度が上昇する。これを検出
するため、赤外線カメラ3.及び、処理装置12よりな
る赤外線放射温度計13により、タンク6の表面温度分
布を測定している。赤外線放射温度計13は市販品等、
通常、入手可能なもので精度上は充分であり、本例のよ
うに、可搬式として定例の巡視で測定する方法の他、固
定式にして要部の温度を、常時、監視する方法もある。
An embodiment of the present invention will be described below with reference to FIG. The figure shows the overall configuration of a typical case where the tank surface temperature distribution of a gas circuit breaker is measured using an infrared radiation thermometer.
(Cross section) shows that a conductor portion 7 is insulated and supported in a tank 6, and an insulating gas 8 is hermetically sealed. The tank 6 is installed on the ground 11 by legs 9 and a pedestal 10. When an abnormal current flow occurs in the conductor portion 7 and local overheating occurs, the temperature above the abnormal portion of the tank 6 rises via the insulating gas 8. In order to detect this, an infrared camera 3. Furthermore, the surface temperature distribution of the tank 6 is measured by an infrared radiation thermometer 13 made up of the processing device 12. The infrared radiation thermometer 13 is a commercially available product, etc.
Generally, the ones that are available are sufficient in terms of accuracy, and in addition to the method of using a portable type to measure during regular patrols as in this example, there is also a method of using a fixed type to constantly monitor the temperature of important parts. .

この場合は、処理装置12の出力をホストコンピュータ
に接続し、無人で温度変化をモニタする方法も採用され
る。赤外線カメラ3の前面には入射赤外線の偏光手段1
4としてブリュースタ窓15が取付枠16により設けら
れている。偏光手段14には、他に、ワイヤグリッド式
、ビームスプリツタ式1/4波長板式等の方式もあるが
、比較的大口径のものが作り易いという意味で、ここで
はブリュースタ窓形のものを選んだ。いずれの場合にも
赤外線カメラ3の感応する赤外線領域(ここでは8〜1
3μm)の透過率を考慮しておく必要があり、ここでは
ジンクセレナイド系の材料を用いている。ブリュースタ
窓の取付方向は回転可変の構成として微調整しながら測
定するのが便利であるが、タンク表面からみたP波が赤
外線カメラに入射する向きで使用することにより、本発
明の効果が得られる。偏光手段を設けてS波を除去した
こと、及び、偏光手段の透過率により赤外線放射温度計
ユの指示値が変わるがこれについては代表的な参照点で
熱電対等の直接的測定手段による測定値と赤外線放射温
度計13の指示値が一致するような補正値を求めておく
べきであり、実用的には赤外線放射温度計に内蔵されて
いる放射率補正機能に換算した放射率として入力するの
が簡単である。
In this case, a method may also be adopted in which the output of the processing device 12 is connected to a host computer and temperature changes are monitored unattended. In front of the infrared camera 3 is a polarizing means 1 for incident infrared rays.
4, a Brewster window 15 is provided by a mounting frame 16. There are other methods for the polarizing means 14, such as a wire grid type, a beam splitter type, and a quarter wavelength plate type, but the Brewster window type is used here because it is easy to make one with a relatively large diameter. I chose. In either case, the infrared region to which the infrared camera 3 is sensitive (here, 8 to 1
It is necessary to take into consideration the transmittance of 3 μm), and a zinc selenide-based material is used here. Although it is convenient to make measurements while finely adjusting the mounting direction of the Brewster window as it is configured to be rotatable, the effects of the present invention can be obtained by using it in the direction in which the P waves viewed from the tank surface are incident on the infrared camera. It will be done. The value indicated by the infrared radiation thermometer changes depending on the polarization means used to remove S waves and the transmittance of the polarization means, but the value measured by direct measurement means such as a thermocouple at a typical reference point. It is necessary to find a correction value that matches the indicated value of the infrared radiation thermometer 13.Practically speaking, it is best to input the converted emissivity into the emissivity correction function built into the infrared radiation thermometer. is easy.

第4図は他の実施例を示す。本発明では前述のように、
±5℃の精度でタンク表面の傾斜79度の範囲迄測定で
きる。一般に、本発明では通電異常に敏感に反応するタ
ンク上部の温度を正確に測定することが必要である。図
では赤外線カメラ3を変電所構内の鉄橋17等を利用し
て図中に示す遮断器旦を望む方向4の方線2に対する角
度θ′を79度以下、従って、伏角11度以上に設定し
タンク上部が上記の条件を満たし、正しく測定できるよ
うにしたものである0本例では、高所に赤外線カメラ3
を設置したことにより広範囲に変電所構内を望め、−台
の赤外線カメラ3で多くの変電機器18を監視すること
ができる。本実施例では赤外線カメラ3の向き、伏角と
ともに偏光手段1土の脱着及び回転(すなわち入射偏光
の偏波面の制御)は遠隔制御可能にしておくのが望まし
い。
FIG. 4 shows another embodiment. In the present invention, as described above,
It can measure up to a 79 degree slope of the tank surface with an accuracy of ±5℃. Generally, in the present invention, it is necessary to accurately measure the temperature in the upper part of the tank, which sensitively reacts to an abnormality in energization. In the figure, the infrared camera 3 is set using a railway bridge 17 or the like in the substation premises, and the angle θ' of the direction 4 looking toward the circuit breaker shown in the figure with respect to the normal line 2 is set to 79 degrees or less, and therefore the inclination angle is 11 degrees or more. In this example, where the upper part of the tank satisfies the above conditions and allows for accurate measurements, three infrared cameras are installed at a high place.
By installing the substation, the substation premises can be seen over a wide area, and many substation devices 18 can be monitored using the infrared cameras 3. In this embodiment, it is desirable that the direction and inclination of the infrared camera 3 as well as the attachment/detachment and rotation of the polarizing means 1 (that is, control of the plane of polarization of the incident polarized light) can be remotely controlled.

第5図は偏光手段1土の取付法に関する異なる実施例で
ある。赤外線カメラ主の構成は、一般に、窓19回転ミ
ラーからなる走査系20.レンズ21.検出器22より
なる。本例では、偏光手段14を検出器22前面に挿看
しており、このことにより、口径の小さい偏光手段を適
用することができる6本実施例でも、偏光手段1土は回
転制御可能、及び、脱着#御可能とした方が良く、望ま
しくは、処理装置のキーボードより入カキ−により制御
できる様にするのが良い。
FIG. 5 shows a different embodiment of how to attach the polarizing means. The main configuration of an infrared camera is generally a scanning system 20 consisting of a window 19 and a rotating mirror. Lens 21. It consists of a detector 22. In this example, the polarizing means 14 is inserted in front of the detector 22, so that even in the sixth embodiment where a polarizing means with a small diameter can be applied, the polarizing means 1 can be rotated and controlled. It is better to make it possible to attach/detach it, and desirably, it is better to make it possible to control it by input keys from the keyboard of the processing device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、測定する方向によって生じる測定誤差
を極力小さくし、精度よくタンクの表面温度分布を測定
することができる。
According to the present invention, it is possible to minimize measurement errors caused by measurement directions and to accurately measure the surface temperature distribution of a tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成図、第2図は本発
明の根拠となる実測結果を示す線図、第3図は本発明の
根拠となる理論的背景を示す線図、第4図は本発明の他
の実施例の全体構成図、第5図は本発明の他の実施例の
部分断面図である。 3・・・赤外線カメラ、6・・・タンク、13・・・赤
外線放射温度計、14・・・偏光手段、18・・・変電
機器、19・・・窓、20・・・走査系、21・・・レ
ンズ、22・・・検出器。 第1図 第2図 内患O 第4図 第5図 20  2F   74
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, FIG. 2 is a diagram showing actual measurement results that are the basis of the present invention, and FIG. 3 is a diagram showing the theoretical background that is the basis of the present invention. FIG. 4 is an overall configuration diagram of another embodiment of the invention, and FIG. 5 is a partial sectional view of another embodiment of the invention. 3... Infrared camera, 6... Tank, 13... Infrared radiation thermometer, 14... Polarizing means, 18... Substation equipment, 19... Window, 20... Scanning system, 21 ...Lens, 22...Detector. Figure 1 Figure 2 Case O Figure 4 Figure 5 20 2F 74

Claims (1)

【特許請求の範囲】 1、変電機器の内部に生じた通電異常による発熱を赤外
線放射温度計を用いてタンク表面温度分布を測定するこ
とにより異常な温度上昇を検出するものにおいて、 前記赤外線放射温度計の赤外線カメラの前面に入射赤外
線を偏波する偏光手段を設けたことを特徴とする変電機
器の通電異常監視装置。 2、特許請求の範囲第1項において、 前記変電機器に対し、前記赤外線カメラを伏角11度以
上の角度で見下す位置に設置したことを特徴とする変電
機器の通電異常監視装置。 3、窓、走査系、レンズ、検出器からなる赤外線カメラ
を備えたものにおいて、 前記レンズと前記検出器の間に偏光手段を回転可能、脱
着可能に設置したことを特徴とする赤外線放射温度計。
[Scope of Claims] 1. In a device for detecting abnormal temperature rise by measuring the temperature distribution on the tank surface using an infrared radiation thermometer to detect heat generated due to an abnormality in current flow occurring inside the substation equipment, the infrared radiation temperature 1. An energization abnormality monitoring device for substation equipment, characterized in that a polarizing means for polarizing incident infrared rays is provided in front of an infrared camera of the meter. 2. The power abnormality monitoring device for power substation equipment according to claim 1, wherein the infrared camera is installed at a position looking down on the substation equipment at an angle of inclination of 11 degrees or more. 3. An infrared radiation thermometer equipped with an infrared camera consisting of a window, a scanning system, a lens, and a detector, characterized in that a polarizing means is rotatably and detachably installed between the lens and the detector. .
JP63103937A 1988-04-28 1988-04-28 Conductive anomaly monitoring device for transformative equipment Pending JPH01278224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103937A JPH01278224A (en) 1988-04-28 1988-04-28 Conductive anomaly monitoring device for transformative equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103937A JPH01278224A (en) 1988-04-28 1988-04-28 Conductive anomaly monitoring device for transformative equipment

Publications (1)

Publication Number Publication Date
JPH01278224A true JPH01278224A (en) 1989-11-08

Family

ID=14367353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103937A Pending JPH01278224A (en) 1988-04-28 1988-04-28 Conductive anomaly monitoring device for transformative equipment

Country Status (1)

Country Link
JP (1) JPH01278224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593791A (en) * 2012-03-05 2012-07-18 安徽省电力公司宣城供电公司 Infrared safety protection fence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593791A (en) * 2012-03-05 2012-07-18 安徽省电力公司宣城供电公司 Infrared safety protection fence

Similar Documents

Publication Publication Date Title
King et al. Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors
Dowell et al. Submillimeter array polarimetry with Hertz
CN107907222A (en) A kind of thermal infrared imaging electric power facility fault locator and detection method
US5235399A (en) Temperature measuring apparatus utilizing radiation
CN107764401B (en) A kind of pair of circuit breaker internal conductor joint heating knows method for distinguishing
Driesse et al. Indoor and outdoor evaluation of global irradiance sensors
CN106052677B (en) Sun sensor and solar direction swear method for determination of amount
Yamada et al. Toward reliable industrial radiation thermometry
JPH01278224A (en) Conductive anomaly monitoring device for transformative equipment
Sun et al. A temperature-controlled mid-wave infrared polarization radiation source with adjustable degree of linear polarization
Zhang et al. Error Analysis of Relative Temperature Difference Discrimination Method for Infrared Temperature Measurement of Low Temperature Electrical Equipment
JP2017108586A (en) Solar cell module characteristics test apparatus
Hämäläinen et al. A multisensor pyranometer for determination of the direct component and angular distribution of solar radiation
US6531699B1 (en) Heat detector with a limited angle of vision
Nunak et al. Surrounding effects on temperature and emissivity measurement of equipment in electrical distribution system
Ladstein et al. Fast near‐infra‐red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders
JP2603102Y2 (en) Overheating monitoring device for electrical equipment
Shaw et al. Instrument effects in polarized infrared images
Yamada et al. A novel radiometric calibration of an infrared thermometer
Zhang et al. Review of the Theory and Application of Infrared Thermography in Transmission Line Monitoring and Equipment Monitoring
King et al. Outdoor test and analysis procedures for generating coefficients for the Sandia Array Performance Model
Salatino et al. On Stokes polarimeters for high precision CMB measurements and mm Astronomy measurements
Ulset et al. Dual-mode room temperature self-calibrating photodiodes approaching cryogenic radiometer uncertainty
Zhou et al. An optical voltage transducer based on radial polarization demodulation and four quadrant detection
Quintana et al. Recent advances in outdoor performance evaluation of pv systems