JPH01278029A - Insulating material for electronic circuit - Google Patents

Insulating material for electronic circuit

Info

Publication number
JPH01278029A
JPH01278029A JP63107323A JP10732388A JPH01278029A JP H01278029 A JPH01278029 A JP H01278029A JP 63107323 A JP63107323 A JP 63107323A JP 10732388 A JP10732388 A JP 10732388A JP H01278029 A JPH01278029 A JP H01278029A
Authority
JP
Japan
Prior art keywords
element out
oxide superconductor
wiring
same components
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63107323A
Other languages
Japanese (ja)
Inventor
Toshiharu Inoue
井上 俊春
Hajime Yuzurihara
肇 譲原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63107323A priority Critical patent/JPH01278029A/en
Publication of JPH01278029A publication Critical patent/JPH01278029A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Formation Of Insulating Films (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the matching property in respect to the ion mutual diffusion, the thermal expansion, etc., by a method wherein a specific oxide superconductor wiring material is provided with the same components but in a different composition. CONSTITUTION:An oxide superconductor wiring material represented by a formula I is provided with the same components but in a different composition. In formula I, R represents at least one element out of Sc, Y, La and lanthanide series, X represents at least one element out of IIa group in the periodic table, Z represents at least one element out of transition metallic elements, and D represents at least one element out of group VIa. Furthermore, the three dimensional wiring is composed of a substrate material 1, through hole connecting parts 2, conductor materials 3, insulation parts 4, protective film 5 and connecting terminals 6. As for the substrate 1 and the insulating parts 4 for the oxide superconductor wiring, Y2BaCuO5 which is in the same components but the different compositions from those of a superconductor YBa2Cu3O7-delta is applicable. Through these procedures, the matching property in respect to the ion material diffusion, the thermal expansion, etc., can be improved.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は酸化物超電導体と良好な整合性を有する電子回
路用絶縁材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an insulating material for electronic circuits that has good compatibility with oxide superconductors.

〔従来技術〕[Prior art]

近時における酸化物超電導体の開発はめざましいものが
あり、その臨界温度も急激に上昇した各種酸化物超電導
体が開発され、電子回路や印刷配線板の配線材料として
の使用が鋭意研究されている。これら酸化物超電導体を
配線材料として使用する利点は回路の高密度化、多層化
あるいは立体化が進むにつれて顕著になる。
The recent development of oxide superconductors has been remarkable, and various oxide superconductors with rapidly rising critical temperatures have been developed, and their use as wiring materials for electronic circuits and printed wiring boards is being intensively researched. . The advantages of using these oxide superconductors as wiring materials become more prominent as circuits become more dense, multilayered, or three-dimensional.

しかしながら、酸化物超電導体を用いて配線を行なうに
は、その基板となる。あるいは介在する層を形成する絶
縁層が必要とされるが、従来がら半導体プロセスで用い
られている絶縁材料1例えばSL化合物、耐熱性酸化物
、酸化物単結晶などではイオン拡散による劣化、熱膨張
係数の不一致であることなどでの理由で満足なものでは
なかった。
However, when wiring is performed using an oxide superconductor, it becomes the substrate. Alternatively, an insulating layer is required to form an intervening layer, but insulating materials conventionally used in semiconductor processes, such as SL compounds, heat-resistant oxides, and oxide single crystals, suffer from deterioration due to ion diffusion and thermal expansion. The results were not satisfactory due to factors such as mismatching of the coefficients.

〔目  的〕〔the purpose〕

本発明は高密度あるいは三次元などの電子回路において
、酸化物超電導体配線材とイオンの相互拡散や熱膨張な
どの点について整合性の良    −好な電子回路用絶
縁材料を提供することを目的とするものである。
An object of the present invention is to provide an insulating material for electronic circuits that has good compatibility with oxide superconductor wiring materials in terms of interdiffusion of ions, thermal expansion, etc. in high-density or three-dimensional electronic circuits. That is.

〔構  成〕〔composition〕

本発明の電子回路用絶縁材料は一般式RrXxZzDδ
 (ただし1式中RはSc、Y、La及びランタノイド
族の少なくとも1種の元素、Xは周期律表IIa族の少
なくとも1種の元素、Zは遷移金属元素の少なくとも1
種、DはVIa族の少なくとも1種の元素)で表わされ
る酸化物超電導体配線材料に対し、同種の成分ではある
が、異なった組成を有するものである。
The insulating material for electronic circuits of the present invention has the general formula RrXxZzDδ
(However, in formula 1, R is Sc, Y, La, and at least one element from the lanthanoid group, X is at least one element from Group IIa of the periodic table, and Z is at least one transition metal element.
Species D is the same type of component with respect to the oxide superconductor wiring material represented by at least one element of Group VIa, but has a different composition.

上記のような一般式で示される酸化物超電導体はr、x
、zの数値を変えることによって同一成分でもいくつか
の安定な半導体相あるいは絶縁体相が存在する。これら
については例として次の文献に記載されているが、でき
るだけ超電導相に近い組成のものを選択することが望ま
しく、これによって整合性を高めることができる。  
(D、G、Hinks、 L、Soderholm、 
D、W。
The oxide superconductor represented by the general formula above has r, x
By changing the values of , z, several stable semiconductor or insulator phases exist even with the same components. These are described as examples in the following literature, but it is desirable to select one with a composition as close to the superconducting phase as possible, thereby improving consistency.
(D, G, Hinks, L, Soderholm,
D.W.

Capone、 J、D、Jorgensen、  1
.に、5chuller。
Capone, J.D., Jorgensen, 1
.. 5chuller.

C,U、Segre、 K、Zhang and J、
D、Grace。
C., U., Segre, K., Zhang and J.
D.Grace.

Appl、 Phys、 Lett、50.1688(
1987)、)以下、実施例によって本発明をより詳し
く説明する。
Appl, Phys, Lett, 50.1688 (
(1987), ) The present invention will be explained in more detail below with reference to Examples.

第1図は立体配線を概念的に示し、第2図はその詳細な
断面図である。これらの図において、1は基板材料、2
はスルーホール接続部、3は導体材料、4は絶縁部、5
は保護膜、6は接続端子をそれぞれ示すものである。
FIG. 1 conceptually shows the three-dimensional wiring, and FIG. 2 is a detailed sectional view thereof. In these figures, 1 is the substrate material, 2
is a through-hole connection part, 3 is a conductive material, 4 is an insulating part, 5
6 indicates a protective film, and 6 indicates a connection terminal.

導体あるいは超電導体は、一般式RrXxZzDδにお
いて、Rのランタノイド族元素としてはYが、Iia族
元素XとしてはBa、Sr、Caが好ましく、遷移金属
ZとしてはCu、VIa族元素としてはOが好ましい、
特に例を挙げるならば、分子式でYBa、Cu30δ(
δ=6.9)で、結晶構造の斜方晶系の時、超電導性が
著しいことが知られている。導体あるいは超電導体は薄
膜あるいは層状バルクなどの形状でもって配線材(導体
材料)として応用することができる。
In the conductor or superconductor, in the general formula RrXxZzDδ, the lanthanide group element of R is preferably Y, the Iia group element X is preferably Ba, Sr, or Ca, the transition metal Z is preferably Cu, and the VIa group element is preferably O. ,
To give a particular example, the molecular formula is YBa, Cu30δ (
It is known that superconductivity is remarkable when the crystal structure is orthorhombic (δ=6.9). Conductors or superconductors can be used as wiring materials (conductor materials) in the form of thin films or bulk layers.

基板としてはガラス、セラミックス、S rTiOlな
どが一般に用いられ、層間絶縁層としては通常Siの酸
化物や窒化物などが用いられるが、酸化物超電導体配線
に対する基板や絶縁層として例えばYrBaxCuzO
δ(ここで、 r=2.0゜0.7≦X≦1.1.0.
8≦2≦1.1.4.5≦δ≦5.5)を用いることが
本発明の目的である。具体例としては超電導体YBa、
Cu、O□1と同成分ではあるが組成の異なったY、B
aCuO,を挙げることができる。以下、この組成の化
合物について説明を続ける6 従来の酸化物や窒化物、例えばS r T L O3#
アルミナ、Si、Si上の5102などを用いる場合に
代えて、回路基板としてY、BaCuO,を用いる時に
は焼結によりバルクとして形成するほか、スパッタリン
グなどの薄膜形成法、スクリーン印刷などの湿式の膜形
成法によることができる。焼結の場合の温度は820〜
910℃が適当である。この時の絶縁層は他の基板の上
に形成することのあるのは勿論である。しかして、基板
11上に電導性あるいは超電導性薄膜からなる導体第1
層12を堆積し、引き続きその上にY、BaCub、な
どの絶縁層13を約2μm厚に堆積する。
As the substrate, glass, ceramics, SrTiOl, etc. are generally used, and as the interlayer insulating layer, Si oxide or nitride is usually used, but as the substrate or insulating layer for oxide superconductor wiring, for example, YrBaxCuzO is used.
δ (where r=2.0°0.7≦X≦1.1.0.
It is an object of the present invention to use 8≦2≦1.1.4.5≦δ≦5.5). Specific examples include superconductor YBa,
Y and B have the same components as Cu and O□1 but have different compositions.
aCuO, can be mentioned. Below, we will continue to explain compounds with this composition.6 Conventional oxides and nitrides, such as S r T L O3#
Instead of using alumina, Si, 5102 on Si, etc., when using Y, BaCuO, etc. as a circuit board, in addition to forming it in bulk by sintering, thin film formation methods such as sputtering, wet film formation such as screen printing etc. It can be done by law. The temperature for sintering is 820~
910°C is suitable. Of course, the insulating layer at this time may be formed on another substrate. Therefore, a first conductor made of a conductive or superconducting thin film is placed on the substrate 11.
A layer 12 is deposited, followed by an insulating layer 13 of Y, BaCub, etc., approximately 2 μm thick.

次いで、リフトオフを目的とするアルミパターン15を
1μm厚にマスク蒸着による所定のパターンとして形成
し、さらにその上に導体第2層14を約2μm厚に堆積
させる(第3図(a))。
Next, an aluminum pattern 15 for the purpose of lift-off is formed to a thickness of 1 .mu.m as a predetermined pattern by mask vapor deposition, and a second conductor layer 14 is further deposited thereon to a thickness of about 2 .mu.m (FIG. 3(a)).

リフトオフの後、さらに2μm厚のY、BaCuO6膜
からなる絶縁層13を堆積させる(第3図(b))、次
いで、ドライエツチングのためのレジストパターン16
を形成する。この時、レジストパターン16の幅は導体
第1層の除去部の上に位置し、その除去部の幅よりも充
分に狭いものとする。したがって、ドライエツチングに
よるエッチ孔17は導体第1層12に達しても導体第2
層14との間にはY z B a Cuos絶縁層13
を残存させることができる(第3図(C))。レジスト
16を除去した後、導体第3層18を堆積し、この時形
成されるスルーホールが導体第1層12および第3層1
8を接続し、多層あるいは3次元電子回路配線の主要部
を構成することができる(第3図(d))。
After lift-off, an insulating layer 13 made of Y, BaCuO6 film with a thickness of 2 μm is further deposited (FIG. 3(b)), and then a resist pattern 16 for dry etching is deposited.
form. At this time, the width of the resist pattern 16 is positioned above the removed portion of the first conductor layer and is sufficiently narrower than the width of the removed portion. Therefore, even if the etch holes 17 formed by dry etching reach the first conductor layer 12,
A Y z B a Cuos insulating layer 13 is provided between the layer 14 and the Y z B a Cuos insulating layer 13 .
(Fig. 3(C)). After removing the resist 16, a third conductor layer 18 is deposited, and the through holes formed at this time connect the first conductor layer 12 and the third layer 1.
8 can be connected to form the main part of multilayer or three-dimensional electronic circuit wiring (FIG. 3(d)).

以上の手順で作製した回路について、Y28aCub、
層間の直流抵抗値を測定したところ、室温において、 
7.6XIO’ (Ω・am)であり、低温ではさらに
高抵抗になり、電導性あるいは超電導性の膜に対して充
分な絶縁性を示すことが認められた。
Regarding the circuit produced by the above procedure, Y28aCub,
When we measured the DC resistance value between the layers, at room temperature,
It was found that the resistance was 7.6XIO' (Ω·am), and the resistance became even higher at low temperatures, and that it exhibited sufficient insulating properties for conductive or superconducting films.

〔効  果〕〔effect〕

以上のような本発明の絶縁材料は多層や三次元の電子回
路における電導層や超電導層に介在させる絶縁層として
充分な絶縁性を有するとともに電導性や超電導層と同一
成分であるがその組成のみが異なるため、イオン相互拡
散や熱膨張などの点において整合性の良好な絶縁材料と
なり、高密度あるいは三次元電子回路の構成部材として
有用な材料が提供されるという効果を有する。
The insulating material of the present invention as described above has sufficient insulating properties as an insulating layer interposed between a conductive layer or a superconducting layer in a multilayer or three-dimensional electronic circuit, and has the same components as the conductive or superconducting layer, but only in its composition. Because of the difference in ions, it becomes an insulating material with good compatibility in terms of ion interdiffusion, thermal expansion, etc., and has the effect of providing a material useful as a component of high-density or three-dimensional electronic circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は立体配線を概念的に示す説明図である。 第2図は第1図の詳細な断面説明図である。 第3図は本発明の実施例における電子回路の作製工程を
示す説明図である。
FIG. 1 is an explanatory diagram conceptually showing three-dimensional wiring. FIG. 2 is a detailed cross-sectional explanatory diagram of FIG. 1. FIG. 3 is an explanatory diagram showing the manufacturing process of an electronic circuit in an example of the present invention.

Claims (1)

【特許請求の範囲】 1、一般式 RrXxZzDδ (ただし、式中RはSc、Y、La及びランタノイド族
の少なくとも1種の元素、Xは 周期律表IIa族の少なくとも1種の元素、 Zは遷移金属元素の少なくとも1種、Dは VIa族の少なくとも1種の元素) で表わされる酸化物超電導体配線材料に対し、同種の成
分ではあるが、異なった組成を有する電子回路用絶縁材
料。
[Claims] 1. General formula RrXxZzDδ (wherein R is Sc, Y, La, and at least one element from the lanthanide group, X is at least one element from group IIa of the periodic table, and Z is a transition An insulating material for electronic circuits having the same kind of components but a different composition from an oxide superconductor wiring material represented by: (at least one metal element, D is at least one group VIa element).
JP63107323A 1988-04-28 1988-04-28 Insulating material for electronic circuit Pending JPH01278029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63107323A JPH01278029A (en) 1988-04-28 1988-04-28 Insulating material for electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63107323A JPH01278029A (en) 1988-04-28 1988-04-28 Insulating material for electronic circuit

Publications (1)

Publication Number Publication Date
JPH01278029A true JPH01278029A (en) 1989-11-08

Family

ID=14456150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63107323A Pending JPH01278029A (en) 1988-04-28 1988-04-28 Insulating material for electronic circuit

Country Status (1)

Country Link
JP (1) JPH01278029A (en)

Similar Documents

Publication Publication Date Title
EP0415750B1 (en) Thin-film capacitors and process for manufacturing the same
EP0410373B1 (en) Method for forming a superconducting circuit
US5229360A (en) Method for forming a multilayer superconducting circuit
EP0484248B1 (en) A novel superconducting circuit and a process for fabricating the same
JPH01171247A (en) Structure of superconductor interconnection
EP0410374B1 (en) Superconductive multilayer circuit and its manufacturing method
CN1032268A (en) Superconductive device and manufacturing thereof
JPH01278029A (en) Insulating material for electronic circuit
US5856275A (en) Superconducting wiring lines and process for fabricating the same
JPH01183138A (en) Semiconductor device
JPS63271994A (en) Ceramic wiring substrate
JPH01126225A (en) Wiring material for electronic circuit
JPH0832244A (en) Multilayer wiring board
JP2565351B2 (en) Electronic circuit parts
JPH01302752A (en) Integrated circuit package
JPH0897360A (en) Thin film capacitor for multichip module
JPH0444280A (en) Manufacture of superconducting wiring
JPH01125957A (en) Superconductor device
JPS63245975A (en) Superconductor device
JP2747557B2 (en) Superconductor device
JPH04167578A (en) Superconductive circuit and manufacture thereof
JPH0744323B2 (en) Superconducting ceramic substrate
KR930009290B1 (en) Super conducting thick film
Brader et al. PECVD Oxide Step‐Coverage Considerations for Use as an Interlayer Dielectric in CMOS DLM Processing
JPH01179779A (en) Method for protecting multi-ply oxide superconductor