JPH01277809A - Production of spacer for optical communication cable - Google Patents

Production of spacer for optical communication cable

Info

Publication number
JPH01277809A
JPH01277809A JP63108349A JP10834988A JPH01277809A JP H01277809 A JPH01277809 A JP H01277809A JP 63108349 A JP63108349 A JP 63108349A JP 10834988 A JP10834988 A JP 10834988A JP H01277809 A JPH01277809 A JP H01277809A
Authority
JP
Japan
Prior art keywords
resin
spacer
mandrel
pressure
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63108349A
Other languages
Japanese (ja)
Other versions
JPH07117636B2 (en
Inventor
Tadashi Sato
忠 佐藤
Kazuji Sawara
佐原 一二
Tadashi Aoki
正 青木
Akira Shoji
庄司 昭
Tsutomu Endo
力 遠藤
Akitetsu Takahashi
高橋 昭哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63108349A priority Critical patent/JPH07117636B2/en
Publication of JPH01277809A publication Critical patent/JPH01277809A/en
Publication of JPH07117636B2 publication Critical patent/JPH07117636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a spacer section having good accuracy by extruding a resin which is passed through a throttling part provided in an annular shape in a resin passage from a mouthpiece in which plural projections rotate on the inside circumference, thereby forming a spacer provided with plural lines of core housing grooves. CONSTITUTION:An annular dike part 31 is provided to the intermediate part of a mandrel 30 in a resin passage 41 to form the throttling part 40. The resin past the throttling part 40 is extruded from the mouthpiece 12 which has the plural projects on the inside circumference and rotates to coat the resin on tension members 2 and to simultaneously provide plural lines of the optical core housing grooves 22 on the resin surface. The resin which flows in the form of layer is, therefore, throttled by the dike part 31 of the mandrel 30, by which the pressure is increased and the resin pressure of the annular body in a head is uniformized. The resin is thus coated uniformly on the tension members 2. The spacer section having high accuracy is thereby obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光通信ケーブルの製造、特に光フアイバ心線
を収納する光コア収納溝を外周に有するスペーサの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the manufacture of optical communication cables, and particularly to a method of manufacturing a spacer having an optical core storage groove on its outer periphery for storing an optical fiber core.

[従来の技術] 一般に、光通信ケーブルの構造として、スペーサ形、撚
り合せ形、ユニット形等が知られている。このうちスペ
ーサ形光ファイバケーブルは、スペーサの外周に設けた
溝内にファイバ心線(光コア)を収納し外力から保護す
る構造であり、12心以下の光フアイバケーブルに適す
る。
[Prior Art] Generally, the structures of optical communication cables include a spacer type, a twisted type, a unit type, and the like. Among these, the spacer-type optical fiber cable has a structure in which the fiber core (optical core) is housed in a groove provided on the outer periphery of the spacer and protected from external forces, and is suitable for optical fiber cables with 12 fibers or less.

通常、このスペーサ形光ファイバケーブルでは、ケーブ
ル布設時の張力に光ファイバが耐えられるようにするた
め、第3図に示すように、鋼線等の抗張力体(テンショ
ンメン/す2が、スペーサ21の中央に配置される。ま
た、スペーサ外周の光コア収納溝22を螺線状に形成し
てケーブル内の光フアイバ心線を撚り、ケーブルを曲げ
たときに光ファイバに過度な張力がかからないようにす
る。
Usually, in this spacer-type optical fiber cable, in order for the optical fiber to withstand the tension during cable installation, a tensile strength member (tension member 2) such as a steel wire is attached to the spacer 21 as shown in FIG. In addition, the optical core storage groove 22 on the outer periphery of the spacer is formed in a spiral shape to twist the optical fibers in the cable so that excessive tension is not applied to the optical fibers when the cable is bent. Make it.

従来のスペーサの製造方法の概要を、第4図を用いて説
明する。
An outline of a conventional spacer manufacturing method will be explained using FIG. 4.

まず、送り出しドラム1からテンションメンバ2を送り
出す、押出113にて、ポリエチレン(PE)或いはポ
リ塩化ビニル(pvc)等の樹脂をクロスヘツド4に押
し出すと共に、回転駆動装置6によりスプロケット5を
介して口金ホルダー11及び口金12を回転させる0回
転される口金12内を通って樹脂が押し出され、テンシ
ョンメンバ2に樹脂が被覆され、スペーサ21(第3図
)が形成される。その際、口金12の先端部内周に周方
向に複数側設けである突起12aにより、スペーサ21
の外周面には、第3図に示すような光コア収納溝22が
螺線状に形成される。押し出されたスペーサ21は、冷
却水槽7で冷却固化され、引取機8にて引き取られ、巻
取ドラム9に巻取られる。
First, the tension member 2 is sent out from the delivery drum 1. In the extrusion 113, resin such as polyethylene (PE) or polyvinyl chloride (PVC) is pushed out to the crosshead 4, and the rotary drive device 6 passes the sprocket 5 to the base holder. 11 and the base 12 are rotated. Resin is extruded through the interior of the base 12 which is rotated zero, and the tension member 2 is coated with the resin, forming a spacer 21 (FIG. 3). At this time, the spacer 21 is provided with a plurality of protrusions 12a on the inner periphery of the tip of the base 12 in the circumferential direction.
An optical core storage groove 22 as shown in FIG. 3 is formed in a spiral shape on the outer peripheral surface of the optical core. The extruded spacer 21 is cooled and solidified in a cooling water tank 7, taken up by a take-up machine 8, and wound up on a take-up drum 9.

上記押出ヘッド部分における押出しは、次のようにして
なされる。
Extrusion in the extrusion head section is performed as follows.

第1図において、まず、押出機3の押出スクリュー10
で樹脂が押出されてクロスヘツド4に流れ、樹脂流路1
4を通り、クロスして環状体となって流れ、口金12に
達する。引取機8で第1図の左方へ引取られているテン
ションメンバー2は、心金ホルダー13より入り、その
先端の心金20を抜け、口金12を通過して、押出ヘッ
ドよLJ 出る。このテンションメンバー2に、口金1
2の先端部において樹脂が被覆される。この場合、ベア
リング19によりフランジ17に回転可能に支承された
回転口金ホルダー11は、スプロケット5を介して回転
駆動装置6のモータと連結されており、モータを回転さ
せることにより回転口金ホルダー11及び口金12が一
体に回転する。
In FIG. 1, first, the extrusion screw 10 of the extruder 3
The resin is extruded and flows to the crosshead 4, and the resin flow path 1
4, crosses to form an annular body, and reaches the cap 12. The tension member 2, which is being pulled to the left in FIG. 1 by the pulling machine 8, enters the mandrel holder 13, passes through the mandrel 20 at its tip, passes through the mouthpiece 12, and exits the extrusion head. This tension member 2, base 1
The distal end of No. 2 is coated with resin. In this case, the rotary cap holder 11 rotatably supported on the flange 17 by a bearing 19 is connected to the motor of the rotation drive device 6 via the sprocket 5, and by rotating the motor, the rotary cap holder 11 and the cap are rotated. 12 rotate together.

従って、口金12から押出されるスペーサ21は、ヘリ
カル状の光コア収納溝22を有するテンションメンバ入
りスペーサの形で押出される。
Therefore, the spacer 21 extruded from the base 12 is extruded in the form of a tension member-containing spacer having a helical optical core storage groove 22.

尚、15.16は心金ホルダー13及フランジ17の固
定ボルト、18は回転パツキンである。
Note that 15 and 16 are fixing bolts for the mandrel holder 13 and flange 17, and 18 is a rotating gasket.

[発明が解決しようとする課題] しかし、押出スクリュー10で押出されてくる樹脂は、
樹脂通路14に流れクロスして層流するが、口金ホルダ
ー11及び口金12にかけて樹脂通路14内をストレー
トに流れる。このため、ヘッド内圧力、いわゆる環状体
樹脂圧力が均一でなくなり、押出されたスペーサ断面に
、光コア収納溝の溝倒れや、スペーサ断面形状の崩れ、
即ち肉厚、突起幅、突起高さ等の寸法の乱れ、偏肉等を
生じてしまう。
[Problem to be solved by the invention] However, the resin extruded by the extrusion screw 10 is
The resin flows across the resin passage 14 and forms a laminar flow, but flows straight through the resin passage 14 over the cap holder 11 and the cap 12. As a result, the pressure inside the head, the so-called annular body resin pressure, is no longer uniform, causing the optical core storage groove to collapse and the spacer cross-sectional shape to collapse.
That is, irregularities in dimensions such as wall thickness, protrusion width, protrusion height, etc., uneven thickness, etc. occur.

またスペーサ断面が偏心する場合もあるため、押出し速
度、つまり引取り速度を低速にしなければならず、生産
性が悪くなるという問題がある。
Furthermore, since the cross section of the spacer may be eccentric, the extrusion speed, that is, the take-up speed must be slowed down, resulting in a problem of poor productivity.

本発明は、前記問題点に鑑みてなされたもので、層流す
る環状体樹脂圧力を均一になし、溝倒れ、形状寸法の乱
れ、偏心等のない、精度良好なるスペーサ断面を得るこ
とができる光通信ケーブルのスペーサ製造方法を提供す
ることを目的とするものである。
The present invention was made in view of the above-mentioned problems, and it is possible to uniformize the laminar flow of the annular body resin pressure and obtain a spacer cross section with good accuracy without groove collapse, irregularities in shape and dimensions, eccentricity, etc. The object of the present invention is to provide a method for manufacturing a spacer for an optical communication cable.

[課題を解決するための手段] 本発明の光通信ケーブルのスペーサ製造方法は、樹脂通
路内の心金の中間部にリング状の堰堤部を設けて樹脂通
路内壁との間に絞り部を形成し、該絞り部を通させた樹
脂を内周に複数の突起を有し且つ回転する口金より押出
すことにより、テンションメンバに樹脂を被覆すると同
時に樹脂表面に複数条の光コア収納溝を付けてスペーサ
を押出し、冷却して引取る方法である。
[Means for Solving the Problems] The method for manufacturing a spacer for an optical communication cable of the present invention includes providing a ring-shaped dam in the middle part of a mandrel in a resin passage to form a constricted part between the inner wall of the resin passage and the inner wall of the resin passage. Then, by extruding the resin that has passed through the constriction part through a rotating base that has a plurality of protrusions on the inner periphery, the tension member is coated with the resin, and at the same time, a plurality of optical core storage grooves are formed on the resin surface. This method involves extruding the spacer, cooling it, and then taking it off.

[作用] 樹脂通路を経て環状体となって層流して来た樹脂は、心
金の堰堤部により半径方向外側へ移層され、絞り部を通
過することで絞られて圧力が上昇し、ヘッド内環状体の
樹脂圧力が均一になる。この圧力均一となった環状体樹
脂が口金に達して押出される。従って、口金の回転方向
に樹脂が無理なくスムーズに流れて、テンションメンバ
上に均一に被覆されるため、押出されたスペーサには、
スペーサ断面でみて溝崩れや、形状寸法の乱れ。
[Operation] The resin that has flowed laminarly through the resin passage in the form of an annular body is transferred to the outside in the radial direction by the dam of the mandrel, is squeezed by passing through the constriction part, and the pressure increases, causing the head to The resin pressure in the inner annular body becomes uniform. The annular resin whose pressure has become uniform reaches the die and is extruded. Therefore, the resin flows effortlessly and smoothly in the direction of rotation of the base and is evenly coated on the tension member, so that the extruded spacer has
When looking at the cross section of the spacer, groove collapse or irregularities in shape and dimensions.

偏心等が生じなくなる。Eccentricity etc. will not occur.

[実施例] ・以下、本発明を図示の実施例について述べる。[Example] - Hereinafter, the present invention will be described with reference to illustrated embodiments.

押出し方法及び手順は従来とほぼ同様であり、相違する
点は、従来の第1図の心金20に代えて、第2図に示す
心金30を使用している点にある。
The extrusion method and procedure are almost the same as the conventional method, and the difference is that a mandrel 30 shown in FIG. 2 is used in place of the conventional mandrel 20 shown in FIG.

第2図において、この心金30は、その中心から半径方
向にリング状に膨出させた堰堤部(ダム部)31を看し
、その半径は、口金オルグー11又は口金12の樹脂通
路14の内壁径よりも僅かに小さくし、堰堤部31と樹
脂通路内壁との間に、樹脂の通る狭い通路、即ち絞り部
40を形成している。心金30の堰堤部31の断面形状
は、その途中から基部に向けて徐々に肉厚にした心金拡
張部32.33として形成し、特に、その押出し方向上
流側の心金拡張部32の傾斜は、下流側の心金拡張部3
3の傾斜よりも、緩く形成している。これは、押出ヘッ
ド内において、樹脂通路14内を環状体となって層流し
て来る樹脂を環状に均一に円周外壁に移層させる移層部
41を前壁側に形成すると共に、絞り部40により絞ら
れた樹脂の圧力を開放する圧力開放部42を後壁側に形
成するためである。尚、この実施例の場合、心金30の
径が堰堤部31の両側で異なっており、押出し方向上流
側の径の方が下流側の径よりも大きくなっているが、必
ずしもえならせる必要はない。
In FIG. 2, this mandrel 30 has a dam part (dam part) 31 that bulges out in a ring shape in the radial direction from its center, and the radius is the diameter of the resin passage 14 of the mouthpiece 11 or the mouthpiece 12. It is made slightly smaller than the inner wall diameter, and a narrow passage through which the resin passes, that is, a constricted part 40 is formed between the dam part 31 and the resin passage inner wall. The cross-sectional shape of the dam part 31 of the mandrel 30 is formed as a mandrel expansion part 32,33 that gradually becomes thicker from the middle toward the base, and in particular, the mandrel expansion part 32 on the upstream side in the extrusion direction is The slope is the downstream mandrel extension 3.
It is formed with a gentler slope than No. 3. In the extrusion head, a layer transfer section 41 is formed on the front wall side to uniformly transfer the resin flowing laminarly in the resin passage 14 to the circumferential outer wall in an annular shape, and a constriction section is formed on the front wall side. This is to form a pressure release part 42 on the rear wall side to release the pressure of the resin squeezed by the pressure release part 40. In the case of this embodiment, the diameter of the mandrel 30 is different on both sides of the dam part 31, and the diameter on the upstream side in the extrusion direction is larger than the diameter on the downstream side, but it is not always necessary to make it elongated. There isn't.

上記の如く心金30が構成されているため、まず、押出
スクリュー10で押出された樹脂は、樹脂通路14を経
て環状体となって層流して来る際、心金拡張部32で形
成された樹脂通路14内の移層部41に案内されて、半
径方向外側の円周内壁へと移層される。そして、回転し
ている口金ホルダー11又は口金12の内壁近傍で、絞
り部40を通過する。即ち、移層された樹脂が、絞り4
0の狭い通路で絞られて圧力が上昇し、円周方向即ち環
状に均一な圧力になる。その後、圧力均一となった環状
体樹脂は、圧力開放部42に流れ、口金本体に達し、押
出される。
Since the mandrel 30 is configured as described above, first, when the resin extruded by the extrusion screw 10 passes through the resin passage 14 and flows laminarly into an annular body, the resin is formed in the mandrel expansion part 32. The resin is guided by the layer transfer section 41 in the resin passage 14 and transferred to the radially outer circumferential inner wall. Then, it passes through the constriction section 40 near the inner wall of the rotating cap holder 11 or the cap 12. That is, the layer-transferred resin is
The pressure is increased through a narrow passageway of zero, and becomes uniform in the circumferential direction, that is, in the annular shape. Thereafter, the annular body resin whose pressure has become uniform flows into the pressure release part 42, reaches the mouthpiece body, and is extruded.

このように、堰堤部40を設けて環状体樹脂圧力を周方
向に均一にすることにより、口金12の回転方向に樹脂
が無理なくスムーズに流れ、テンションメンバ2上に均
一に被覆される。従って、第3図に示すように、押出さ
れたスペーサ21には、スペーサ断面でみて溝崩れや、
形状寸法の乱れ、偏心等がなくなり、極めて高精度のス
ペーサ断面が得られる。
In this way, by providing the dam 40 to make the resin pressure of the annular body uniform in the circumferential direction, the resin flows effortlessly and smoothly in the rotational direction of the base 12, and the tension member 2 is coated uniformly. Therefore, as shown in FIG. 3, the extruded spacer 21 has groove collapse and
Disturbances in shape and dimensions, eccentricity, etc. are eliminated, and a spacer cross section with extremely high precision can be obtained.

[発明の効果] 本発明は、上記のように構成されているため、下記の効
果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it has the following effects.

(1)スペーサ長手方向に対しても溝崩れがなく、更に
偏心等のない、極めて良好なるスペーサ断面が得られ、
光通信ケーブルの性能も一段と向上する。
(1) An extremely good spacer cross section with no groove collapse in the longitudinal direction of the spacer and no eccentricity etc. can be obtained;
The performance of optical communication cables will also be further improved.

(2)スペーサ断面において、溝崩れがなくなったため
に、従来に比較して引取速度を数倍上昇でき、生産性を
極めて向上させることができる。
(2) Since there is no groove collapse in the spacer cross section, the take-up speed can be increased several times compared to the conventional method, and productivity can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスペーサを押出すヘッド組立体の断面図、第2
図は本発明で用いる堰堤部付の心金と樹脂通路部の断面
図、第3図は押出されたスペーサの断面図、第4図は従
来のスペーサ製造ライン装置を示すブロック図である。 図中、1は送り出しドラム、2はテンションメンバ、3
は押出機、4はクロスヘツド、5はスプロケット、6は
回転駆動装置、7は冷却水槽、8は引取機、9は巻取ド
ラム、10は押出スクリュー、IJは口金ホルダー、1
2は口金、13は心金ホルダー、14は樹脂通路部、1
9はベアリング、20は心金、21はスペーサ、22は
光コア収納溝、30は心金、31は堰堤部、32゜33
は心金拡張部、40は絞り部、41は移層部、42は圧
力開放部を示す。
Figure 1 is a cross-sectional view of the head assembly that pushes out the spacer;
The figure is a sectional view of a mandrel with a dam part and a resin passage used in the present invention, FIG. 3 is a sectional view of an extruded spacer, and FIG. 4 is a block diagram showing a conventional spacer production line apparatus. In the figure, 1 is the delivery drum, 2 is the tension member, and 3
is an extruder, 4 is a crosshead, 5 is a sprocket, 6 is a rotary drive device, 7 is a cooling water tank, 8 is a take-up machine, 9 is a winding drum, 10 is an extrusion screw, IJ is a mouth holder, 1
2 is a cap, 13 is a mandrel holder, 14 is a resin passage, 1
9 is a bearing, 20 is a mandrel, 21 is a spacer, 22 is an optical core storage groove, 30 is a mandrel, 31 is a dam, 32゜33
Reference numeral 40 indicates a mandrel expansion portion, 40 a constriction portion, 41 a layer transition portion, and 42 a pressure relief portion.

Claims (1)

【特許請求の範囲】[Claims] 1、樹脂通路内の心金の中間部にリング状の堰堤部を設
けて樹脂通路内壁との間に絞り部を形成し、該絞り部を
通させた樹脂を内周に複数の突起を有し且つ回転する口
金より押出すことにより、テンションメンバに樹脂を被
覆すると同時に樹脂表面に複数条の光コア収納溝を付け
てスペーサを押出し、冷却して引取ることを特徴とする
光通信ケーブルのスペーサ製造方法。
1. A ring-shaped dam is provided in the middle of the mandrel in the resin passage to form a constricted part between it and the inner wall of the resin passage, and the resin passed through the constricted part has a plurality of protrusions on the inner periphery. An optical communication cable characterized in that a tension member is coated with a resin by extrusion from a rotating base, and at the same time a plurality of optical core storage grooves are formed on the resin surface, a spacer is extruded, the spacer is cooled, and the cable is removed. Spacer manufacturing method.
JP63108349A 1988-04-30 1988-04-30 Optical communication cable spacer manufacturing equipment Expired - Lifetime JPH07117636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108349A JPH07117636B2 (en) 1988-04-30 1988-04-30 Optical communication cable spacer manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108349A JPH07117636B2 (en) 1988-04-30 1988-04-30 Optical communication cable spacer manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH01277809A true JPH01277809A (en) 1989-11-08
JPH07117636B2 JPH07117636B2 (en) 1995-12-18

Family

ID=14482453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108349A Expired - Lifetime JPH07117636B2 (en) 1988-04-30 1988-04-30 Optical communication cable spacer manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH07117636B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375417A (en) * 1989-04-28 1991-03-29 Toshiba Corp Heat pump heater
JPH04371741A (en) * 1991-06-20 1992-12-24 Matsushita Seiko Co Ltd Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375417A (en) * 1989-04-28 1991-03-29 Toshiba Corp Heat pump heater
JPH04371741A (en) * 1991-06-20 1992-12-24 Matsushita Seiko Co Ltd Air conditioner

Also Published As

Publication number Publication date
JPH07117636B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US3917500A (en) Method for the production of hollow bodies, especially large-diameter ducts from thermoplastic synthetic resin
US4033808A (en) Apparatus for the production of hollow bodies, especially large-diameter ducts from thermoplastic synthetic resin
US3526692A (en) Manufacture of wire reinforced plastic pipe
WO2022048558A1 (en) Air-blowing micro cable with spiral micro-flute, and manufacturing apparatus and manufacturing method therefor
US3375550A (en) Process and apparatus for manufacturing reinforced plastic tubing
CA1082435A (en) Process and device for producing multi-wire power cables or lines provided with reversing lay
JPS6223649B2 (en)
US5380472A (en) Method and apparatus for manufacturing chamber members for accepting light waveguides
JPH01277809A (en) Production of spacer for optical communication cable
JP3394413B2 (en) Method and apparatus for use in manufacturing optical cable slotted rods
JPH01277808A (en) Production of spacer for optical communication cable
JPH0231362B2 (en)
JP2007098793A (en) Manufacturing method for rubber tape-containing cord, and its manufacturing device
JP2593687B2 (en) Rotary dies for extrusion
JPS58102910A (en) Method and device for production of synthetic resin spacer for optical fiber cable
JP2007112048A (en) Method and apparatus for manufacturing cord-reinforced rubber tape
JPH0262507A (en) Production of spacer for optical cable
JP3212356B2 (en) Extrusion molding method of synthetic resin tube with inner spiral rib
JPH06130259A (en) Production of spacer for optical fiber cable
JP3266345B2 (en) Manufacturing method of self-supporting cable with slack
JP2864329B2 (en) Optical cable manufacturing method
JPH1090568A (en) Spacer for optical fiber cable and its production and production apparatus therefor
JPH08156069A (en) Extrusion mold for internally spirally ribbed synthetic resin tube
JPS63128928A (en) Method and apparatus for forming synthetic resin tube with spiral filament on inner surface
JP3641277B2 (en) Internal smooth corrugated pipe manufacturing equipment