JPH01275432A - Synthetic method of raw material powder for oxide superconductor - Google Patents

Synthetic method of raw material powder for oxide superconductor

Info

Publication number
JPH01275432A
JPH01275432A JP63101901A JP10190188A JPH01275432A JP H01275432 A JPH01275432 A JP H01275432A JP 63101901 A JP63101901 A JP 63101901A JP 10190188 A JP10190188 A JP 10190188A JP H01275432 A JPH01275432 A JP H01275432A
Authority
JP
Japan
Prior art keywords
water
raw material
material powder
component
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63101901A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
高田 善典
Kazuhiko Sawada
和彦 澤田
Shigenori Suketani
重徳 祐谷
Makoto Hiraoka
誠 平岡
Satoshi Marukawa
丸川 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP63101901A priority Critical patent/JPH01275432A/en
Publication of JPH01275432A publication Critical patent/JPH01275432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce raw material powder for Bi-Si-Ca-Cu-O oxide superconductor by a coprecipitation method by dissolving Bi component in water as water- soluble chelate compd. CONSTITUTION:The Bi component such as Bi(NO3)3.5H2O is chelated with a complexing agent and dissolved in water as water-soluble chelate compd. As the complexing agent, org. acid such as gluconic acid, sugar such as mannitol and aminocarboxylic acid such as EDTA are used. Then, each aq. soln. of water-soluble salt of Sr, Ca and Cu is also prepd. and these solns. are mixed, so that the coprecipitated component has the component ratio suitable to produce the fixed superconductor. Then, a precipitating agent, in particular, preferably a non-aq. solvent (e.g. ethanol) soln. of oxalic acid, is added to the mixed soln. and, as occasion demands, the pH value of the mixed soln. is regulated to about 4-8 to precipitate 4 metal components, and then, by filtering and drying, the raw material powder for oxide superconductor is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導体の原料粉末の合成法に関し、
更に詳しくはBi−3r−Ca−Cu−0系酸化物超電
導体の原料粉末を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for synthesizing raw material powder for an oxide superconductor,
More specifically, the present invention relates to a method for producing raw material powder for a Bi-3r-Ca-Cu-0 based oxide superconductor.

〔従来の技術〕[Conventional technology]

酸化物超電導体についてはすでにいくつかの酸化物系超
電導体が知られおり、その原料粉末の製造法としてもゾ
ル−ゲルや共沈法等が知られている。
Regarding oxide superconductors, several oxide-based superconductors are already known, and sol-gel and coprecipitation methods are also known as methods for producing their raw material powders.

このうちBi−Sr−Ca−Cu−0系酸化物超電導体
の原料粉末の合成法としては、共沈法でこれを合成する
方法は従来行われておらず、またその原理等の報告も全
く見当たらない。
Among these methods, as a method for synthesizing raw material powder for Bi-Sr-Ca-Cu-0 based oxide superconductors, there has been no method of synthesizing this by coprecipitation, and there have been no reports on its principles, etc. Not found.

その理由は、Bi酸成分これを共沈せしめるために水に
溶解すると簡単に加水分解して塩基性の沈澱を生成する
ためと考えられる。
The reason for this is thought to be that when the Bi acid component is dissolved in water for coprecipitation, it is easily hydrolyzed to form a basic precipitate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者は、酸化物超電導体のうち、特に、Bi−Sr
−Ca−Cu−0系酸化物超電導体について共沈法を用
いて上記超電導体の原料粉末を合成し得る方法を開発す
べく研究を続けた結果、これを合成し得る新しい方法を
見出した。
The present inventor has discovered that among oxide superconductors, in particular, Bi-Sr
As a result of continuing research to develop a method for synthesizing raw material powder for the -Ca-Cu-0 based oxide superconductor using a coprecipitation method, we discovered a new method for synthesizing it.

〔課題を解決するための手段〕[Means to solve the problem]

この新しい合成法は、Bi−Sr−Ca−Cu−0系酸
化物超電導体の原料粉末を合成するに際し、Bi酸成分
水溶性キレート化合物として水に溶解せしめ、Sr、C
a及びCuの各成分を溶存する?8 p(lと共に沈澱
剤により共沈せしめる方法ある。
In this new synthesis method, when synthesizing the raw material powder of Bi-Sr-Ca-Cu-0 based oxide superconductor, Bi acid component is dissolved in water as a water-soluble chelate compound, Sr, C
Dissolve each component of a and Cu? There is a method of co-precipitation with 8 p(l) using a precipitant.

〔発明の作用並びに構成〕[Function and structure of the invention]

本発明に於いては、Bi−3r−Ca−Cu−0系酸化
吻超電導体の原料粉末を所謂共沈法で合成するものであ
る。このようなIli系酸化物超電導体の原料粉末を共
沈法で合成し得ること自体は、従来全くその報告を見な
い新規なことである。
In the present invention, raw material powder for a Bi-3r-Ca-Cu-0 based oxidized superconductor is synthesized by a so-called coprecipitation method. The ability to synthesize raw material powder for such an Ili-based oxide superconductor by a coprecipitation method is itself a novelty that has not been previously reported.

而して本発明に於いては、原料粉末を共沈法で合成する
には、まず上記各金属成分を水に溶解する必要がある。
Accordingly, in the present invention, in order to synthesize the raw material powder by the coprecipitation method, it is first necessary to dissolve each of the above-mentioned metal components in water.

上記金属のうちBiについては、硝酸塩や酸化物等の1
塩を使用すると、水により加水分解されて塩基性の塩を
生成して沈澱してしまい、安定な水溶液とはなり難い。
Among the above metals, Bi has nitrates, oxides, etc.
If a salt is used, it will be hydrolyzed by water to produce a basic salt and precipitate, making it difficult to form a stable aqueous solution.

従ってBiについては、錯化合物を形成する錯形成剤を
使用して、Bi酸成分水溶性共沈化合物となして安定に
水中に溶存させるものであり、これが本発明の大きな特
徴の1つとなっている。そしてこの錯形成剤としては、
金属種を含まないものを使用することにより、水溶液と
してBi酸成分存在させるものである。
Therefore, Bi is stably dissolved in water as a water-soluble coprecipitated Bi acid component by using a complex forming agent that forms a complex compound, and this is one of the major features of the present invention. There is. As this complex forming agent,
By using a material that does not contain metal species, the Bi acid component is made to exist as an aqueous solution.

本発明に於ける第2の特徴としては、Bi酸成分水溶液
及びSrs Ca及びCuの各成分の溶存している溶液
を共に沈澱剤を用いて沈澱さるに際し、沈澱剤を純水又
はアルコールに溶解せしめ、この沈澱剤溶液に上記各金
属成分が溶存する水溶液を添加し、て共沈反応を進行せ
しめることである。
The second feature of the present invention is that when a Bi acid component aqueous solution and a solution containing dissolved Srs Ca and Cu components are precipitated using a precipitant, the precipitant is dissolved in pure water or alcohol. The first step is to add an aqueous solution in which each of the above-mentioned metal components is dissolved to this precipitant solution to allow a coprecipitation reaction to proceed.

旧成分は上記の通りキレート化して溶存せしめているた
めに、これにその他の金属成分の水溶液を加え沈澱剤を
含む溶液に添加すると、充分なる沈澱率でもって共沈せ
しめることが出来ない、たとえばBiの錯化剤としてグ
ルコン酸を使用する場合を例にとって説明すると、この
グルコン酸はCaやCuとも同様にキレートを形成し、
水溶性キレートとして溶存するため充分なる共沈が期待
出来ないこととなる。即ち沈澱剤をキレートが溶存しな
い非水溶性の溶剤に溶解せしめて、上記水系に於けるC
aやCu&錯化剤とのキレート化、惹いてはその溶存を
未然に防止して共沈率を向上せしめているものである。
Since the old components are chelated and dissolved as described above, when an aqueous solution of other metal components is added to the solution containing the precipitant, coprecipitation cannot be achieved with a sufficient precipitation rate, for example. Taking the case of using gluconic acid as a complexing agent for Bi as an example, this gluconic acid also forms a chelate with Ca and Cu,
Since it is dissolved as a water-soluble chelate, sufficient coprecipitation cannot be expected. That is, by dissolving the precipitant in a water-insoluble solvent in which the chelate is not dissolved, the C in the aqueous system is reduced.
This improves the coprecipitation rate by preventing chelation with a, Cu, and the complexing agent, and thereby preventing their dissolution.

但し予め沈澱率を把握していれば沈澱剤の水溶液も使用
できる。
However, an aqueous solution of a precipitant can also be used if the precipitation rate is known in advance.

本発明をその製法に従って順次説明する。The present invention will be sequentially explained according to its manufacturing method.

まず原料溶液を調製する。この原料溶液としては、Bi
、 SrSCas Cuの各金属成分を溶存する溶液を
調製する。但し81成分についてはすでに述べた通り加
水分解により沈澱するので、錯化剤を用いてキレート化
し、水溶性キレート化合物として水溶液に溶存せしめる
First, a raw material solution is prepared. As this raw material solution, Bi
, prepare a solution in which each metal component of SrSCas Cu is dissolved. However, as mentioned above, component 81 is precipitated by hydrolysis, so it is chelated using a complexing agent and dissolved in an aqueous solution as a water-soluble chelate compound.

この際の錯化剤としては、水溶性キレート化合物を形成
し得るものが使用され、たとえばグルコン酸等の如き有
機酸、マンニット、ソルビット等の如き糖、アルコール
、フラクトース、キシロース等の単糖類、エチレンジア
ミンテトラ酢酸塩等の如きアミノポリカルボン酸及びそ
の塩基類、たとえばエチレンジアミンテトラ酢酸ニアン
モニウム等を具体的に挙げることが出来る。
As complexing agents in this case, those capable of forming water-soluble chelate compounds are used, such as organic acids such as gluconic acid, sugars such as mannitol and sorbitol, alcohols, monosaccharides such as fructose and xylose, Specific examples include aminopolycarboxylic acids such as ethylenediaminetetraacetate and their bases, such as ammonium ethylenediaminetetraacetate.

この錯化剤を用いることにより、Bi酸成分してはその
硝酸塩や塩化物も使用出来、その他が使用出来る。゛ Bi基以外金属成分を溶存させるに際しては、これ等の
金属成分が溶存し得るような適宜な化合物を水に溶解せ
しめれば良く、たとえばSr(NOJt、Ca(NOs
)t ・4HxO1Cu(NO+)g ・311tO等
をその代表例として例示できる。
By using this complexing agent, nitrates and chlorides of Bi acid can be used as well as others.゛When dissolving metal components other than the Bi group, it is sufficient to dissolve an appropriate compound in water that can dissolve these metal components. For example, Sr(NOJt, Ca(NOs)
)t ・4HxO1Cu(NO+)g ・311tO, etc. can be exemplified as a representative example.

金属成分を溶存せしめる量は、共沈成分が所定の超電導
体を製造するに適した成分比となるように適宜に決定す
れば良い。
The amount of dissolved metal component may be appropriately determined so that the coprecipitated component has a component ratio suitable for manufacturing a predetermined superconductor.

本発明に於いてはこれ等溶液を混合し、ついでこれを沈
澱剤を含む溶液に添加して上記4種金属成分を沈澱せし
める。この際、沈澱剤はすでに述べた通り、水溶性キレ
ートとして上記金属成分が溶存しないように、好ましく
は非水溶剤に溶解せしめた後添加する。この際の沈澱剤
としては、上記金属成分を共沈せしめ得るものであれば
広く各種のものが使用出来、たとえばシュウ酸、酒石酸
等のカルボン酸又はその塩等を例示出来、特に好ましい
ものとしてシュウ酸を挙げることが出来る。
In the present invention, these solutions are mixed and then added to a solution containing a precipitant to precipitate the four metal components. At this time, as mentioned above, the precipitant is preferably added after being dissolved in a non-aqueous solvent so that the above-mentioned metal component does not dissolve as a water-soluble chelate. As the precipitant in this case, a wide variety of precipitants can be used as long as they can co-precipitate the above-mentioned metal components. Examples include carboxylic acids such as oxalic acid and tartaric acid, or salts thereof, and particularly preferred ones include oxalic acid and tartaric acid. Acids can be mentioned.

この沈澱剤を溶解せしめる溶媒としては、メチルアルコ
ール、エチルアルコール、イソプロピルアルコール等の
炭素数(1分子中)4以下の1価アルコールを例示出来
る。
Examples of the solvent for dissolving the precipitant include monohydric alcohols having 4 or less carbon atoms (in one molecule) such as methyl alcohol, ethyl alcohol, and isopropyl alcohol.

共沈後、必要に応じてpHを4〜8程度に調整する。た
だし共沈前にρI+を調整しても良い場合がある。この
pH調整により、結晶性の良好な沈澱物が得やすくなる
After coprecipitation, the pH is adjusted to about 4 to 8, if necessary. However, it may be possible to adjust ρI+ before coprecipitation. This pH adjustment makes it easier to obtain a precipitate with good crystallinity.

かくして得られた沈澱は、次いで適宜な手段で濾過され
、乾燥されて原料粉末となる。尚本発明原料粉末は、そ
の後熱分解された後焼結され、超電導体の製造に供され
る。
The precipitate thus obtained is then filtered by an appropriate means and dried to obtain a raw material powder. The raw material powder of the present invention is then thermally decomposed and then sintered to be used for manufacturing a superconductor.

〔実施例〕〔Example〕

以下に実施例を示して本発明の詳細な説明する。 The present invention will be described in detail below with reference to Examples.

実施例1 0.01モルのBi (NO3) y・5+120を0
.05モルのグルコン酸を含む水溶液50m1に溶解す
る。
Example 1 0.01 mol of Bi (NO3) y・5+120
.. Dissolve in 50 ml of an aqueous solution containing 0.5 mol of gluconic acid.

これを0.01モルのSr(NOs)10 、 01モ
ルのCa(No、) ! ’ 411*O及び0.02
モルのCu(NOs)z ・31hOを含む溶液50m
j!と混合して100m1とし、これを原液とした。
This is combined with 0.01 mol of Sr(NOs)10 and 0.01 mol of Ca(No, )! '411*O and 0.02
50 ml of solution containing moles of Cu(NOs)z 31hO
j! This was mixed with 100 ml of liquid and used as a stock solution.

この原液を0.07モルのシュウ酸を溶解したエタノー
ル400o11に添加し共沈せしめた0次いでアンモニ
ア−エタノール溶液によりpHを7に調整後、吸引濾過
した。かくして得られた共沈粉末を850℃で仮焼し、
次いで860℃で焼結した。但しこの焼結では20φ×
31鰭のベレット状とした。
This stock solution was added to ethanol 400o11 in which 0.07 mol of oxalic acid had been dissolved to cause coprecipitation.Then, the pH was adjusted to 7 with an ammonia-ethanol solution, and the mixture was suction-filtered. The coprecipitated powder thus obtained was calcined at 850°C,
It was then sintered at 860°C. However, in this sintering, 20φ×
It has a belet shape with 31 fins.

このペレットより試料を切取り、リード線を付けた後、
室温から77Kまでの温度で4端子法により、電気抵抗
を測定し、超電導臨界温度(Tc)を求めた。その結果
、Tc(on 5et)は120に、Tc(off 5
et)は85にであった。
After cutting a sample from this pellet and attaching a lead wire,
Electrical resistance was measured by a four-probe method at temperatures from room temperature to 77 K, and the superconducting critical temperature (Tc) was determined. As a result, Tc(on 5et) is 120, Tc(off 5et) is 120, and Tc(off 5et) is 120.
et) was 85.

実施例2 [1iCIの0.02モルを0.03モルのエチレンジ
アミンテトラ酢酸ニアンモニウムを含む水溶液80mI
Lに溶解する。
Example 2 [1i 0.02 mol of CI was added to 80 ml of an aqueous solution containing 0.03 mol of ammonium ethylenediaminetetraacetate
Dissolves in L.

これを0.02モルのSrCh −0,02モルのCa
C1g及び0.04モルのCuC1zを含む溶液80I
IIlと混合して1601Illとし、これを原液とし
た。
0.02 mol of SrCh - 0.02 mol of Ca
Solution 80I containing 1 g of C and 0.04 mol of CuC1z
This was mixed with 1601Ill and used as a stock solution.

この原液を0.012モルの酒石酸を溶解したイソプロ
ピルアルコール600mj!に添加し共沈せしめ、つい
でpHを7に調整後、吸引濾過した。
600 mj of isopropyl alcohol with 0.012 mol of tartaric acid dissolved in this stock solution! was added to cause coprecipitation, and the pH was then adjusted to 7, followed by suction filtration.

実施例1と同様にして仮焼し、焼結を行ない、(Tc)
を求めた。その結果、Tc(on 5et)は119K
STc(off 5et)は83にであった。
Calcination and sintering were performed in the same manner as in Example 1, and (Tc)
I asked for As a result, Tc (on 5et) is 119K
STc (off 5et) was 83.

〔発明の効果〕〔Effect of the invention〕

本発明法は、超電導体、就中111i−3r−Ca−C
o−0系酸化物超電導体の原料粉末の新しい合成法を提
供するものであり、その産業上の利用効果は極めて大き
い。
The method of the present invention is applicable to superconductors, especially 111i-3r-Ca-C.
This provides a new method for synthesizing raw material powder for o-0 type oxide superconductors, and its industrial application effects are extremely large.

(以上) 特許出願人  三菱電線工業株式会社(that's all) Patent applicant: Mitsubishi Cable Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)Bi成分を水溶性キレート化合物として水に溶解
せしめ、Sr,Ca及びCuの各成分の溶存する溶液と
共に沈澱剤により共沈せしめることを特徴とするBi−
Sr−Ca−Cu−O系酸化物超電導体の原料粉末の合
成法。
(1) Bi-
A method for synthesizing raw material powder for Sr-Ca-Cu-O based oxide superconductor.
JP63101901A 1988-04-25 1988-04-25 Synthetic method of raw material powder for oxide superconductor Pending JPH01275432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101901A JPH01275432A (en) 1988-04-25 1988-04-25 Synthetic method of raw material powder for oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101901A JPH01275432A (en) 1988-04-25 1988-04-25 Synthetic method of raw material powder for oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01275432A true JPH01275432A (en) 1989-11-06

Family

ID=14312817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101901A Pending JPH01275432A (en) 1988-04-25 1988-04-25 Synthetic method of raw material powder for oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01275432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118909A (en) * 2014-07-03 2014-10-29 昆明理工大学 A preparing method of a Bi2Sr2CaCu2O3 superconductive nanometer material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118909A (en) * 2014-07-03 2014-10-29 昆明理工大学 A preparing method of a Bi2Sr2CaCu2O3 superconductive nanometer material

Similar Documents

Publication Publication Date Title
JPH01141820A (en) Method for precipitation of alkaline oxalate for the purpose of making superconductor of metal oxide
US4956340A (en) Process for preparing compound metal oxides of yttrium, barium and copper
US5298654A (en) Method for producing coprecipitated multicomponent oxide powder precursors
Yoshimura et al. Low‐Temperature Synthesis of Cubic and Rhombohedral Y6WO12 by a Polymerized Complex Method
US5288474A (en) Process for the production of lead metal niobates
US3573107A (en) Method of manufacture of solid electrolytes for fuel cells
JPH01275432A (en) Synthetic method of raw material powder for oxide superconductor
JP3250243B2 (en) Method for producing zirconia-based sol
US5071829A (en) Gel method for preparing high purity Bi-based 110K superconductor using oxalic acid
US5210069A (en) Preparation method of high purity 115 K Tl-based superconductor
EP0452423B1 (en) Preparation of a uniform mixed metal oxide
JPH1192150A (en) Preparation of platinum nitrate solution
US5149682A (en) Manufacturing method for superconducting ceramics and products thereof
JPS63312906A (en) Production of fine silver alloy powder
JPH01179721A (en) Production of raw material powder for high temperature superconducting ceramic
Pathak et al. A Versatile Coprecipitation Route for the Preparation of Mixed Oxide Powders
JPH02137706A (en) Production of raw material powder for oxide-based superconductor
JPH02107506A (en) Production of coprecipitated powder
JPH01275411A (en) Method for synthesizing powdery starting material for oxide superconductor
JPH0393609A (en) Synthesis of oxide high-temperature superconductor
JPH01270510A (en) Manufacture of superconductive ceramic
US5238914A (en) Process for producing a high-temperature superconductor containing bismuth, strontium, calcium and copper
JPS63277686A (en) Production of metal-containing composition
RU2019509C1 (en) Process for preparing yttrium-barium-copper oxide
JPH0328123A (en) Production of copper-based superconductor powder