JPH01275271A - Running control device for vehicle - Google Patents

Running control device for vehicle

Info

Publication number
JPH01275271A
JPH01275271A JP63102367A JP10236788A JPH01275271A JP H01275271 A JPH01275271 A JP H01275271A JP 63102367 A JP63102367 A JP 63102367A JP 10236788 A JP10236788 A JP 10236788A JP H01275271 A JPH01275271 A JP H01275271A
Authority
JP
Japan
Prior art keywords
control
vehicle
driving force
control mechanism
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63102367A
Other languages
Japanese (ja)
Other versions
JP2548293B2 (en
Inventor
Kenji Kawagoe
健次 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63102367A priority Critical patent/JP2548293B2/en
Priority to US07/343,379 priority patent/US5032997A/en
Priority to EP89107570A priority patent/EP0339617B1/en
Priority to DE89107570T priority patent/DE68909296T2/en
Publication of JPH01275271A publication Critical patent/JPH01275271A/en
Application granted granted Critical
Publication of JP2548293B2 publication Critical patent/JP2548293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • B60G17/0163Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking the control involving steering geometry, e.g. four-wheel steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0185Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method for failure detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/148Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering provided with safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1554Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a fluid interconnecting system between the steering control means of the different axles
    • B62D7/1572Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a fluid interconnecting system between the steering control means of the different axles provided with electro-hydraulic control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/33Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/40Steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/08Failure or malfunction detecting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PURPOSE:To raise the stability in car running and secure the safety by putting one of the two control mechanism, a four-wheel steering control mechanism and a front-and-rear-wheel driving force distribution control mechanism, which remains to operate normally into the failsafe side, when the other is in failure. CONSTITUTION:When a car is running normally, detection signals from a steering angle sensor 20, a car speed sensor 23, etc., are fed into a controller 19 to decide the optimum front-and-rear-wheel driving force distributing proportion, which suits best the running conditions and road surface condition, and a front wheel driving clutch 8 is controlled to perform 4WD drive. If judgement at this time is that 4WD is in failure, the driving force distributing proportion shall be corrected so as to raise the front wheel driving force. It it then judged whether sensors and solenoids necessary for 4WD control are in failure, and if yes, the 4WD control shall be interrupted. If no, a solenoid proportional pressure regulator valve 18 is controlled in accordance with the driving force distributing proportion corrected as mentioned above, and the clutch pressure of a clutch 8 is controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は4輪操舵制御機構および4輪駆動の前後輪駆動
力配分制御機構を具える車両用走行制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vehicle travel control device that includes a four-wheel steering control mechanism and a four-wheel drive front and rear wheel drive force distribution control mechanism.

(従来の技術) この種の従来の車両用走行制御装置を用いた車両として
は、4輪操舵(4WS)に関しては例えば特願昭63−
22686号公報に記載されたものがあり、4輪駆動(
4WD)の駆動力配分制御に関しては例えば自動車技術
会シンポジウム「制御理論の応用と自動車制御JP41
.(昭和61年発行)に記載され、日産Cue −Xに
搭載されたものや、特願昭63−33892号公報に記
載されたものがある。前者は電子制御方式を採用したト
ルクスプリント4WD車両であって前輪駆動軸の途中に
油圧式多板クラッチを備えるフルタイム4WDを採用し
ている。油圧式多板クラッチのトルク容量はほぼ印加油
圧に比例するので、印加油圧を種々変化させることによ
り油圧式多板クラッチをトルク制限装置として使用して
いる。すなわち、油圧式多板クラッチのトルク容量をT
cとし、トランスミンション出力トルクをTとすれば、
前輪と後輪へのトルクの配分は、はぼTc:(T−Tc
)となるので、トルクT(またはこれに準するもの)を
検知し、印加油圧を調整することによりTcを適切に、
すなわち、車輪回転速度センサ、アクセル開度センサか
らの情報により車両の走行状態を識別して選べば、希望
する前後トルク配分が得られる。ただし、後輪駆動系に
は油圧クラッチがなく直結になっているのでFF車の状
態にまでは変えられない。
(Prior Art) For vehicles using this type of conventional vehicle travel control device, for example, Japanese Patent Application No.
There is one described in Publication No. 22686, and there is a 4-wheel drive (
Regarding driving force distribution control of 4WD), for example, see the Society of Automotive Engineers of Japan Symposium ``Applications of Control Theory and Automobile Control JP41.
.. (published in 1985) and was installed in the Nissan Cue-X, and there is also one described in Japanese Patent Application No. 1983-33892. The former is a torque sprint 4WD vehicle that employs an electronic control system, and employs full-time 4WD with a hydraulic multi-plate clutch in the middle of the front wheel drive shaft. Since the torque capacity of a hydraulic multi-disc clutch is approximately proportional to the applied oil pressure, the hydraulic multi-disc clutch is used as a torque limiting device by varying the applied oil pressure. In other words, the torque capacity of the hydraulic multi-disc clutch is T
c and the transmission output torque is T,
The distribution of torque between the front wheels and the rear wheels is Tc: (T-Tc
), by detecting torque T (or something similar) and adjusting the applied oil pressure, Tc can be adjusted appropriately.
That is, by identifying and selecting the driving state of the vehicle based on the information from the wheel rotation speed sensor and the accelerator opening sensor, the desired front-rear torque distribution can be obtained. However, the rear wheel drive system does not have a hydraulic clutch and is directly connected, so it cannot be converted to a front-wheel drive vehicle.

また4WS 、4WDを同時に搭載した車両としては、
例えば三菱ギヤランがあるが、この車両の前後輪駆動力
配分制御は電子制御方式を採用していない。
Also, as a vehicle equipped with 4WS and 4WD at the same time,
For example, there is the Mitsubishi Gear Run, but this vehicle's front and rear wheel drive force distribution control does not use an electronic control method.

(発明が解決しようとする課題) 上述した4WSシステムまたは4WDシステムを採用し
た車両の走行制御装置は、システムフェイル時にはその
システム独自に走行安定性を考慮して電子的またはa械
的な走行側?flを行う、フェールセーフ機能を具えて
いる。しかしながらこのような4WSと4WDとを同時
に搭載するよう構成した車両にあっては4WS 、4W
Dシステムが共に正常動作した場合を想定した特性とっ
ており、一方のシステムのフェイル時の他方のシステム
に対する影響を考慮していなかったため、一方のシステ
ムがフェイルした際に上記フェイルセーフ機能が作用す
ると、他方の正常なシステムの作用と相俟って車両全体
の作用としては走行安定性が損われてしまうという問題
があった。
(Problems to be Solved by the Invention) In the case of a system failure, does the driving control device of a vehicle that employs the above-mentioned 4WS system or 4WD system take into consideration the driving stability of the system and control the driving side electronically or mechanically? It has a fail-safe function that performs fl. However, in a vehicle configured to be equipped with 4WS and 4WD at the same time, 4WS, 4W
D The characteristics assume that both systems are operating normally, and the effect on the other system when one system fails has not been taken into consideration. There is a problem in that, together with the operation of the other normal system, the running stability of the vehicle as a whole is impaired.

(課題を解決するための手段) 本発明はiS 、4WDシステムを制御する車両用走行
制御装置において、システJ、フェイル情報を取込むこ
とにより上述した問題を解決しようとするもので、4輪
操舵制御機構および4輪駆動の前後輪駆動力配分制御機
構を具える車両の車両用走行制御装置において、前記4
輪操舵制御機構および前記前後輪駆動配分制御機構の一
方がフェイルした際に、フェイル情報に基づき他方の正
常動作中の制御機構を車両走行の安定性が向」二するよ
うにフェールセーフ側に作動させるように構成したこと
を特徴とする。
(Means for Solving the Problems) The present invention attempts to solve the above-mentioned problems by incorporating system J and fail information in a vehicle travel control device that controls an iS and 4WD system. In a vehicle travel control device for a vehicle comprising a control mechanism and a four-wheel drive front and rear wheel drive force distribution control mechanism, the above-mentioned 4
When one of the wheel steering control mechanism and the front and rear wheel drive distribution control mechanism fails, the other normally operating control mechanism is activated to a fail-safe side based on the failure information so as to improve the stability of vehicle running. It is characterized by being configured to allow

(作 用) 4輪操舵制御機構および4輪駆動の前後輪駆動力配分制
御機構を具える車両が、両制御機構共正常動作して走行
している際に一方の制御機構がフェイルした場合には、
車両用走行制御装置にはフェイル情報が入力される。こ
れに基づき車両用走行制御装置は、他方の正常動作中の
制JBJa構を車−3= 再走行の安定性が向上するようにフェールセーフ側に作
動させるから、車両全体の作用としての走行安定性を確
保するフェールセーフ機能を有する、極めて安全性の高
い車両用走行制御装置を実現することができる。
(Operation) When a vehicle equipped with a 4-wheel steering control mechanism and a 4-wheel drive front/rear wheel drive force distribution control mechanism is running with both control mechanisms operating normally, one of the control mechanisms fails. teeth,
Fail information is input to the vehicle travel control device. Based on this, the vehicle running control device operates the other normally operating control JBJa mechanism to the fail-safe side so that the stability of re-running the vehicle is improved, thereby improving the running stability as a function of the entire vehicle. Therefore, it is possible to realize an extremely safe vehicle travel control device that has a fail-safe function that ensures safety.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説明する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は前記文献特願昭63−33892号公報に記載
されたもので、本発明装置の実施に用いる車両の車輪駆
動系および後輪補助操舵系を示す。図中II、。
FIG. 1 is described in the above-mentioned Japanese Patent Application No. 63-33892, and shows a wheel drive system and a rear wheel auxiliary steering system of a vehicle used to implement the device of the present invention. II in the figure.

IRは前輪、2L、 2Rは後輪、3はステアリングホ
イールである。
IR is the front wheel, 2L and 2R are the rear wheels, and 3 is the steering wheel.

まず車輪駆動系を説明するに、4ばエンジン、5はトラ
ンスミッションを示し、エンジン4からトランスミッシ
ョン5を経た変速動力は一方で常時プロペラシャフト6
を経由して後輪用ディファレンシャルギヤ7に至り、後
輪2L、 2Rを駆動する。
First, to explain the wheel drive system, 4 is the engine, 5 is the transmission, and the transmission power from the engine 4 through the transmission 5 is constantly transferred to the propeller shaft 6.
It reaches the rear wheel differential gear 7 via , and drives the rear wheels 2L and 2R.

トランスミッション5からの変速動力は他方で適宜前輪
駆動クラッチ8によりプロペラシャフト9を経て前輪用
ディファレンシャルギヤ10に至り、前輪IL、 IR
の駆動に供される。
On the other hand, the shifting power from the transmission 5 is transmitted to the front wheel differential gear 10 via the propeller shaft 9 by the front wheel drive clutch 8 as appropriate, and then to the front wheels IL and IR.
It is used for driving.

次に車両の操舵系を説明するに、前輪IL、 IRは夫
々通常通りステアリングホイール3によりステアリング
ギヤ11を介して転舵可能とし、後輪2L。
Next, to explain the steering system of the vehicle, the front wheels IL and IR can be steered by the steering wheel 3 via the steering gear 11 as usual, and the rear wheels 2L.

2Rば後輪転舵アクチュエータ12により転舵可能とす
る。
2R enables steering by the rear wheel steering actuator 12.

アクチュエータ12はスプリングセンタ式油圧アクヂュ
エータとし、室12Rに油圧を供給する時圧力に比例し
た舵角だげ後輪2L、 2Rを夫々右に補助操舵し、室
121.に油圧を供給する時圧力に比例した舵角だけ後
輪2L、 2Rを夫々左に補助操舵するものとする。
The actuator 12 is a spring center type hydraulic actuator, and when hydraulic pressure is supplied to the chamber 12R, the rear wheels 2L and 2R are auxiliarily steered to the right by a steering angle proportional to the pressure, and the rear wheels 2L and 2R are auxiliarily steered to the right. When hydraulic pressure is supplied to the rear wheels 2L and 2R, the rear wheels 2L and 2R are assisted to the left by a steering angle proportional to the pressure.

アクチュエータ室12L、 1211への油圧を制御す
る電磁比例式後輪転舵制御弁13を設け、この弁13は
可変絞り13a、 13b、 13c、 13dをブリ
ッジ接続して具え、このブリッジ回路にポンプ14、リ
ザーバ15およびアクチュエータ室12L、 12Rか
らの油路16゜17を夫々接続する。弁13はさらにソ
レノイド13L。
An electromagnetic proportional rear wheel steering control valve 13 is provided to control the hydraulic pressure to the actuator chambers 12L and 1211, and this valve 13 is provided with variable throttles 13a, 13b, 13c, and 13d connected in a bridge manner, and a pump 14 is connected to this bridge circuit. Oil passages 16 and 17 from the reservoir 15 and the actuator chambers 12L and 12R are connected, respectively. The valve 13 is further a solenoid 13L.

13Rを具え、これらソレノイドは叶F時夫々可変絞り
13a、 13bおよび13c、 13dを全開さセて
両アクチュエータ室1217,12Rを無圧状態(平衡
状態)にし、ソレノイド13Lまたは13Rの電流イ直
■、またばIRによるON時可変絞り13c、 13d
またば13a。
13R, these solenoids fully open variable throttles 13a, 13b, 13c, and 13d, respectively, to bring both actuator chambers 1217 and 12R into a no-pressure state (equilibrium state), and the current of solenoid 13L or 13R is adjusted to , or variable apertures 13c and 13d when turned on by IR.
Also 13a.

13bを電流値に応じた開度に絞ってアクチュエータ室
121.または121’lに電流値ILまたはIRに応
した油圧を供給するものとする。その油圧は前記したよ
うにその値に応じた角度だけ後輪を対応方向へ補助操舵
する。
13b to the opening degree according to the current value, and the actuator chamber 121. Alternatively, it is assumed that hydraulic pressure corresponding to the current value IL or IR is supplied to 121'l. As described above, the hydraulic pressure assists in steering the rear wheels in the corresponding direction by an angle corresponding to the hydraulic pressure.

前輪駆動クラッチ8はクラッチ圧PCに応じたトルクを
前輪に向かわせ、クラッチ圧PCを電磁比例調圧弁18
により制御する。弁18は常態でクラッチ圧PCを零に
保ち、ソレノイド1.8aの駆動電流■。を増大するに
つれポンプ14の圧力をクラッチ8に向かわせてクラッ
チ圧PCを上昇するものとする。
The front wheel drive clutch 8 directs torque according to the clutch pressure PC to the front wheels, and the clutch pressure PC is controlled by the electromagnetic proportional pressure regulating valve 18.
Controlled by The valve 18 normally maintains the clutch pressure PC at zero, and the driving current for the solenoid 1.8a is ■. As the pressure increases, the pressure of the pump 14 is directed toward the clutch 8, thereby increasing the clutch pressure PC.

ソレノイド13L、 13R,18aの駆動電流■1.
Drive current of solenoids 13L, 13R, 18a ■1.
.

IR,I、を夫々コントローラ19により制御し、この
コントローラには操舵角θを検出する操舵角センサ20
からの信号、および車輪IL、 IR,2L、 2Rの
回転数ω、1.ω、2.ω1..ωr2を検出する車輪
回転センサ211.21L 22L、 22Rからの信
号の他、車速■を検出する車速センサ23からの信号お
よびスロントル開度Tl+を検出するスロントル開度セ
ンザ24からの信号を夫々入力する。コントローラ19
はこれら入力情報を基に一定周期Δを毎に第3゜4図の
如くに機能してソレノイド駆動電流ICの制御(前輪駆
動力制御、つまり前後輪駆動力配分制御)およびソレノ
イド駆動電流1.、.1.の制御(後輪補助操舵)を行
うものとする。
IR and I are controlled by a controller 19, which includes a steering angle sensor 20 that detects the steering angle θ.
and the rotational speed ω of wheels IL, IR, 2L, 2R, 1. ω, 2. ω1. .. Wheel rotation sensor 211.21L that detects ωr2 In addition to the signals from 22L and 22R, the signal from the vehicle speed sensor 23 that detects the vehicle speed ■ and the signal from the throttle opening sensor 24 that detects the throttle opening Tl+ are input, respectively. . Controller 19
Based on this input information, functions as shown in FIGS. 3-4 at regular intervals Δ to control the solenoid drive current IC (front wheel drive force control, that is, front and rear wheel drive force distribution control) and control the solenoid drive current 1. ,.. 1. control (rear wheel auxiliary steering).

なおこごでコントローラ19は第2図に詳細を示すよう
に、4WSコン1〜ローラ19a と4WDコントロー
ラ1.9b とを具えており、これらコントローラは相
互にフェイル信号(4W Sフェイル信号、4WDフ工
イル信号)の授受を行うものとする。またここでコント
ローラ]9a、 19bは分離型としたが、一体型のコ
ントローラとしてもよい。
As shown in detail in FIG. 2, the controller 19 here includes a 4WS controller 1 to a roller 19a and a 4WD controller 1.9b. (signals) shall be sent and received. Although the controllers 9a and 19b are of separate type here, they may be of an integrated type.

まず第3図の4輪駆動の前後輪駆動力配分制御のフロー
チャ=1・について説明すると、ステップ51で通常の
駆動力配分制御、すなわち読込んだ操舵角θ、車速\1
等により、例えば前記文献特願昭63−33892号公
報に記載の方法によって走行条件、路面条件に応じた最
適な前後輪駆動力配分比を決定する4WD制御を行う。
First, to explain the flowchart of the front and rear wheel drive force distribution control for four-wheel drive shown in FIG.
4WD control is performed to determine the optimal front and rear wheel drive force distribution ratio according to driving conditions and road surface conditions, for example, by the method described in the above-mentioned Japanese Patent Application No. 63-33892.

次にステップ52で4WS システムがフェイルしてい
るか否かを4WSフ工イル信号の有無により判別し、4
WSフエイルと判別したらステップ53で前輪の駆動力
が高まるように前記駆動力配分比を補正した後、制御を
ステップ55に進める。なおステップ52で4WS正常
正作動判別した場合にはステップ54で補正値を零とし
て駆動力配分比を決定した後、制御をステップ55に進
めるものとする。
Next, in step 52, it is determined whether or not the 4WS system has failed based on the presence or absence of the 4WS failure signal.
If it is determined that the WS has failed, the driving force distribution ratio is corrected in step 53 so that the driving force for the front wheels is increased, and then the control proceeds to step 55. If it is determined in step 52 that the 4WS is in normal operation, the correction value is set to zero in step 54 to determine the driving force distribution ratio, and then the control proceeds to step 55.

ステップ55では4WDシステムの制御に必要なセンサ
、ソレノイドがフェイルしているか否かにより4WD 
システムのフェイルの有無を判別し、4WDフエイルと
判別したらステップ56で前記4WD制御の中止を決定
し、ステップ57で4WDフ工イル信号を4WSコント
ローラ19aに出力する。
In step 55, 4WD is activated depending on whether the sensor or solenoid required to control the 4WD system has failed or not.
It is determined whether there is a system failure or not, and if it is determined that there is a 4WD failure, it is determined in step 56 to cancel the 4WD control, and in step 57 a 4WD failure signal is output to the 4WS controller 19a.

一方、ステップ55でiD正常動作と判別した場合には
、ステップ58で前記ステップ53または54で求めた
駆動力配分比となるように前後輪駆動力をデユーティ制
御するため、クラッチ8を作動させる電磁比例調圧弁1
8のソレノイ)”18aに駆動電流ICを出ノjする。
On the other hand, if it is determined in step 55 that the iD is operating normally, in step 58 the electromagnetic force that activates the clutch 8 is used to perform duty control on the front and rear wheel drive forces so that the drive force distribution ratio determined in step 53 or 54 is achieved. Proportional pressure regulating valve 1
A drive current IC is output to the solenoid 18a.

なおステップ57.58の後、制御はステップ51に戻
り、繰返し実行される。
Note that after steps 57 and 58, control returns to step 51 and is executed repeatedly.

上述した4WD制御により、4WS システムがフェイ
ルで4WDシステムが正常動作の場合には前輪の駆動力
を晶めるような4WD制御が行われるから、フランチ8
は対応する値に制御されたクラッチ圧PCにより適正な
トルクを前輪に伝達し、前後輪駆動力配分を適正なもの
にすることができ、車両の走行安定性をアンダーステア
傾向に向上させることができる。
Due to the 4WD control described above, if the 4WD system fails and the 4WD system is operating normally, 4WD control is performed that concentrates the driving force of the front wheels.
By controlling the clutch pressure PC to a corresponding value, the appropriate torque can be transmitted to the front wheels, the front and rear wheel drive force distribution can be made appropriate, and the running stability of the vehicle can be improved against the tendency for understeer. .

次に第4図の4輪操舵制御のフローチャートについて説
明すると、ステップ71でハンドル操舵角θおよび車速
■を読込み、次のステップ72で通常理想とされる車両
の運動性能か得られるような、換言ずれは操舵周波数に
対するヨーレイトゲイン特性がフラットになるような、
つまり操舵速度に関係なく前輪操舵に比例して位相遅れ
なしにヨーレイトが発生ずるよう後輪用比例定数におよ
び後輪用微分定数τを車速■から演算し、次いで後輪に
より演算する。
Next, to explain the flowchart of the four-wheel steering control shown in FIG. 4, in step 71, the steering wheel steering angle θ and the vehicle speed ■ are read, and in the next step 72, the steering wheel steering angle θ and the vehicle speed The deviation is such that the yaw rate gain characteristics are flat with respect to the steering frequency.
That is, a proportional constant for the rear wheels and a differential constant τ for the rear wheels are calculated from the vehicle speed (2) so that the yaw rate is generated without phase delay in proportion to the front wheel steering regardless of the steering speed, and then calculated using the rear wheels.

次にステップ73で4WDシステムがフェイルしている
か否かを4WDフ工イル信号の有無により判別し、4W
Dフエイルと判別したらステップ74で比例定数Kをに
=に+Δにとして同相制御を増加させる補正、または微
分定数τをτ−τ−Δτと減少させる補正もしくはτ−
0とする補正のいずれかを行った後、制御をステップ7
6に進める。なおステップ73で4WD正常動作と判別
した場合にはステップ75で補正値を零として定数に、
τ、 Trを決定した後、制御をステップ76に進める
ものとする。
Next, in step 73, it is determined whether or not the 4WD system has failed based on the presence or absence of the 4WD failure signal, and the 4WD system
If it is determined that the D-fail has occurred, in step 74, correction is made to increase the in-phase control by setting the proportional constant K to +Δ, or to decrease the differential constant τ to τ−τ−Δτ, or to decrease the differential constant τ to τ−τ−Δτ, or τ−
After performing any of the corrections to set the value to 0, the control returns to step 7.
Proceed to 6. If it is determined in step 73 that the 4WD is operating normally, the correction value is set to zero and set as a constant in step 75.
After determining τ and Tr, control shall proceed to step 76.

ステップ76では前記ステップ71.74.75で求め
た定数に、τ、 Trに基づき後輪補助舵角δ、を次式 により演算する。なおごこで(2)式は後輪補助舵角演
算式の一例を示す式であるが、代わりにδ、・れ制御)
、δ1−(K−τ・S)θ(−次進み制御)、号公報に
記載の前後輸実舵比1次/1次制御、ただしB、、B、
、  τ7.τ1は車速の関数、δ。
In step 76, the rear wheel auxiliary steering angle δ is calculated based on the constants obtained in steps 71, 74, and 75, τ, and Tr using the following equation. It should be noted that equation (2) is an example of the rear wheel auxiliary steering angle calculation equation, but instead, δ, ·re control)
, δ1-(K-τ・S) θ (-next advance control), longitudinal actual steering ratio primary/primary control described in the publication, however, B, ,B,
, τ7. τ1 is a function of vehicle speed, δ.

は前輪操舵角とする)等とすることもできる。is the front wheel steering angle).

次のステップ77では4WS システムの制御に必要な
センサ、ソレノイドがフェイルしているか否かにより4
WS システムのフェイルの有無を判別し、4WSフエ
イルと判別したらステップ78で前記iS制御の中止を
決定し、ステップ79で411ISフ工イル信号を4W
Dコントローラー9bに出力する。
In the next step 77, the sensor and solenoid necessary for controlling the 4WS system are determined to have failed.
It is determined whether there is a failure in the WS system, and if it is determined that it is a 4WS fail, it is decided to cancel the iS control in step 78, and the 411IS fail signal is set to 4W in step 79.
Output to D controller 9b.

一方、ステップ77で4WS正常正作動判別した場合に
は、ステップ80で前記ステップ74または75の補正
値に基づきステップ76で求めた後輪補助舵角δrによ
り後輪を制御するため、後輪転舵アクチエータ12を作
動させる電磁比例式後輪転舵制御弁13のソレノイド1
3L、13Rに夫々駆動電流1.、T□を出力する。な
おステップ79.80の後、制御はステップ71に戻り
、繰返し実行される。
On the other hand, if it is determined in step 77 that the 4WS is operating normally, then in step 80 the rear wheels are controlled by the rear wheel auxiliary steering angle δr obtained in step 76 based on the correction value in step 74 or 75. Solenoid 1 of electromagnetic proportional rear wheel steering control valve 13 that operates actuator 12
Drive current 1.3L and 13R respectively. , T□ are output. Note that after steps 79 and 80, control returns to step 71 and is executed repeatedly.

上述した4WS制御により、4WD システムがフェイ
ルで4WSシステムが正常動作の場合には後輪補助舵角
δrが大きくなって同相制御量が増加するような4WS
制御が行われるから、車両の走行安定性をアンダーステ
ア傾向に向上させることができる。
With the 4WS control described above, when the 4WD system fails and the 4WS system operates normally, the rear wheel auxiliary steering angle δr increases and the in-phase control amount increases.
Since the control is performed, the running stability of the vehicle can be improved to reduce the tendency for understeer.

前述した4WD ll制御、4WS制御について定性的
に説明する。
The above-mentioned 4WD II control and 4WS control will be qualitatively explained.

まず4WD制御について述べると、[基礎自動車、  
工学(後1m) J P29〜39(近藤政市著 昭和
54年6月発行)に記載されたように、車両の方向安定
8間 定数)と表わされ、 と〉0ならば安定(アンdβ M ダーステア傾向に対応)、−く0ならば不安定dβ (オーバーステア傾向に対応)となる。したがって駆動
力Tが正の場合には前輪駆動力配分αが大M きいほど静的安定度−が大きくなり、それにつdβ れて静的安定性も向上することになる(アンダーステア
(頃向になる)。
First, let's talk about 4WD control.
As stated in JP 29-39 (written by Masaichi Kondo, published in June 1976), the directional stability of the vehicle is expressed as the constant between 8 and 0, and if and > 0, it is stable (and dβ M corresponds to a tendency to oversteer), and if - is 0, it becomes unstable dβ (corresponds to a tendency to oversteer). Therefore, when the driving force T is positive, the larger the front wheel drive force distribution α is, the greater the static stability is, and the static stability is correspondingly improved (understeer (backwards)). Become).

次いで4WS制御について述べると、例えば日量Cue
 −Xでは4WD システムがフェイルしてクラッチオ
フすると、車両の駆動力形式はFR(後輪駆動力配分1
00%)となって車両の安定性が低下する。
Next, talking about 4WS control, for example, the daily amount Cue
- In the case of the
00%), and the stability of the vehicle decreases.

このような場合前述したiS制御により比例定数Kを大
きくすれば、第5図の4輪操舵の操舵応答性特性図に示
すようにヨーレイトの定常ゲインおよびヨーレイト位相
遅れは図示実線から点線へと低下してヨーイトのダンピ
ングが向上するから、4WD システムフェイルの影響
を補償するような、安定性を向上させた車両特性を得る
ことができる。
In such a case, if the proportionality constant K is increased using the iS control described above, the steady-state gain of the yaw rate and the yaw rate phase delay will decrease from the solid line shown in the diagram to the dotted line, as shown in the steering response characteristic diagram of four-wheel steering in Figure 5. Since the damping of the yaw boat is improved, vehicle characteristics with improved stability can be obtained, which compensates for the effects of 4WD system failure.

また4WS制御により微分定数τをτ−τ−Δτまたは
τ−0と減少させてゲインを低下させることによっても
、同様に安定性を向上させた車両特性が得られる(ただ
し操舵応答ゲインは多少低下する)。
Vehicle characteristics with improved stability can also be obtained by decreasing the differential constant τ to τ-τ-Δτ or τ-0 using 4WS control to lower the gain (however, the steering response gain is slightly reduced). do).

なお、4WSシステムがフェイルして2WS制御になる
と第5図の一点鎖線に示すようにアンダーステア傾向が
弱まって操舵応答ゲインが高まるため、運転者が異和感
を生ずる惧れがあるが、前述した4WI3 %1ltt
llの前輪駆動配分の増大の効果により、その問題を解
決することができる。
Note that if the 4WS system fails and the system becomes 2WS control, the understeer tendency will weaken and the steering response gain will increase, as shown by the dashed line in Figure 5, which may cause the driver to feel strange. 4WI3%1ltt
The effect of increasing the front wheel drive distribution of ll can solve that problem.

(発明の効果) かくして本発明の車両用走行制御装置は上述の如く、4
輪丘舵制御機構および4輪駆動の前後輪駆動配分制御機
構の一方の制御機構のフェイル情報を取込んで他方の正
常動作中の制御機構を車両走行の安定性が向上するよう
にフェールセーフ側に作動させるから、車両全体の作用
としての走行安定性を確保するフェールセーフ機能を有
する、極めて安全性の高い車両用走行制御装置を実現す
ることができる。
(Effects of the Invention) Thus, as described above, the vehicle travel control device of the present invention has four
The failure information of one control mechanism of the wheel rudder control mechanism and the front and rear wheel drive distribution control mechanism of four-wheel drive is taken in, and the other normally operating control mechanism is set to the fail-safe side so that the stability of vehicle running is improved. Therefore, it is possible to realize an extremely safe vehicle running control device that has a fail-safe function that ensures running stability as a function of the entire vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の実施例に用いる車両の構成を示す
線図、 第2図は本実施例の走行制御装置の詳細を示す線図、 第3図および第4図は夫々4輪操舵制御および4輪駆動
の前後輪駆動力配分制御を示すフローチャート、 第5図は4輪操舵の操舵応答性特性を示す特性回である
。 LL、 IR・・・前輪     2L、 2R・・・
後輪3・・・ステアリングホイール 4・・エンジン     5・・・トランスミッション
6・・・プロペラシャツI− 7・・・後輪用ディファレンシャルギヤ8・・・前輪駆
動クラッチ 9・・・プロペラシャフト10・・・前輪
用ディファレンシャルギヤ11・・・ステアリングキャ 12・・・後輪転舵アクチュエータ 13・・・電磁比例式後輪転舵制御弁 14・・・ポンプ      18・・・電磁比例式調
圧弁19・・・コントローラ    20・・・操舵角
センサ21L、 21R,22L、 22R・・・車輪
回転センサ23・・・車速センサ 24・・・スロットル開度センサ 特許出願人 日産自動車株式会社 代理人弁理士 杉  村  暁  秀 同    弁理士  杉   村   興   作第3
図 5TART I 通掌Ω馬区ψカカ曲ご分制甫隼より 前後車盆、馬に重jJ7J西こ今比5Thi4WS7x
俳信号有99   ks 54       NO イリR′正イ14        、鳴区、動ンクど9
と#νと、〉ドパh゛4WDシズテArt      
  Yesフ・イル→\?             
       56N。 5B4WD%轡軸 −正後の馬区1カカ西ヒ4ト比と     4wSコン
トローヲに4WDソレノイF′馬区動佑シ逼fC変出力
   フエイルイ言号り出カフ ■力■
FIG. 1 is a diagram showing the configuration of a vehicle used in an embodiment of the device of the present invention, FIG. 2 is a diagram showing details of the travel control device of this embodiment, and FIGS. 3 and 4 are four-wheel steering, respectively. FIG. 5 is a flowchart showing control and front and rear wheel drive force distribution control of four-wheel drive. FIG. 5 is a characteristic diagram showing steering response characteristics of four-wheel steering. LL, IR...Front wheel 2L, 2R...
Rear wheel 3... Steering wheel 4... Engine 5... Transmission 6... Propeller shirt I- 7... Rear wheel differential gear 8... Front wheel drive clutch 9... Propeller shaft 10... - Front wheel differential gear 11... Steering gear 12... Rear wheel steering actuator 13... Electromagnetic proportional rear wheel steering control valve 14... Pump 18... Electromagnetic proportional pressure regulating valve 19... Controller 20...Steering angle sensor 21L, 21R, 22L, 22R...Wheel rotation sensor 23...Vehicle speed sensor 24...Throttle opening sensor Patent applicant Hidetoshi Sugimura, Patent attorney representing Nissan Motor Co., Ltd. Written by patent attorney Oki Sugimura No. 3
Figure 5 TART I General command Ω horse section ψ Kaka song division control from Hayabusa, front and rear car trays, horse heavy j7J West Koko ratio 5Thi4WS7x
Haiku signal has 99 ks 54 NO Iri R' Sei I 14, Naiku, Mokinkudo 9
and #ν and〉Dopa h゛4WD Shizute Art
Yes Fu・Iru→\?
56N. 5B4WD% Axis - Positive rear horse sector 1st position west side 4th ratio and 4wS control 4WD solenoid F' horse sector movement shift fC variable output Failed word output cuff ■force■

Claims (1)

【特許請求の範囲】 1、4輪操舵制御機構および4輪駆動の前後輪駆動力配
分制御機構を具える車両の車両用走行制御装置において
、 前記4輪操舵制御機構および前記前後輪駆動配分制御機
構の一方がフェイルした際に、フェイル情報に基づき他
方の正常動作中の制御機構を車両走行の安定性が向上す
るようにフェールセーフ側に作動させるように構成した
ことを特徴とする車両用走行制御装置。
[Scope of Claims] 1. A vehicle travel control device for a vehicle comprising a four-wheel steering control mechanism and a four-wheel drive front and rear wheel drive force distribution control mechanism, comprising: the four-wheel steering control mechanism and the front and rear wheel drive force distribution control mechanism; A vehicle running system characterized in that, when one of the mechanisms fails, the other normally operating control mechanism is operated in a fail-safe manner based on the failure information so as to improve the stability of vehicle running. Control device.
JP63102367A 1988-04-27 1988-04-27 Vehicle drive controller Expired - Lifetime JP2548293B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63102367A JP2548293B2 (en) 1988-04-27 1988-04-27 Vehicle drive controller
US07/343,379 US5032997A (en) 1988-04-27 1989-04-26 Fail-safe vehicle control system
EP89107570A EP0339617B1 (en) 1988-04-27 1989-04-26 Fail-safe vehicle control system
DE89107570T DE68909296T2 (en) 1988-04-27 1989-04-26 Puncture-proof vehicle control system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102367A JP2548293B2 (en) 1988-04-27 1988-04-27 Vehicle drive controller

Publications (2)

Publication Number Publication Date
JPH01275271A true JPH01275271A (en) 1989-11-02
JP2548293B2 JP2548293B2 (en) 1996-10-30

Family

ID=14325489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102367A Expired - Lifetime JP2548293B2 (en) 1988-04-27 1988-04-27 Vehicle drive controller

Country Status (1)

Country Link
JP (1) JP2548293B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699754A (en) * 1992-09-22 1994-04-12 Nissan Motor Co Ltd Oil pressure control unit for vehicle
JP2009166763A (en) * 2008-01-18 2009-07-30 Nsk Ltd Electric power steering device
CN108215941A (en) * 2018-02-02 2018-06-29 浙江中车电车有限公司 A kind of pure electric city bus wheel hub drive control method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168475U (en) * 1980-05-16 1981-12-12
JPS62166161A (en) * 1986-01-20 1987-07-22 Toyota Motor Corp Fail-safe method and device of front and rear wheel steering vehicle
JPS62275834A (en) * 1986-05-23 1987-11-30 Fuji Heavy Ind Ltd Torque distribution control device for four-wheel drive vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168475U (en) * 1980-05-16 1981-12-12
JPS62166161A (en) * 1986-01-20 1987-07-22 Toyota Motor Corp Fail-safe method and device of front and rear wheel steering vehicle
JPS62275834A (en) * 1986-05-23 1987-11-30 Fuji Heavy Ind Ltd Torque distribution control device for four-wheel drive vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699754A (en) * 1992-09-22 1994-04-12 Nissan Motor Co Ltd Oil pressure control unit for vehicle
JP2009166763A (en) * 2008-01-18 2009-07-30 Nsk Ltd Electric power steering device
CN108215941A (en) * 2018-02-02 2018-06-29 浙江中车电车有限公司 A kind of pure electric city bus wheel hub drive control method and system
CN108215941B (en) * 2018-02-02 2024-01-30 浙江中车电车有限公司 Hub driving control method and system for pure electric city bus

Also Published As

Publication number Publication date
JP2548293B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US5032997A (en) Fail-safe vehicle control system
US8019518B2 (en) Vehicle behavior control device
EP1433691A2 (en) Vehicle steering system with an integral feedback control
US4949265A (en) Steering control system for 4WD vehicle having drive torque distribution control
JPH0543546B2 (en)
JPH01309879A (en) Control method for steering rear wheel of automobile
US5201382A (en) Four-wheel-steered vehicle control system
JPH01275271A (en) Running control device for vehicle
JPH0558326A (en) Power steering device
JP2548294B2 (en) Vehicle drive controller
JPS6371428A (en) Drive system clutch control device for vehicle
JP3285373B2 (en) Vehicle steering control device
JP2630609B2 (en) Control method of driving force distribution and rear wheel steering angle of four-wheel drive, four-wheel steering vehicle
JP4702028B2 (en) Vehicle travel control device
JP2751728B2 (en) Vehicle with rear-wheel steering system linked to driving force distribution
US11167638B2 (en) Utility vehicle
JP2629383B2 (en) Steering force control device
JP2610449B2 (en) Rear wheel steering control method for four-wheel drive vehicle
JP2523125B2 (en) Vehicle steering angle control device
JPH05185855A (en) Right and left drive force control device for automobile
JP2894399B2 (en) Vehicle with rear-wheel steering system linked to driving force distribution
JP2705324B2 (en) Differential limit control device for vehicle differential gear
JP2897487B2 (en) Power steering control device
JP2903171B2 (en) 4-wheel drive vehicle with driving force distribution control
JPH01109175A (en) Control method for four-wheel steering device of automobile