JPH01275163A - Sublimation type heat transferring method - Google Patents

Sublimation type heat transferring method

Info

Publication number
JPH01275163A
JPH01275163A JP63104175A JP10417588A JPH01275163A JP H01275163 A JPH01275163 A JP H01275163A JP 63104175 A JP63104175 A JP 63104175A JP 10417588 A JP10417588 A JP 10417588A JP H01275163 A JPH01275163 A JP H01275163A
Authority
JP
Japan
Prior art keywords
density
gloss
transfer
pulses
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63104175A
Other languages
Japanese (ja)
Other versions
JP2752631B2 (en
Inventor
Takashi Mori
隆志 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10417588A priority Critical patent/JP2752631B2/en
Publication of JPH01275163A publication Critical patent/JPH01275163A/en
Application granted granted Critical
Publication of JP2752631B2 publication Critical patent/JP2752631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an image of high quality by a high speed transferring by applying an impressed voltage corresponding to the number of applied pulses or the width of a pulse obtained to realize a predetermined transferring density and the gloss or more of a transferred surface to a thermal head. CONSTITUTION:Variable states of a dye density and a gloss corresponding to the number of applied pulses of a voltage of a color transfer unit 1 are obtained by experiments to obtain a density curve and a gloss curve. When a combination of an impressed voltage, the number of applied pulses or the width of the applied pulse to realize desired density and gloss from the curves is obtained and heat 4 is applied to dots of a thermal head to which a corresponding voltage is applied, dye is sublimated from a dye layer 3 to be flown, dyed on an acceptor 5 to form a transferred image. Thus, an image of the quality of desired density and gloss can be proved on the transferred surface, and a high speed transferring can be performed.

Description

【発明の詳細な説明】 肢歪公団 本発明は昇華型熱転写方法に関するものである。[Detailed description of the invention] Limb Distortion Corporation The present invention relates to a sublimation type thermal transfer method.

従来辣歪 サーマルプリンタ、すなわち熱転写プリンタでは、ワッ
クスを主成分とする溶融転写型記録紙を用いる方式に対
して高品位のカラー画像を得るため昇華性染料を用いる
方式が最近開発されている。
In conventional sharp distortion thermal printers, ie, thermal transfer printers, a method using sublimable dyes has recently been developed in order to obtain high-quality color images, compared to a method using melt transfer type recording paper containing wax as a main component.

昇華型サーマルプリンタによる熱転写カラー画像では光
沢があり写真に偵た高品質の画像が得られるという長所
があるが、昇華性染料を十分に加熱昇華して所望の転写
濃度を出すためには長い転写時間を必要とする。
Thermal transfer color images produced by dye-sublimation thermal printers have the advantage of producing glossy, high-quality images similar to photographs, but it takes a long time to transfer the sublimation dye to sufficiently heat and sublimate it to achieve the desired transfer density. It takes time.

転写時間を短くするため高い電圧をかけると昇華型では
画像の光沢がなくなり、又インクシートが伸びてしわが
生じ、インクシートにも画像品質にも悪影響を与えると
いう問題があった。
When a high voltage is applied to shorten the transfer time, in the sublimation type, the image loses its luster, and the ink sheet stretches and wrinkles occur, which adversely affects both the ink sheet and the quality of the image.

昇華型転写の場合印加電圧を低くし低速度転写をすれば
高画質が得られるが、高速度化しようとすると画質が低
下するという問題があった。
In the case of sublimation transfer, high image quality can be obtained by lowering the applied voltage and performing slow transfer, but there is a problem in that image quality deteriorates when attempting to increase the speed.

旦煎 本発明は従来の上記の問題点を解決し、高速度転写で高
画質が得られる昇華型熱転写方法を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide a sublimation thermal transfer method that can achieve high image quality with high-speed transfer.

構成 本発明は、上記の目的を達成するために、予め定めた転
写濃度を実現する印加電圧と印加パルス数もしくはパル
ス幅の組合せを求め、一方予め定めた転写面の光沢度以
上を実現する印加パルス数もしくはパルス幅を求め、そ
の印加パルス数もしくはパルス幅で、その印加パルス数
もしくはパルス幅に対応する印加電圧をサーマルヘッド
に印加することを特徴とする。
Structure In order to achieve the above object, the present invention finds a combination of applied voltage and number of applied pulses or pulse width that achieves a predetermined transfer density, and on the other hand, determines a combination of applied voltage and number of applied pulses or pulse width that achieves a predetermined transfer surface gloss level or higher. The method is characterized in that the number of pulses or the pulse width is determined, and at the determined number of applied pulses or the pulse width, an applied voltage corresponding to the number of applied pulses or the pulse width is applied to the thermal head.

本発明の詳細な説明する。The present invention will be described in detail.

昇華型サーマルプリンタ自体の構造は公知であるので説
明を省略する。
The structure of the dye-sublimation thermal printer itself is well known, so a description thereof will be omitted.

熱転写に際しては、できるだけ濃い転写濃度が得られる
ことが要求される。転写濃度はサーマルヘッドに印加さ
れるエネルギー量に応じて変わり、エネルギーが大であ
ると高濃度転写が得られる。
In thermal transfer, it is required to obtain a transfer density as high as possible. The transfer density varies depending on the amount of energy applied to the thermal head, and the higher the energy, the higher the transfer density.

熱転写に利用されるサーマルヘッドは一例としてエレメ
ントを偶数、奇数に分け、偶数エレメントと奇数エレメ
ントを第1図に示すように各々小さなパルス幅でタイミ
ングをずらしながら駆動する。dd/even駆動方式
があり、各ドツトの転写エネルギーは成る印加電圧を成
るパルス数だけ印加することにより供給される。尚駆動
方式はこの例に限るものではない。
For example, a thermal head used for thermal transfer divides elements into even and odd numbers, and drives the even and odd elements with small pulse widths at different timings, as shown in FIG. There is a dd/even drive system, and the transfer energy for each dot is supplied by applying a given voltage for a given number of pulses. Note that the driving method is not limited to this example.

カラー転写においてはサーマルヘッドにより例えばシア
ン、イエロー、マゼンタ等のカラー転写体が用いられる
In color transfer, color transfer bodies such as cyan, yellow, and magenta are used by a thermal head.

昇華型熱転写に用いるカラー転写体1は例えば第2図に
示すように転写基体2と、該転写基体2上に形成された
染料層3とを有し、サーマルヘッドにより各ドツト毎に
熱4が印加されると、染料層3から染料が昇華して飛び
出し、昇華した染料が受容体5に染着して転写画像を形
成する。
For example, as shown in FIG. 2, a color transfer body 1 used for sublimation type thermal transfer has a transfer base 2 and a dye layer 3 formed on the transfer base 2, and heat 4 is applied to each dot by a thermal head. When applied, the dye sublimates and jumps out from the dye layer 3, and the sublimated dye stains the receptor 5 to form a transferred image.

昇華型熱転写では1ドツト多階調性を有し、各ドツトに
おいて印加されるエネルギーにより多階調濃度が得られ
る。
In sublimation type thermal transfer, one dot has multi-gradation properties, and multi-gradation density can be obtained by applying energy to each dot.

熱転写の際に加える熱エネルギーにより転写画像の濃度
が変わると同時に昇華型カラー転写体による熱転写の際
には転写面の光沢度にも変化が生じる。
The density of the transferred image changes due to the heat energy applied during thermal transfer, and at the same time, the glossiness of the transfer surface also changes during thermal transfer using a sublimation type color transfer material.

シアンのカラー転写体における電圧の印加パルス数に対
する濃度と光沢度の変化状態を実験により求めると第3
図に示すような結果が得られた。
Experimentally determining the changes in density and glossiness with respect to the number of applied voltage pulses on the cyan color transfer material, the third
The results shown in the figure were obtained.

図において横軸は印加パルス数を、左縦軸はシアンの濃
度ODを、右樅軸は光沢度%を示す。
In the figure, the horizontal axis indicates the number of applied pulses, the left vertical axis indicates cyan density OD, and the right axis indicates glossiness %.

第3図において曲線Aは印加電圧18Vの際の濃度曲線
であり、曲線Bは印加電圧17Vの際の濃度曲線である
。−力曲線Cは印加電圧18Vの際の光沢度曲線であり
、曲線りは印加電圧17Vの際の光沢度曲線である 第3図よりシアンのカラー転写体の場合には最大濃度と
してはOD = 2.2程度が得られるが、実際上は作
業条件等より一例としてOD = 1.8程度が最大濃
度の目安とされている。そこで以下にはシアンの最大濃
度は1.8として説明する。
In FIG. 3, curve A is the concentration curve when the applied voltage is 18V, and curve B is the concentration curve when the applied voltage is 17V. -The force curve C is the glossiness curve when the applied voltage is 18V, and the curve is the glossiness curve when the applied voltage is 17V.From Figure 3, in the case of a cyan color transfer material, the maximum density is OD = Although an OD of about 2.2 can be obtained, in practice, an OD of about 1.8 is considered as a guideline for the maximum concentration based on working conditions. Therefore, in the following explanation, the maximum density of cyan is assumed to be 1.8.

尚第1図に示すようなパルス幅によるodd/even
駆動による実験では、シアン最大濃度1.8のときに、
表1のような光沢度が得られ最高の光沢度で62.5%
の光沢が得られ、印加電圧が増大すると却って最高光沢
度が低下する。
In addition, odd/even depending on the pulse width as shown in Figure 1.
In driving experiments, when the maximum cyan density was 1.8,
The gloss shown in Table 1 was obtained, with the highest gloss being 62.5%.
of gloss is obtained, and as the applied voltage increases, the maximum gloss actually decreases.

表1 第3図から低濃度域では濃度が上がる程光沢度も上がる
が濃度1.2付近から高濃度域では光沢度が落ちること
と、18Vに対して17Vのように印加電圧が低ければ
、60%程度の高光沢度を濃度2.0程度の高濃度まで
実現できるが印加電圧18■の場合には60%程度の光
沢度を実現できるのは濃度1.4程度までであり、高光
沢度を得られる濃度範囲が低下する。しかし17Vの場
合、濃度が高い領域ではパルス数すなわち印加時間幅を
大にしなければならず、時間がかかる。
Table 1 From Figure 3, the gloss increases as the density increases in the low density region, but the gloss decreases in the high density region from around 1.2, and if the applied voltage is low such as 17V compared to 18V, A high gloss of about 60% can be achieved up to a density of about 2.0, but when the applied voltage is 18■, a gloss of about 60% can only be achieved up to a density of about 1.4. The range of concentrations that can be obtained is reduced. However, in the case of 17V, the number of pulses, that is, the application time width must be increased in a high concentration region, which takes time.

受容体すなわち転写紙の転写前の光沢度は標卓の場合で
43.5%程度であるので、カラー転写体による転写後
の光沢度も少なくとも受容体のもつ光沢度程度は確保し
ようとすると、第3図から17■では220パルスの印
加パルスを必要とするのに対し、18Vでは150パル
ス程度でよい。
The glossiness of the receiver, that is, the transfer paper, before transfer is about 43.5% in the case of a standard, so if you want to ensure that the glossiness after transfer by the color transfer material is at least as high as the glossiness of the receiver, As shown in FIG. 3, 17-2 requires 220 pulses to be applied, while 18V requires only about 150 pulses.

このことがら印加電圧は18V程度にする方が高速度の
転写で所望の光沢度を得るためには好都合である。
For this reason, it is convenient to set the applied voltage to about 18 V in order to obtain the desired gloss level with high-speed transfer.

そこでシアンのカラー転写体による等濃度曲線を実験で
求めると第4図に示す如くであった。第4図は一例とし
て濃度1.8を得るための印加電圧とパルス数との関係
が曲線Aで示され、そのときの転写面の光沢度が曲線B
で示されている。
Therefore, the iso-density curve for the cyan color transfer material was experimentally determined and was as shown in FIG. In FIG. 4, as an example, the relationship between the applied voltage and the number of pulses to obtain a density of 1.8 is shown by curve A, and the glossiness of the transfer surface at that time is shown by curve B.
is shown.

回において横軸はパルス数、左縦軸は電圧■、右紺軸は
光沢度%を示す。
In the graph, the horizontal axis shows the number of pulses, the left vertical axis shows the voltage (■), and the right dark blue axis shows the gloss level %.

第3図及び第4閏共にシアンのみについて示してあり、
シアンの最大4度を1.8としている。カラー転写体と
しては夫々の色について最大濃度値は互いに多少違いが
あるが、等濃度曲線及び光沢度曲線の傾向については大
体同じであるのでシアンのみについて説明をすれば他の
色についてもほぼ同様であるので説明を要しない。又夫
々の色の転写体について得られる濃度条件等は受容体つ
まり転写紙の種類やインクシートつまり転写体の種類に
より若干異なるが代表的な例によって説明する。
Both Figures 3 and 4 are shown for cyan only,
The maximum 4 degrees of cyan is 1.8. As for color transfer materials, the maximum density values for each color are slightly different from each other, but the trends of the isodensity curve and the glossiness curve are generally the same, so if only cyan is explained, the same applies to other colors as well. Therefore, no explanation is required. Although the density conditions and the like obtained for each color transfer material differ slightly depending on the type of receptor, that is, the transfer paper, and the type of ink sheet, that is, the transfer material, typical examples will be explained.

第4図より同じ濃度のときにはパルス数が大きい程光沢
度が急激に良くなることが分る。このことより同じ濃度
であればパルス数が大なる程、したがって電圧が低い程
光沢度は良くなることが分る。しかしパルス数が大にな
る程転写速度が遅くなることを意味する。
From FIG. 4, it can be seen that when the density is the same, the glossiness improves rapidly as the number of pulses increases. From this, it can be seen that for the same concentration, the higher the number of pulses, and therefore the lower the voltage, the better the glossiness. However, the larger the number of pulses, the slower the transfer speed.

普通には受容体、つまり転写紙の光沢度は転写前には4
3.5%程度ある。当然紙質等により変化があり、全て
がこの光沢度をもつというものではなく、標準例を示し
たものである。この標準例の光沢以上の光沢度を転写面
について保証しようとすると、第4図からは最低205
パルス、電圧は最大18.5 Vという条件が出てくる
Normally, the gloss of the receiver, that is, the transfer paper, is 4 before transfer.
It is about 3.5%. Naturally, there are variations depending on the paper quality, etc., and not all glossiness is this high, but a standard example is shown. If you try to guarantee a gloss level higher than that of this standard example on the transfer surface, it is clear from Figure 4 that the gloss level is at least 205 mm.
The pulse and voltage must be at a maximum of 18.5 V.

シアン以外の色においては印加電圧18.5 V、印加
パルス数205においては、マゼンタが0D=1.45
、イエローがOD = 0.6、ブラック(3色重ね)
がOD = ]、 6の最大濃度を出せることが分かっ
た。
For colors other than cyan, when the applied voltage is 18.5 V and the number of applied pulses is 205, magenta is 0D = 1.45.
, yellow has OD = 0.6, black (3 colors stacked)
It was found that a maximum concentration of OD = ], 6 can be achieved.

上記の受容体の光沢度43.5%を光沢の有無の闇値と
したのに対し、写真ライクな画質を得るということで、
惑能テストにより正式に光沢の有無の闇値を決めなけれ
ばならない。前記のパルス数205は、γ補正(温度補
正)、熱制御、環境温度補正をしなければならず、実際
には205より若干多くなる。
The gloss level of 43.5% of the above-mentioned receptor was used as the dark value to indicate the presence or absence of gloss, but in order to obtain a photograph-like image quality,
The darkness value of the presence or absence of luster must be officially determined through a magic test. The number of pulses 205 mentioned above is actually slightly larger than 205 because γ correction (temperature correction), thermal control, and environmental temperature correction must be performed.

■ 本発明により、転写面に光沢がある場合、任意のカラー
転写体についての希望4度、例えば最大濃度を実現する
印加電圧と印加パルス数もしくは印加パルス幅との組合
せを求め、一方希望する光沢度に対応する印加パルス数
もしくは印加パルス幅を求め、その印加パルス数もしく
は印加パルス幅で、その印加パルス数もしくは印加パル
ス幅に対応する印加電圧をサーマルヘッドに印加するこ
とにより、転写面に希望する濃度と光沢度の画質を保証
することができ、しかも高速転写が可能になった。
■ According to the present invention, when the transfer surface is glossy, the combination of the applied voltage and the number of applied pulses or the applied pulse width that achieves the desired 4 degrees, for example, the maximum density, for any color transfer material is determined, and the desired gloss is obtained. The number of applied pulses or the width of the applied pulses corresponding to the degree of It is possible to guarantee image quality in terms of density and gloss, and also enables high-speed transfer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサーマルヘッドに印加する際のodd /eν
en駆動部のパルス状態を示す図、第2図は昇華型カラ
ー転写体の略説明図、第3図は濃度特性曲線並びに光沢
度特性曲線図、第4図は等濃度曲線及び光沢度曲線図で
ある。
Figure 1 shows the odd /eν when applying to the thermal head.
2 is a schematic illustration of a sublimation type color transfer body, FIG. 3 is a density characteristic curve and a glossiness characteristic curve, and FIG. 4 is an isodensity curve and a glossiness curve. It is.

Claims (1)

【特許請求の範囲】[Claims] 昇華型インクシートを用いる昇華型熱転写方法において
、予め定めた転写濃度を実現する印加電圧と印加パルス
数もしくはパルス幅の組合せを求め、一方予め定めた転
写面の光沢度以上を実現する印加パルス数もしくはパル
ス幅を求め、その印加パルス数もしくはパルス幅で、そ
の印加パルス数もしくはパルス幅に対応する印加電圧を
サーマルヘッドに印加することを特徴とする昇華型熱転
写方法。
In a sublimation thermal transfer method using a sublimation ink sheet, the combination of applied voltage and number of applied pulses or pulse width that achieves a predetermined transfer density is determined, and on the other hand, the number of applied pulses that achieves a predetermined gloss level or higher on the transfer surface. Alternatively, a sublimation thermal transfer method is characterized in that a pulse width is determined, and an applied voltage corresponding to the number of applied pulses or pulse width is applied to a thermal head at the determined number of applied pulses or pulse width.
JP10417588A 1988-04-28 1988-04-28 Sublimation type thermal transfer method Expired - Lifetime JP2752631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10417588A JP2752631B2 (en) 1988-04-28 1988-04-28 Sublimation type thermal transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10417588A JP2752631B2 (en) 1988-04-28 1988-04-28 Sublimation type thermal transfer method

Publications (2)

Publication Number Publication Date
JPH01275163A true JPH01275163A (en) 1989-11-02
JP2752631B2 JP2752631B2 (en) 1998-05-18

Family

ID=14373686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10417588A Expired - Lifetime JP2752631B2 (en) 1988-04-28 1988-04-28 Sublimation type thermal transfer method

Country Status (1)

Country Link
JP (1) JP2752631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444465A (en) * 1993-05-25 1995-08-22 Matsushita Electric Industrial Co., Ltd. Thermal transfer recording apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926567B2 (en) * 2012-02-02 2016-05-25 キヤノン株式会社 Thermal printer and protective coat printing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444465A (en) * 1993-05-25 1995-08-22 Matsushita Electric Industrial Co., Ltd. Thermal transfer recording apparatus

Also Published As

Publication number Publication date
JP2752631B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
JPH01275163A (en) Sublimation type heat transferring method
JPS58148779A (en) Printer
JP2006281510A (en) Sublimation transferring type thermal recording method suitable for high speed printing
JPH05104755A (en) Image printer
EP0153411B1 (en) Sublimable ink ribbon
JPH02217294A (en) Thermal transfer recording material
JPH11301005A (en) Printing method for sublimation type thermal transfer printer
JPH02178090A (en) Dye carrier sheet for heat transfer and improvement in stability of colored print formed by heat transfer printing
JPH02263680A (en) Ink cassette and thermal transfer printer
JPH08500540A (en) Dye bearing sheet for thermal transfer printing
JP2000037962A (en) Multiple layer ink ribbon
JPH03213345A (en) Liquid injection recording method
JPH04224987A (en) Thermal transfer printing method
JPS63222894A (en) Color ink sheet for thermal transfer
JPH0445990A (en) Sublimation type thermal transfer recording sheet
JPH07108691A (en) Thermal transfer color printer
JP2006256187A (en) Thermal transfer sheet
JPH0542706A (en) Multigradation thermal recording method
JPH06143634A (en) Improved thermal transfer printer and printing method
JPS6015196A (en) Ink sheet for color trans-thermo recording
JPH026175A (en) Multi-color thermal transfer printer
JPH06270441A (en) Method and device for forming full color image
JPS62202788A (en) Forming intermediate gradation image by thermal transfer
JP2000033774A (en) Heat transfer recording method
JPS62148293A (en) Receiving sheet for thermal transfer color printer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11