JPH01273998A - Thermal transmitting pipe for heat exchanger - Google Patents

Thermal transmitting pipe for heat exchanger

Info

Publication number
JPH01273998A
JPH01273998A JP10331388A JP10331388A JPH01273998A JP H01273998 A JPH01273998 A JP H01273998A JP 10331388 A JP10331388 A JP 10331388A JP 10331388 A JP10331388 A JP 10331388A JP H01273998 A JPH01273998 A JP H01273998A
Authority
JP
Japan
Prior art keywords
resin
contact angle
surface layer
alloy
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10331388A
Other languages
Japanese (ja)
Inventor
Kenki Minamoto
源 堅樹
Sadayasu Inagaki
定保 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10331388A priority Critical patent/JPH01273998A/en
Publication of JPH01273998A publication Critical patent/JPH01273998A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep a superior anti-corrosion characteristic of an artificial protective film and improve an anti-staying characteristic by a method wherein an outer-most layer arranged at an outer-most surface of an inner surface of a main body of a pipe made of metal or alloy and having an organic resin with a contact angle in respect to water more than a specified value and an intermediate layer composed of epoxy resin are provided. CONSTITUTION:As a flow speed of sea water flowing within a pipe is 0.5 to 2m/sec, a contact angle more than 80 deg. is required as a lower limited contact angle required for preventing an adhesion of living animals. Due to this fact, as organic resin at the outer-most surface layer, one with a contact angle of more than 80 deg. is applied. In this way, as resin having a contact angle more than 80 deg., for example, a silicone resin can be applied. So, in order to improve a close fitness between the outer-most surface layer composed of resin having a large contact angle and a raw surface, an intermediate layer composed of epoxy resin is arranged between the main body of pipe of metal or alloy and the outer-most surface layer. With this arrangement, adhesiveness between the organic resin at the outer-most surface layer and the base surface metal or alloy is improved. The epoxy resin has a more superior adhesiveness between it and silicone resin preferable for the outer-most surface layer as compared with other resins.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内面に防食塗装皮膜が設けられた熱交換器用伝
熱管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger tube for a heat exchanger, the inner surface of which is provided with an anticorrosive coating.

[従来の技術] 火力発電所又は化学工場等の復水器及び各種熱交換器に
は、伝熱管としてアルミニウム黄銅又はキュープロニッ
ケル管等が使用されている。そして、これらの管の内面
防食のために、従来、通流冷却水中に第一鉄イオンを注
入して管内面に保護皮膜を形成する方法が実施されてき
た。しかしながら、近年、環境保全等の問題から第一鉄
イオンの注入による保護皮膜の形成に替り、予め、管内
面に有機樹脂による人工保護皮膜を形成する方法が採用
され、この内面防食塗装皮膜付き熱交換器用伝熱管が使
用される機会が増えてきた。
[Prior Art] Aluminum brass or cupronickel tubes are used as heat transfer tubes in condensers and various heat exchangers in thermal power plants, chemical factories, etc. In order to protect the inner surfaces of these tubes from corrosion, a method has conventionally been used in which ferrous ions are injected into flowing cooling water to form a protective film on the inner surfaces of the tubes. However, in recent years, due to environmental conservation issues, instead of forming a protective film by implanting ferrous ions, a method has been adopted in which an artificial protective film is formed using an organic resin on the inner surface of the pipe. Opportunities for heat exchanger tubes to be used are increasing.

[発明が解決しようとする課題] しかしながら、従来の伝熱管に使用された有機樹脂には
防汚性がないため、塩素無処理海水を冷却水として使用
するような場合は、スライム等の海洋生物が管内面に付
着することにより、伝熱性能が低下する虞があった。
[Problems to be Solved by the Invention] However, since the organic resin used in conventional heat transfer tubes does not have antifouling properties, when untreated seawater is used as cooling water, marine organisms such as slime may There was a risk that heat transfer performance would deteriorate due to adhesion of the metal to the inner surface of the tube.

本発明はかかる問題点に鑑みてなされたものでって、有
機樹脂による人工保護皮膜の優れた防食性を維持しつつ
、防汚性においても優れた特性を発揮することができる
熱交換器用伝熱管を提供することを目的とする。
The present invention has been made in view of these problems, and is a heat exchanger transmission film that maintains the excellent anticorrosion properties of an artificial protective film made of organic resin and exhibits excellent antifouling properties. The purpose is to provide heat tubes.

[課題を解決するための手段] 本発明に係る熱交換器用伝熱管は、金属又は合金製の管
本体内面の最表面に設けられ水に対する接触角が80度
以上の有機樹脂からなる最表面層と、この最表面層と管
本体との間に配設されエポキシ樹脂からなる中間層とを
有することを特徴とする。
[Means for Solving the Problems] The heat transfer tube for a heat exchanger according to the present invention has an outermost surface layer made of an organic resin and having a contact angle with water of 80 degrees or more, which is provided on the outermost surface of the inner surface of the tube body made of metal or alloy. and an intermediate layer made of epoxy resin and disposed between the outermost surface layer and the tube body.

U作用] 本発明においては、最表面層が水に対する接触角が80
度以上の有機樹脂で形成されているので、貝又は海藻等
はこの最表面層に付着しに<<、防汚性が優れている。
U action] In the present invention, the outermost layer has a contact angle with water of 80
Since it is made of an organic resin of at least 100% of organic resin, shellfish, seaweed, etc. cannot adhere to this outermost layer, and it has excellent antifouling properties.

また、この最表面層と金属又は合金製の管本体との間に
はエポキシ樹脂からなる中間層が配設されているので、
最表面層と素地金属との間の密着性も高い。
In addition, since an intermediate layer made of epoxy resin is placed between this outermost layer and the metal or alloy tube body,
Adhesion between the outermost layer and the base metal is also high.

−a的に、貝又は海藻が付着するときの機構は以下のよ
うに考えられている。即ち、これらの貝又は海藻は体内
から粘着性物質(タンパク質又は多糖類)を分泌し、海
水の存在下で生化学合成反応が生じる。そして、この反
応により接着セメントが生成され、貝又は海藻はこの接
着セメントにより、海水に接している物体の表面に固着
する。
-A-wise, the mechanism by which shellfish or seaweed attach is thought to be as follows. That is, these shellfish or seaweeds secrete sticky substances (proteins or polysaccharides) from their bodies, and biochemical synthesis reactions occur in the presence of seawater. This reaction produces adhesive cement, which allows the shellfish or seaweed to adhere to the surface of objects that are in contact with seawater.

従来の内面防食塗装皮膜付き伝熱管に使用されてきた有
機樹脂ではこのような接着セメントによる固着を回避す
ることができなかった。
The organic resins used in conventional heat exchanger tubes with anti-corrosion coatings on their inner surfaces have not been able to avoid such adhesion caused by adhesive cement.

そこで、本願発明者等が接着セメントによる固着力を弱
める方法について種々実験研究を繰り返しな結果、水に
対する接触角が大きい有機樹脂を最表面層に形成するこ
とにより、接着セメントによる固着を有効に回避するこ
とができることを見い出した。この場合に、管内に流れ
る海水の流速が0.5乃至2m/秒であることを考慮す
ると、生物付着を防止するのに必要な接触角の下限とし
ては、80度以上の接触角が必要である。このため、最
表面層の有機樹脂としては、接触角が80度以上のもの
を使用する。このように、80度以上の接触角を有する
樹脂としては、例えば、シリコン樹脂がある。
Therefore, the inventors of the present application repeatedly conducted various experimental studies on ways to weaken the adhesion force caused by adhesive cement, and as a result, by forming an organic resin with a large contact angle to water on the outermost layer, the adhesion caused by adhesive cement was effectively avoided. I found out that it can be done. In this case, considering that the flow rate of seawater flowing inside the pipe is 0.5 to 2 m/sec, the lower limit of the contact angle required to prevent biofouling is a contact angle of 80 degrees or more. be. Therefore, as the organic resin for the outermost surface layer, one having a contact angle of 80 degrees or more is used. As described above, examples of resins having a contact angle of 80 degrees or more include silicone resins.

而して、接触角が大きい樹脂は、生物が付着し難い反面
、素地の金属又は合金との密着力も小さいという難点が
ある。このように素地との密着性が悪い樹脂を使用する
と、塗膜がキズを受けた場合に素地と塗膜との界面が剥
離しやすくなる。
Resins with large contact angles have the disadvantage that, while they are difficult for living things to adhere to, they also have low adhesion to the base metal or alloy. If a resin that has poor adhesion to the substrate is used in this way, the interface between the substrate and the coating film is likely to peel off when the coating film is scratched.

そこで、接触角が大きい樹脂からなる最表面層と素地と
の間の密着性を向上させるために、金属又は合金製管本
体と最表面層との間にエポキシ樹脂からなる中間層を設
ける。これにより、最表面層の有機樹脂と素地金属又は
合金との間の密着性が向上する。
Therefore, in order to improve the adhesion between the outermost layer made of resin having a large contact angle and the substrate, an intermediate layer made of epoxy resin is provided between the metal or alloy tube body and the outermost layer. This improves the adhesion between the organic resin of the outermost layer and the base metal or alloy.

中間層の樹脂をエポキシ樹脂に限定したのは、エポキシ
樹脂は他の樹脂に比して、最表面層として好適のシリコ
ン樹脂との間の密着性が優れているためである。これは
エポキシ樹脂中の酸素とシリコン樹脂中の酸素との間で
水素結合が形成されるためと考えられる。
The reason why the resin for the intermediate layer is limited to epoxy resin is that epoxy resin has superior adhesion to silicone resin, which is suitable for the outermost layer, compared to other resins. This is thought to be because hydrogen bonds are formed between oxygen in the epoxy resin and oxygen in the silicone resin.

[実施例] 次に本発明の実施例に係る熱交換器用伝熱管を実際に製
造し、その防汚性能、防食性能及び伝熱性能等を測定し
た結果について説明する。供試管の作製は素管としてア
ルミニウム黄銅管(直径が26止、厚さが1.2順、長
さが1000市)を使用し、エアレススプレィ方式によ
りその内面に塗料を塗布した。先ず、中間層となる塗料
の調整は市販のエポキシ樹脂と顔料(Fe203 )と
を混合することにより行った。そして、この塗料中にア
ミン系硬化剤を添加することによって常温硬化させた。
[Example] Next, the results of actually manufacturing a heat exchanger tube for a heat exchanger according to an example of the present invention and measuring its antifouling performance, anticorrosion performance, heat transfer performance, etc. will be described. The test tube was prepared by using an aluminum brass tube (diameter: 26 mm, thickness: 1.2 mm, length: 1,000 mm) as a raw tube, and paint was applied to its inner surface using an airless spray method. First, the paint for the intermediate layer was prepared by mixing a commercially available epoxy resin and a pigment (Fe203). Then, an amine curing agent was added to this paint to cure it at room temperature.

一方、比較のために、アルキッド樹脂及び塩化ビニル樹
脂を使用した塗料を内面に塗布した管を作成した。塗膜
厚はいずれも10μmである。
On the other hand, for comparison, a pipe was prepared whose inner surface was coated with a paint using alkyd resin and vinyl chloride resin. The coating film thickness was 10 μm in both cases.

次に、最表面層として、水に対する接触角が80度以上
の有機樹脂である常温硬化型シリコン樹脂を中間層上に
塗布した。次いで、48時間室温放置により硬化させた
後、この管を後述する各試験に供した。また比較のため
に、アルキッド樹脂、塩化ビニル樹脂又はアクリル樹脂
を中間層上に塗布した管を用意した。塗膜厚はいずれも
10μmである。
Next, as the outermost layer, a room temperature curing silicone resin, which is an organic resin having a contact angle with water of 80 degrees or more, was applied onto the intermediate layer. Next, after being cured by standing at room temperature for 48 hours, this tube was subjected to each test described below. For comparison, tubes were prepared in which alkyd resin, vinyl chloride resin, or acrylic resin was coated on the intermediate layer. The coating film thickness was 10 μm in both cases.

通水試験は各供試管の内側に関門海峡の天然海水を2m
/秒の速度で6月〜11月の約5ケ月間−過式で通水さ
せた。通水試験後の防汚性及び塗膜の密着性は次の項目
について評価した。
In the water flow test, 2 m of natural seawater from the Kanmon Strait was placed inside each test tube.
Water was passed through the tube at a speed of 1/2 for about 5 months from June to November. The antifouling property and adhesion of the coating film after the water flow test were evaluated for the following items.

■接触角の測定 通水試験の前後において、塗膜の水に対する接触角を測
定した。この接触角の測定は清浄にした塗膜の上に水滴
を形成し、塗膜と水滴の接触部の半径(a)及び水滴の
高さ(h)を計測し、この計測結果から下記(1)式に
基いて算出した。
■Measurement of contact angle The contact angle of the coating film with water was measured before and after the water flow test. To measure this contact angle, a water droplet is formed on the cleaned paint film, and the radius (a) of the contact area between the paint film and the water droplet and the height (h) of the water droplet are measured. From this measurement result, the following (1) ) Calculated based on the formula.

tan (θ/ 2 ) =h/ a  −・−−(1
)但し、 θ:接触角 a:接触部の半径 h:水滴の高さ ■管内面汚損状況 通水後、目視によりスライム及びフジッボ等の付着状況
を観察した。
tan (θ/2) = h/a −・−−(1
) However, θ: Contact angle a: Radius of contact part h: Height of water drop ■Contamination status of tube inner surface After water flow, the adhesion status of slime, fujibo, etc. was visually observed.

■伝熱抵抗の測定 測定条件は、管外に100℃の飽和蒸気、管内に室温の
工業用水を2.0m/秒の流速で通水させたものである
。同一条件での供試管及び新管の測定値から下記(2)
式を使用して汚れ係数を求め、この値を伝熱抵抗とした
(2) Measurement of Heat Transfer Resistance The measurement conditions were as follows: saturated steam at 100°C was passed outside the tube, and industrial water at room temperature was passed inside the tube at a flow rate of 2.0 m/sec. The following (2) is obtained from the measured values of the test tube and new tube under the same conditions.
The fouling coefficient was determined using the formula, and this value was taken as the heat transfer resistance.

7=1/K  1/Ko  −−(2>(旦 し 、 γ:汚れ係数 に:供試管の熱貫流率 KO:新管の熱貫流率 ■シリコン樹脂の密着性 通水前に塗膜にスリット状のキズを付けておき、通水後
、その部分の塗膜の劣化状況を実体顕微鏡(20倍)に
より観察した。
7=1/K 1/Ko --(2>(at first, γ: contamination coefficient: Thermal transmission coefficient of the test tube KO: Thermal transmission coefficient of the new pipe ■ Adhesion of silicone resin to the coating film before water flow A slit-like scratch was made, and after water was passed through it, the state of deterioration of the coating film in that area was observed using a stereoscopic microscope (20x magnification).

これらの各特性の測定結果を下記第1表にまとめて示す
The measurement results of each of these characteristics are summarized in Table 1 below.

表面層にシリコン樹脂を形成した管(実施例及び比較例
4.5)は通水後の接触角も100度と高く、その結果
、管内面の汚損もないため伝熱抵抗の増加も小さい。一
方、アルキッド、塩化ビニール、アクリル等の各樹脂で
は、通水前後の接触角は80度未満と低く、その結果、
通水後に管内面の汚損が進み、伝熱抵抗が大幅に高くな
っている。
The tubes in which silicone resin was formed on the surface layer (Example and Comparative Examples 4.5) had a contact angle as high as 100 degrees after passing water, and as a result, the inner surface of the tube was not contaminated, so the increase in heat transfer resistance was small. On the other hand, with resins such as alkyd, vinyl chloride, and acrylic, the contact angle before and after passing water is low, less than 80 degrees, and as a result,
After water was passed through, the inner surface of the tube became more contaminated, and the heat transfer resistance increased significantly.

また、表面層がシリコン樹脂であっても、中間層がアル
キッドの場合く比較例4)又は塩化ビニルの場合(比較
例5)は、通水後塗膜のキズ部がシリコン樹脂の剥離の
起点となっていることが認められた。これに対し、中間
層をエポキシ樹脂にした実施例管の場合は、そのような
剥離は認められない。
In addition, even if the surface layer is silicone resin, if the intermediate layer is alkyd (Comparative Example 4) or vinyl chloride (Comparative Example 5), the scratches on the coating film after water passage are the starting point for peeling of the silicone resin. It was recognized that On the other hand, in the case of the example tube in which the intermediate layer was made of epoxy resin, no such peeling was observed.

耐食性については、実施例及び比較例のいずれも、樹脂
の剥離が生じたものを除いて優れた特性が得られた。
Regarding corrosion resistance, excellent properties were obtained in both Examples and Comparative Examples, except for those in which the resin peeled off.

[発明の効果コ 以上のように本発明によれば、水との接触角が大きい有
機樹脂を最表面に形成しているため、優れた防汚性が発
揮され、その結果、生物汚損による伝熱抵抗の増加が極
めて小さくなると共に、防食性も高い熱交換器用伝熱管
が得られる。
[Effects of the Invention] As described above, according to the present invention, since an organic resin having a large contact angle with water is formed on the outermost surface, excellent antifouling properties are exhibited, and as a result, transmission due to biological fouling is prevented. A heat exchanger tube for a heat exchanger can be obtained in which the increase in thermal resistance is extremely small and the corrosion resistance is also high.

Claims (1)

【特許請求の範囲】[Claims] (1)金属又は合金製の管本体内面の最表面に設けられ
水に対する接触角が80度以上の有機樹脂からなる最表
面層と、この最表面層と管本体との間に配設されエポキ
シ樹脂からなる中間層とを有することを特徴とする熱交
換器用伝熱管。
(1) An outermost layer made of an organic resin provided on the inner surface of the metal or alloy tube body and having a contact angle of 80 degrees or more with water, and an epoxy resin disposed between this outermost layer and the tube body. 1. A heat exchanger tube for a heat exchanger, comprising an intermediate layer made of resin.
JP10331388A 1988-04-26 1988-04-26 Thermal transmitting pipe for heat exchanger Pending JPH01273998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10331388A JPH01273998A (en) 1988-04-26 1988-04-26 Thermal transmitting pipe for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10331388A JPH01273998A (en) 1988-04-26 1988-04-26 Thermal transmitting pipe for heat exchanger

Publications (1)

Publication Number Publication Date
JPH01273998A true JPH01273998A (en) 1989-11-01

Family

ID=14350716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10331388A Pending JPH01273998A (en) 1988-04-26 1988-04-26 Thermal transmitting pipe for heat exchanger

Country Status (1)

Country Link
JP (1) JPH01273998A (en)

Similar Documents

Publication Publication Date Title
US4427034A (en) Coating composition for protecting inner surface of tubes in heat exchangers
JP7334231B2 (en) Multifunctional coating for use in damp environments
JPS5880355A (en) Composition for forming hydrophilic film
JPS59222275A (en) Coating method of metallic surface
JPH01273998A (en) Thermal transmitting pipe for heat exchanger
Sun et al. Cyclosiloxane hybrid polymer as a robust transparent eco-friendly anti-fouling coating
JP2002105393A (en) Anticorrosive powder coating composition for steel material, steel material coated with the coating and method for producing the coated steel material
JPH02282699A (en) Thermal conducting pipe for heat exchanger
JPS6277600A (en) Heat transfer tube for use in heat exchanger
JPH0438958B2 (en)
JPH024195A (en) Copper or copper alloy u-tube coated with inner surface anti-corrosion coating film for heat exchanger
JP2010260943A (en) Adhesion-preventive film against water-dwelling organism, and method for forming the same
Kondratenko et al. Field Tests of Protective Epoxy Coatings in a Humid Tropical Climate
JPS59214640A (en) Copper alloy pipe with inner-surface corrosion protective coating film for heat exchanger
JPS61282796A (en) Heat transfer pipe used in heat exchanger
JPS63233299A (en) Thermal conducting pipe with inner coated layer for heat exchanger
JPH07315282A (en) Antifouling painting method for frp hull and antifouling frp hull
JPS60178294A (en) Heat exchanger pipe
JPS6065076A (en) Non-toxic antifouling paint
Saravanan et al. Studies on biocide encapsulated zeolite-epoxy nano hybrid coatings on mild steel
JPH0420795A (en) Aluminum brass made heat exchange pipe
JPH01296095A (en) Heat transfer steel tube for heat exchanger, whose inner surface is coated with corrosion-resistant film
Kostin et al. Testing of PTFE-Based Antifouling Coatings in Fresh Water
Ahmad et al. Various Size of Glass Fiber Treated Silane Coupling Agent in Epoxy Primer Coating: Corrosion Behaviour
JPH081085A (en) Coated steel excellent in antifouling property