JPH0127352B2 - - Google Patents

Info

Publication number
JPH0127352B2
JPH0127352B2 JP55063863A JP6386380A JPH0127352B2 JP H0127352 B2 JPH0127352 B2 JP H0127352B2 JP 55063863 A JP55063863 A JP 55063863A JP 6386380 A JP6386380 A JP 6386380A JP H0127352 B2 JPH0127352 B2 JP H0127352B2
Authority
JP
Japan
Prior art keywords
cooling device
lithium bromide
absorption
conduit
compartments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55063863A
Other languages
Japanese (ja)
Other versions
JPS55155148A (en
Inventor
Uarudei Isai
Kimuchi Iigaru
Benndorooru Jonasan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TADEIRAN ISURAERU EREKUTORONIKUSU IND Ltd
Original Assignee
TADEIRAN ISURAERU EREKUTORONIKUSU IND Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TADEIRAN ISURAERU EREKUTORONIKUSU IND Ltd filed Critical TADEIRAN ISURAERU EREKUTORONIKUSU IND Ltd
Publication of JPS55155148A publication Critical patent/JPS55155148A/en
Publication of JPH0127352B2 publication Critical patent/JPH0127352B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は、水を冷媒として、そして、臭化リチ
ウム及び/又はその類似物の水溶液を吸収剤とし
て使用するタイプの冷却装置の改良に関する。更
に詳細には、本発明にかかる冷却装置の吸収装置
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a cooling device of the type that uses water as a refrigerant and an aqueous solution of lithium bromide and/or its analogs as an absorbent. More specifically, the present invention relates to improvements in the absorption device of the cooling device.

水蒸気の吸収剤として臭化リチウム又はその同
類物の水溶液を使用することを基礎とする冷却装
置の吸収装置から可能な限り完全に非凝縮性のガ
スを除くことは肝要である。かかる非凝縮物は一
般には空気と水素であり、アンモニア等の他ガス
である可能性もある。非凝縮物の除去は一般に、
該非凝縮物を水蒸気により吸収装置の水平管束の
底から追い出すことにより達成される。掃気され
ない冷却装置の効率に比較して、良く掃気された
冷却装置の効率は約70%ほども高く、又、一定の
アルコールを添加物として使用するならば改善率
は100%に達しうる。
It is essential to exclude non-condensable gases as completely as possible from the absorption devices of refrigeration systems based on the use of aqueous solutions of lithium bromide or its analogs as absorbent for water vapor. Such non-condensables are generally air and hydrogen, but may also be other gases such as ammonia. Removal of non-condensables is generally
This is achieved by forcing the non-condensables out of the bottom of the horizontal tube bundle of the absorber with water vapor. Compared to the efficiency of a non-scavenged chiller, the efficiency of a well-scavenged chiller is as much as about 70% higher, and the improvement can reach 100% if certain alcohols are used as additives.

水蒸気が水平管束を通つて下向きに移動するに
つれ、それは凝縮し、又、管束のほぼ中央でその
速度は初速の約半分に低下する。管束の下端では
更に低い速度となり、このために流れが不ぞろい
になることがあり、十分な速度は管束の配置を不
均一にすることにより達成される。
As water vapor moves downward through the horizontal tube bundle, it condenses and its velocity decreases to about half of its initial velocity approximately in the middle of the tube bundle. At the lower end of the tube bundle there is an even lower velocity, which can lead to uneven flow, and sufficient velocity is achieved by non-uniform arrangement of the tube bundle.

管の一端から他端にかけての水平方向の温度勾
配に起因する問題が生ずる。この勾配は吸収装置
を貫通している水の管列の数に依存する。典型的
には、管内で約5℃の水の温度上昇が生じ、1管
配列においてはこれが管の2端間の温度勾配であ
る。多数の管列を用いる時にはこの温度勾配を管
列の数で割ることになる。
Problems arise due to horizontal temperature gradients from one end of the tube to the other. This gradient depends on the number of water tube rows passing through the absorption device. Typically, a temperature rise of about 5° C. of the water occurs within the tube, and in a one tube arrangement this is the temperature gradient between the two ends of the tube. When multiple tube rows are used, this temperature gradient will be divided by the number of tube rows.

管の低温部の方が高温部よりも大きい水蒸気凝
縮能力を持ち、従つて、水蒸気が管束の高温部を
通過し、低温部に向かつて移動する傾向がある。
非凝縮物がこの水蒸気と共に掃気され、従つて、
それらの除去が害される。この過程が続くならば
非凝縮物が著積し、冷却装置の効率のゆゆしき低
下に至る傾向がある。本発明の目的は、吸収装置
を貫通している水平管の水平方向温度勾配から生
ずる欠点を解消することである。
The colder section of the tube has a greater water vapor condensing capacity than the hotter section, and therefore there is a tendency for water vapor to pass through the hotter section of the tube bundle and move toward the cooler section.
Non-condensables are scavenged with this water vapor, thus
Their removal is impaired. If this process continues, significant buildup of non-condensables tends to occur, leading to a severe reduction in the efficiency of the cooling system. The aim of the invention is to eliminate the disadvantages resulting from horizontal temperature gradients in horizontal pipes passing through an absorption device.

本発明により、水を冷媒として、そして、臭化
リチウム又はその同類物を吸収剤として使用する
冷却装置の改良吸収装置が提供される。該吸収装
置は複数の隔室に分けられており、排水管路と掃
気管路とが各々の隔室に対して備えられている。
この配列により非凝縮性ガス(空気、水素等)の
除去が実質上改良され、従つて冷却装置の効率が
実質上改良される。
The present invention provides an improved absorption system for refrigeration systems using water as the refrigerant and lithium bromide or the like as the absorbent. The absorption device is divided into a plurality of compartments, each compartment being provided with a drain line and a scavenging line.
This arrangement substantially improves the removal of non-condensable gases (air, hydrogen, etc.) and therefore the efficiency of the cooling system.

1つの好適態様により、水平管に垂直に配列さ
れた管支持シートが個々の隔室間の隔壁を形成す
る。本発明の別の好適態様により、掃気管路は様
様な隔室の圧力より低い圧力に維持された容器内
に集まる。好ましくは、かかる低圧は臭化リチウ
ムの適当な被冷却溶液を該容器内に噴霧すること
により達成する(該容器内には入口管を相互から
隔てているそらせ手段が備えられている)。吸収
装置の隔室内の圧力より低いこの圧力を維持する
ためには比較的小量の若干冷却された臭化リチウ
ム溶液で十分である。該室内で噴霧された臭化リ
チウムは吸収装置に返送され、一方、非凝縮性ガ
スは該室の上部から除去され、掃気ポンプに運ば
れる。
According to one preferred embodiment, tube support sheets arranged perpendicularly to the horizontal tubes form the partitions between the individual compartments. According to another preferred embodiment of the invention, the scavenging lines converge in a container maintained at a pressure lower than the pressure of the various compartments. Preferably, such a low pressure is achieved by spraying a suitable cooled solution of lithium bromide into the container, which is provided with baffle means separating the inlet tubes from each other. A relatively small amount of slightly cooled lithium bromide solution is sufficient to maintain this pressure below the pressure in the absorber compartment. Lithium bromide atomized in the chamber is returned to the absorption device, while non-condensable gases are removed from the top of the chamber and conveyed to the scavenging pump.

吸収装置を貫通している水平管内への水の入口
と出口との間の温度勾配は約5℃であり、各管に
そつての勾配は、かかる5℃の温度差を割る水平
管の数によつて決まる。5管列配列を使用するな
らば各管にそつての温度差はわずか1℃である。
この水平方向の温度勾配が持つ有害効果を解消す
るためには、水平管に垂直な隔壁により吸収装置
を複数の隔室に細分する。かかる隔室の各々の好
ましい長さは約75〜150cmであり、この長さは一
般に3〜5m長である吸収装置の全長により決ま
る。管支持シートを隔壁として使用することが好
ましく、これらを吸収装置の底まで、或は、少く
とも隔室内の液位より低い位置まで下向きに伸長
させて隔室間のシールを形成できる。様々な隔室
の下部の圧力は管束内を通つて流れる水の温度差
により異なる。
The temperature gradient between the inlet and outlet of the water into the horizontal pipes passing through the absorber is approximately 5°C, and the gradient along each pipe is equal to the number of horizontal pipes dividing such a 5°C temperature difference. Depends on. If a five-tube array is used, the temperature difference along each tube is only 1°C.
To eliminate the detrimental effects of this horizontal temperature gradient, the absorber is subdivided into compartments by partition walls perpendicular to the horizontal tube. The preferred length of each such compartment is about 75 to 150 cm, depending on the overall length of the absorber, which is generally 3 to 5 m long. Tube support sheets are preferably used as bulkheads, and these can extend downwardly to the bottom of the absorber or at least below the liquid level within the compartments to form a seal between the compartments. The pressures at the bottom of the various compartments vary due to temperature differences in the water flowing through the tube bundle.

典型的な100トン冷却装置では約9Kg(20ポン
ド)の水蒸気が約30.3m(100フイート)/秒の
速度で吸収装置の上部に入り、この速度は管束の
中央で約15.2m(50フイート)/秒に低下する。
In a typical 100 ton chiller, approximately 9 kg (20 lb) of water vapor enters the top of the absorber at a velocity of approximately 30.3 m (100 ft)/sec, which is approximately 15.2 m (50 ft) per second at the center of the tube bundle. /second.

掃気管路が各隔室から共通の低圧室に伸長し、
該室内に若干冷却された臭化リチウム溶液が噴霧
される。約1〜2℃による若干の冷却で十分であ
り、臭化リチウムの量は一般に約13.7〜36.4
(3〜8ガロン)/分である。低圧室の上部はア
スピレーター又は適当な真空ポンプに連結されて
いる。約27800cm3(1立方フイート)/分のジエ
ツトアスピレーターで十分であり、これにより蒸
気を連行非凝縮物と共に別の容器に運び、該非凝
縮物は分離装置の上端から除去し、一方臭化リチ
ウムはその底から低圧室のノズルに再循環する。
A scavenging air line extends from each compartment to a common low pressure chamber;
A slightly cooled lithium bromide solution is sprayed into the chamber. Some cooling by about 1-2°C is sufficient and the amount of lithium bromide is generally about 13.7-36.4°C.
(3-8 gallons)/min. The upper part of the low pressure chamber is connected to an aspirator or a suitable vacuum pump. A jet aspirator of about 27800 cm 3 (1 cubic foot) per minute is sufficient, which conveys the vapor with the entrained noncondensables to a separate vessel, which is removed from the top of the separator, while the lithium bromide is recirculated from its bottom to the nozzle of the low pressure chamber.

該低圧室内には、その下部を吸収装置の隔室の
数に応じて多数の隔室に細分しているそらせ板を
備えることが有利であり、掃気管路が該低圧容器
の該下部内に伸長している。この室内に噴霧され
る臭化リチウムを若干冷却することにより、該室
は吸収装置のいづれの隔室の圧力よりも低い圧力
に維持される。各隔室には、熱交換器を経て冷却
装置の発生装置に送られる臭化リチウム溶液を排
出するための排水パイプが備えられている。非凝
縮物掃気管路は吸収装置の下部で、好ましくは隔
室内の最低管より低い位置に配置される。多隔室
型吸収装置の配列により非凝縮性ガス(空気、水
素等)が非常に効率良く除去され、又、冷却装置
の効率が大いに改善されることになる。
Advantageously, a baffle plate is provided in the low-pressure chamber, the lower part of which is subdivided into a number of compartments depending on the number of compartments of the absorption device, and a scavenging line is provided in the lower part of the low-pressure vessel. It is growing. By slightly cooling the lithium bromide sprayed into this chamber, the chamber is maintained at a pressure lower than the pressure in either compartment of the absorber. Each compartment is equipped with a drain pipe for discharging the lithium bromide solution, which is sent via a heat exchanger to the generator of the cooling device. The non-condensate scavenging line is located in the lower part of the absorber, preferably lower than the lowest pipe in the compartment. The multi-compartment absorber arrangement provides very efficient removal of non-condensable gases (air, hydrogen, etc.) and greatly improves the efficiency of the cooling system.

例示のため、本発明を添付図面(一定の尺度に
そつてはいない)を参照しながら記述する。
By way of illustration, the invention will be described with reference to the accompanying drawings, which are not drawn to scale.

添付図面において、 第1図は、本発明の特徴をなす吸収装置の正面
からの横断面図であり; 第2図は、本発明の特徴をなす吸収装置からな
る冷却装置の概略側面図であり; 第3図は、第1図に示された吸収装置の上面図
である。
In the accompanying drawings, FIG. 1 is a cross-sectional view from the front of an absorption device that is a feature of the present invention; FIG. 2 is a schematic side view of a cooling device comprising an absorption device that is a feature of the present invention. 3 is a top view of the absorption device shown in FIG. 1; FIG.

第1〜3図に示される様に、吸収装置11に
は、その内部で水が循環されている2管列型水平
管12が備えられており、2端13,14間の温
度勾配は約5℃即ち約2.5℃/管である。吸収装
置は2つの隔室に細分されており、両隔室は、管
支持体でもあり、又、臭化リチウム溶液18の表
面より低い位置にまで伸長している隔壁17によ
り分けられている。隔室15,16の各々から掃
気管路19,20が伸長し、それぞれ低圧室21
に至つており、該室は内部そらせ板22により細
分され、又分離装置ジエツト23及び噴霧ノズル
24と連結している。
As shown in FIGS. 1 to 3, the absorption device 11 is equipped with a two-line horizontal pipe 12 in which water is circulated, and the temperature gradient between the two ends 13 and 14 is approximately 5°C or approximately 2.5°C/tube. The absorption device is subdivided into two compartments, which are separated by a partition 17 which is also a tube support and which extends below the surface of the lithium bromide solution 18. Scavenging pipes 19 and 20 extend from each of the compartments 15 and 16, and a low pressure chamber 21, respectively.
The chamber is subdivided by internal baffles 22 and is connected to a separator jet 23 and a spray nozzle 24.

隔室15,16の各々から排水管路25,26
がそれぞれ臭化リチウム溶液のために伸長し、ポ
ンプ27と導管28に至り、この導管は熱交換器
29,30に至つている。
Drainage pipes 25, 26 from each of the compartments 15, 16
extend for the lithium bromide solution, respectively, to a pump 27 and a conduit 28, which leads to a heat exchanger 29,30.

2つの隔室に細分されているので、各隔室内の
管部分にそつての温度勾配はわずか1.25℃であ
る。1より多い内部隔壁を使用することにより上
記より多数の隔室を備える時には、各隔室におけ
る温度勾配はそれに対応して低下し、従つて、水
平方向の温度勾配の有害効果が減少される。
Since it is subdivided into two compartments, the temperature gradient along the tube section within each compartment is only 1.25°C. When providing a larger number of compartments by using more than one internal partition, the temperature gradients in each compartment are correspondingly reduced, thus reducing the detrimental effects of horizontal temperature gradients.

隔室のシールを構成している管支持シートは、
吸収装置の底にシールを形成する様に使用でき
る。様々な隔室内の圧力は各隔室の底の温度によ
り異なる。臭化リチウム溶液排出管は、各隔室に
おいて液体シールを提供する様に配列される。非
凝縮物は低圧室21内で掃気され、該室から臭化
リチウムが再循環され、一方非凝縮物は低圧室の
頂部から導管31を経て除去される。
The tube support sheet that makes up the compartment seal is
It can be used to form a seal at the bottom of the absorber. The pressure within the various compartments varies depending on the temperature at the bottom of each compartment. Lithium bromide solution drain tubes are arranged to provide a liquid seal in each compartment. Non-condensables are scavenged in low pressure chamber 21 from which lithium bromide is recycled, while non-condensables are removed from the top of the low pressure chamber via conduit 31.

第2図に示される様に、水を冷媒として、そし
て、臭化リチウムを水蒸気吸収剤として使用する
タイプの冷却装置は低圧に維持された2つの容器
32,33の組合せから本質的に構成され、容器
32は吸収装置11と蒸発装置34とを囲み、一
方容器33は発生装置35と凝縮装置36とを囲
む。
As shown in FIG. 2, a cooling system of the type using water as a refrigerant and lithium bromide as a water vapor absorbent essentially consists of a combination of two vessels 32, 33 maintained at low pressure. , the container 32 surrounds the absorption device 11 and the evaporator 34, while the container 33 surrounds the generator 35 and the condensation device 36.

冷媒(水)は蒸発装置34の頂部に入り、ノズ
ル37により蒸発装置の管束上に噴霧される。冷
却対象であり、又管38を通つて循環する液体か
らの熱により冷媒を蒸発させる。水蒸気は吸収装
置11に移動し、そこでノズル39を通る臭化リ
チウムの噴霧により該蒸気が吸収され、希薄な臭
化リチウム溶液40が吸収装置の底に集まる。蒸
発装置は2つの隔室15,16に細分されている
(これは第1,3図に示されている)か、多数の
かかる隔室に細分されている。若干の水蒸気と非
凝縮物とが吸収装置から掃気管路を経て低圧室2
1に除去される。該室にはそらせ板22が備えら
れ、又、該室中には若干冷却された臭化リチウム
がノズル41を通つて噴霧され、一方臭化リチウ
ム溶液は導管42を経てポンプ43に、導管44
を経て熱交換器29に、そしてそこから導管45
を経て発生装置に排出される。この臭化リチウム
溶液は濃縮後に導管46、熱交換器29を経て吸
収装置11に戻され、一方小量の臭化リチウムが
熱交換器30、アスピレーター23、導管47、
分離装置48を経てノズル41に送られる。非凝
縮物は低圧室21の頂部から導管31とアスピレ
ーター23(臭化リチウム流により作動される)
とを経て出、分離装置48で分離され、その頂部
から出て導管49を経て貯蔵容器50に至る。ポ
ンプ43から導管44を経て来る臭化リチウム溶
液の一部は導管51を経て熱交換器30を通つて
循環され、該熱交換器で若干冷却され、低圧室2
1から導管31を経て来る連行非凝縮物と共に導
管52を経てアスピレーター23を通り、そし
て、導管47を経て分離装置48に運ばれる。臭
化リチウム溶液は導管53を経て低圧室21内の
噴霧ノズル41に運ばれる。
The refrigerant (water) enters the top of the evaporator 34 and is sprayed by a nozzle 37 onto the evaporator tube bundle. Heat from the liquid being cooled and also circulating through tubes 38 causes the refrigerant to evaporate. The water vapor travels to the absorber 11 where it is absorbed by a spray of lithium bromide through nozzle 39 and a dilute lithium bromide solution 40 collects at the bottom of the absorber. The evaporator is subdivided into two compartments 15, 16 (as shown in FIGS. 1 and 3) or into a number of such compartments. Some water vapor and non-condensable matter pass from the absorption device to the low pressure chamber 2 via the scavenging pipe line.
1 is removed. The chamber is equipped with a baffle plate 22 and slightly cooled lithium bromide is sprayed into the chamber through a nozzle 41, while the lithium bromide solution is passed through a conduit 42 to a pump 43 and into a conduit 44.
to heat exchanger 29 and from there to conduit 45
It is then discharged to the generator. After concentration, this lithium bromide solution is returned to the absorption device 11 via conduit 46, heat exchanger 29, while a small amount of lithium bromide is passed through heat exchanger 30, aspirator 23, conduit 47,
It is sent to the nozzle 41 via the separation device 48. Non-condensables are removed from the top of the low pressure chamber 21 via conduit 31 and aspirator 23 (operated by a lithium bromide flow).
It exits via a separating device 48 and exits at the top thereof via a conduit 49 to a storage container 50 . A portion of the lithium bromide solution coming from pump 43 via conduit 44 is circulated via conduit 51 through heat exchanger 30, where it is slightly cooled and transferred to low pressure chamber 2.
Together with the entrained non-condensables coming from 1 through conduit 31 , it passes through conduit 52 through aspirator 23 and is conveyed via conduit 47 to separation device 48 . The lithium bromide solution is conveyed via conduit 53 to spray nozzle 41 in low pressure chamber 21 .

吸収装置11を複数の隔室に分けることにより
水平方向の温度勾配が対応して低下し、これによ
り非凝縮物の望ましくない水平移動が防止され、
低圧室21と分離装置48とを経てのこれらの除
去効率が改善される。
By dividing the absorption device 11 into several compartments, the horizontal temperature gradient is correspondingly reduced, which prevents undesired horizontal movement of non-condensables,
The efficiency of their removal via the low pressure chamber 21 and the separation device 48 is improved.

以上の記載は例示目的のみであり、本発明の範
囲、精神から離れることなく部品の性質、配列の
多数の変更、修正をなし得ることは明白である。
It will be obvious that the foregoing description is for illustrative purposes only, and that many changes and modifications in the nature and arrangement of parts may be made without departing from the scope or spirit of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の冷却装置の特徴をなす吸収
装置の正面からの横断面図であり;第2図は、本
発明の冷却装置の概略側面図であり;第3図は、
第1図に示された吸収装置の上面図である。 11……吸収装置、12……2管列型水平管、
17……隔壁、19,20……掃気管路、21…
…低圧室、25,26……排水管路、34……蒸
発装置、35……発生装置、36……凝縮装置、
48……分離装置。
FIG. 1 is a cross-sectional view from the front of an absorption device that characterizes the cooling device of the present invention; FIG. 2 is a schematic side view of the cooling device of the present invention; FIG.
FIG. 2 is a top view of the absorption device shown in FIG. 1; 11... Absorption device, 12... 2-tube row type horizontal pipe,
17... Bulkhead, 19, 20... Scavenging pipe, 21...
...Low pressure chamber, 25, 26...Drain pipe line, 34...Evaporation device, 35...Generation device, 36...Condensation device,
48... Separation device.

Claims (1)

【特許請求の範囲】 1 吸収装置と蒸発装置と凝縮装置と発生装置と
からなり、冷媒として水を、吸収剤として臭化リ
チウム水溶液を用いる吸収型冷却装置において、 該吸収装置内を貫通し、水用の導管として機能
する少なくとも1個の水平な導管機構を備えた吸
収装置の容器であつて、該導管機構に関して実質
的に垂直なシール機構により複数個の別々の隔室
に細分された吸収装置の容器、並びに該隔室の各
各に配置した非凝縮気体除去用の掃気管路及び液
体除去機構を設けた冷却装置。 2 前記シール機構は、水蒸気と非凝縮気体の水
平方向流を阻止するようにされた特許請求の範囲
第1項に記載の冷却装置。 3 前記掃気管路は、いかなる隔室よりも低い圧
力を維持する機構を備えた室に接続される特許請
求の範囲第1項に記載の冷却装置。 4 前記室は、冷却された臭化リチウム水溶液を
噴霧する機構を備えている特許請求の範囲第3項
に記載の冷却装置。 5 前記隔室を形成するシール機構は、管体支持
機構である特許請求の範囲第1項に記載の冷却装
置。 6 前記掃気管路は、真空ポンプに接続される特
許請求の範囲第1項に記載の冷却装置。 7 前記低圧室に、各掃気管路の入口相互を分離
するそらせ板を設けた、特許請求の範囲第3項に
記載の冷却装置。 8 前記噴霧機構は、約3ないし8ガロン/分の
噴霧を行なう、特許請求の範囲第4項に記載の冷
却装置。
[Scope of Claims] 1. In an absorption type cooling device comprising an absorption device, an evaporation device, a condensation device, and a generation device, and using water as a refrigerant and an aqueous lithium bromide solution as an absorbent, penetrating the inside of the absorption device, An absorption device vessel having at least one horizontal conduit mechanism serving as a conduit for water, the absorption device being subdivided into a plurality of separate compartments by a substantially vertical sealing mechanism with respect to the conduit mechanism. A cooling device comprising a container of the device and a scavenging pipe for removing non-condensable gas and a liquid removal mechanism arranged in each of the compartments. 2. The cooling device according to claim 1, wherein the seal mechanism prevents horizontal flow of water vapor and non-condensable gas. 3. The cooling device according to claim 1, wherein the scavenging pipe is connected to a chamber equipped with a mechanism for maintaining a pressure lower than that of any compartment. 4. The cooling device according to claim 3, wherein the chamber is equipped with a mechanism for spraying a cooled lithium bromide aqueous solution. 5. The cooling device according to claim 1, wherein the sealing mechanism forming the compartment is a tube support mechanism. 6. The cooling device according to claim 1, wherein the scavenging pipe is connected to a vacuum pump. 7. The cooling device according to claim 3, wherein the low pressure chamber is provided with a baffle plate that separates the inlets of the scavenging pipes from each other. 8. The cooling system of claim 4, wherein the spray mechanism sprays about 3 to 8 gallons per minute.
JP6386380A 1979-05-16 1980-05-14 Cooler Granted JPS55155148A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IL57310A IL57310A (en) 1979-05-16 1979-05-16 Absorber units of chillers

Publications (2)

Publication Number Publication Date
JPS55155148A JPS55155148A (en) 1980-12-03
JPH0127352B2 true JPH0127352B2 (en) 1989-05-29

Family

ID=11051065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6386380A Granted JPS55155148A (en) 1979-05-16 1980-05-14 Cooler

Country Status (8)

Country Link
US (1) US4343159A (en)
JP (1) JPS55155148A (en)
DE (1) DE3018505A1 (en)
FR (1) FR2456921A1 (en)
GB (1) GB2049903B (en)
IL (1) IL57310A (en)
IT (1) IT1209413B (en)
ZA (1) ZA802726B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155482A (en) * 1985-12-27 1987-07-10 株式会社荏原製作所 Absorption refrigerator
JPH03297566A (en) * 1990-04-17 1991-12-27 Chiyoda Corp Method for welding material having circular cross section and device for preventing damage of welding machine main body used for same
US5060487A (en) * 1991-04-18 1991-10-29 Gas Research Institute Absorption refrigeration system purge pump apparatus
US6318117B1 (en) * 2000-08-22 2001-11-20 American Standard International Inc. Absorption chiller with counter flow generator
US7464562B2 (en) * 2004-10-13 2008-12-16 Ebara Corporation Absorption heat pump
US9415401B2 (en) 2012-04-04 2016-08-16 Alternative Packaging Solutions Llc One turn actuated duration spray pump mechanism

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2840997A (en) * 1955-05-02 1958-07-01 Carrier Corp Absorption refrigeration systems
US2959931A (en) * 1958-03-19 1960-11-15 Carrier Corp Absorption refrigeration systems and methods of operating the same
US3120113A (en) * 1960-12-12 1964-02-04 Trane Co Absorption refrigeration system
DE1259912B (en) * 1960-12-12 1968-02-01 Trane Co Absorption cooling device
US3131552A (en) * 1961-01-06 1964-05-05 Carrier Corp Absorption refrigeration systems
US3270517A (en) * 1963-05-20 1966-09-06 Carrier Corp Refrigeration apparatus
US3241335A (en) * 1964-06-23 1966-03-22 Carrier Corp Cooler
US3367134A (en) * 1966-08-30 1968-02-06 Carrier Corp Purge arrangement for absorption refrigeration systems
US3491553A (en) * 1968-04-05 1970-01-27 Whirlpool Co Non-condensible gas vent for an absorption refrigeration system
US3520150A (en) * 1968-06-07 1970-07-14 Carrier Corp Absorption refrigeration machine
US3555849A (en) * 1968-12-18 1971-01-19 Carrier Corp Purging absorption refrigeration systems
US3701265A (en) * 1971-06-21 1972-10-31 Carrier Corp Absorption refrigeration system
US3949566A (en) * 1974-08-01 1976-04-13 Borg-Warner Corporation Purge arrangement for absorption refrigeration systems

Also Published As

Publication number Publication date
IT8022103A0 (en) 1980-05-15
US4343159A (en) 1982-08-10
GB2049903B (en) 1984-03-07
JPS55155148A (en) 1980-12-03
IT1209413B (en) 1989-07-16
FR2456921B3 (en) 1982-03-12
ZA802726B (en) 1981-05-27
IL57310A0 (en) 1979-09-30
FR2456921A1 (en) 1980-12-12
IL57310A (en) 1982-08-31
GB2049903A (en) 1980-12-31
DE3018505A1 (en) 1980-11-27

Similar Documents

Publication Publication Date Title
US3997408A (en) Thermocompression-type apparatus for desalting saline water
US3148516A (en) Air cooled vacuum producing condenser
CA1130192A (en) Vapor compression distiller
US4467623A (en) Counterflow absorber for an absorption refrigeration system
JPH04244202A (en) Multi-flash evaporator using plate heat exchanger of irregular surface type
CN108722132A (en) A kind of falling film type absorption condensation device and method
US4141410A (en) Evaporator
US4270975A (en) Liquid-vapor separation device and method
JPH0127352B2 (en)
US4082616A (en) Vapor compression distiller
US3948734A (en) Direct contact multi-stage flash desalination
US2092470A (en) Heat exchange method
US3131552A (en) Absorption refrigeration systems
JPH10113530A (en) Recovery of water-soluble and volatile organic compound from emission of baking plant and other plant
US2782150A (en) Evaporator apparatus
US4145245A (en) Double-effect evaporator
US3824767A (en) Demistor
US4517805A (en) Vacuum producing condenser
US4509591A (en) Vacuum producing condenser
WO1991000772A1 (en) Air conditioning process and apparatus
US4519450A (en) Vacuum producing condenser
US3216480A (en) Climbing and falling film evaporator with intermediate separation
US2142960A (en) Refrigerating apparatus
CN111998695A (en) Fog-dispersing water-saving evaporative condenser
US4494599A (en) Vacuum producing condenser