JPH01272903A - Impulse response measuring method for strain gauge - Google Patents
Impulse response measuring method for strain gaugeInfo
- Publication number
- JPH01272903A JPH01272903A JP63102059A JP10205988A JPH01272903A JP H01272903 A JPH01272903 A JP H01272903A JP 63102059 A JP63102059 A JP 63102059A JP 10205988 A JP10205988 A JP 10205988A JP H01272903 A JPH01272903 A JP H01272903A
- Authority
- JP
- Japan
- Prior art keywords
- end surface
- strain gauge
- acceleration
- metallic rod
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title description 10
- 230000001133 acceleration Effects 0.000 claims abstract description 14
- 238000000691 measurement method Methods 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims description 13
- 238000005259 measurement Methods 0.000 abstract description 10
- 230000035939 shock Effects 0.000 abstract description 5
- 230000000644 propagated effect Effects 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、構造物の振動解析実験、応力解析実験、ある
いはセンサ内部の主要部品等産業計測分野で広く用いら
れている歪ゲージのインパルス応答の計測手法に関する
ものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to vibration analysis experiments of structures, stress analysis experiments, and impulse response of strain gauges widely used in the field of industrial measurement such as main components inside sensors. This is related to the measurement method.
[従来の技術〕
歪ゲージは極めて数多くの産業計測分野で用いられてい
る。具体的には構造物の応力解析実験、振動解析実験、
あるいは歪ゲージを内蔵したセンサなとである。振動や
衝撃の測定では、基本的に歪ゲージのインパルス応答特
性がおさえられていないと信頼性の高い測定は不可能で
あるにもかかわらず、ゲージは正しい結果を与えている
との仮定にたって計測が行われており、ゲージの貼り方
とか応答特性などについてとやかく言うことはタブ−に
近い状況にある。[Prior Art] Strain gauges are used in numerous industrial measurement fields. Specifically, stress analysis experiments of structures, vibration analysis experiments,
Or a sensor with a built-in strain gauge. When measuring vibration or shock, it is basically impossible to make reliable measurements unless the impulse response characteristics of the strain gauge are controlled, but the assumption is that the gauge is giving correct results. Measurements are being carried out, and the situation is close to taboo when it comes to complaining about things like how to attach gauges and response characteristics.
歪ゲージのインパルス応答特性についてのデータは弾性
体の破断を用いた結果があるのみで、十分な蓄積がある
とはとても言えない状況にある。The only data on the impulse response characteristics of strain gauges is the results using fractures of elastic bodies, and it cannot be said that there is a sufficient amount of data.
[発明が解決しようとする課題]
本発明の技術的課題は、歪ゲージのインパルス応答を評
価する方法を提案し、歪ゲージを用いた計測技術の信頼
性を向上させることにある。[Problems to be Solved by the Invention] A technical problem of the present invention is to propose a method for evaluating the impulse response of a strain gauge, and to improve the reliability of measurement techniques using strain gauges.
[課題を解決するための手段]
上記課題を解決するため、本発明においては、金属棒に
測定対象の歪ゲージを貼り、棒の端面に衝撃を加えるこ
とによって発生した弾性波が残りの端面に到達した時に
生じる面の加速度を計測し、積分演算処理等を加えるこ
とによって歪ゲージのインパルス応答を推定するという
手段を用いている。[Means for Solving the Problems] In order to solve the above problems, in the present invention, a strain gauge to be measured is attached to a metal bar, and an elastic wave generated by applying an impact to the end face of the bar is applied to the remaining end face. A method is used to estimate the impulse response of the strain gauge by measuring the acceleration of the surface that occurs when the target reaches the target, and applying integral calculation processing and the like.
[作用]
レーザ干渉計により加速度を測定し、それにもとずいて
歪ゲージのインパルス応答が推定されるので、信頼性の
たがい評価が可能になる。また本発明にもとずく装置で
は、 1回実験するごとに歪ゲージを貼った基本部分が
破壊してしまうことはない。すなわち本計測方法にもと
すく装置を用いれば、歪ゲージ自体の構造、歪ゲージの
接着方法の検討、歪ゲージの経年変化、温度変化など環
境変化に対する応答特性の変化なと極めて重要なパラメ
ータを同一条件下でインパルス応答に関連して計測する
ことが可能となる。[Operation] Since the acceleration is measured by a laser interferometer and the impulse response of the strain gauge is estimated based on the acceleration, reliability can be evaluated against each other. Furthermore, with the device based on the present invention, the basic part to which the strain gauge is attached will not be destroyed after each experiment. In other words, if this measurement method uses a special device, it will be possible to study extremely important parameters such as the structure of the strain gauge itself, the method of bonding the strain gauge, changes in the strain gauge over time, and changes in response characteristics to environmental changes such as temperature changes. It becomes possible to perform measurements related to impulse responses under the same conditions.
[実施例コ
歪ゲージのインパルス応答を評価するためには、(1)
インパルス状の歪を直接別の方法で計測して歪ゲージ出
力と比較するか、(2)あるいはインパルス状の歪が関
連する他の物理量を計測し物理法則にのっとって推定し
た歪と歪ゲージ出力とを比較する、の二種類の方法が考
えられる。本発明で提案するのは(2)の後者の方法で
ある。[Example: To evaluate the impulse response of the strain gauge, (1)
Either measure the impulse strain directly using another method and compare it with the strain gauge output, or (2) measure other physical quantities related to the impulse strain and estimate the strain and strain gauge output according to the laws of physics. There are two possible ways to compare. The present invention proposes the latter method (2).
すなわち、断面に比較して十分に長い金属棒の端面に衝
撃を加えると弾性波が発生して伝播するが、他端に到達
し反射する時点で、端面に弾性波の伝播速度と歪速度の
積の2倍の加速度を発生させる。In other words, when an impact is applied to the end face of a metal rod that is sufficiently long compared to its cross section, an elastic wave is generated and propagated, but when it reaches the other end and is reflected, the propagation velocity and strain rate of the elastic wave at the end face are Generates an acceleration twice the product.
したがって、レーザ干渉計の高精度・高速度変位測定機
能等を用いて、加速度を測定すれば以下の数式をもとに
して歪ゲージのインパルス応答を推定することができる
。Therefore, if the acceleration is measured using the high precision and high speed displacement measurement function of a laser interferometer, the impulse response of the strain gauge can be estimated based on the following formula.
但し、Cは弾性波の伝播速度、a(t)はレーザ干渉計
で計測した金属棒端面の加速度である。However, C is the propagation velocity of the elastic wave, and a(t) is the acceleration of the end surface of the metal rod measured by a laser interferometer.
第1図は、本発明に係わる歪ゲージのインパルス応答法
にもとすく測定gi置の断面図である。FIG. 1 is a cross-sectional view of the strain gauge at gi position, which is suitable for use in the impulse response method of the present invention.
本発明においては何からの方法によって衝撃を発生させ
なければならない。その方法の一つとして考えられるの
は、弾丸1を金属棒2の端面に衝突させることである。In the present invention, the impact must be generated by some method. One possible method is to cause the bullet 1 to collide with the end face of the metal rod 2.
弾丸材料、弾丸の発射速度と先端形状、金属棒の材質な
どを変化させることにより衝撃歪の絶対値、歪の立ち上
がりなどを制御することができる。By changing the bullet material, the bullet's firing speed and tip shape, the material of the metal rod, etc., it is possible to control the absolute value of impact strain, the rise of strain, etc.
衝撃により発生した弾性波が伝播する媒質として本発明
では金属棒2が用いられる。金属棒2は1次元波動方程
式近似が成立するような小さい断面サイズと、衝撃によ
って発生させる弾性波動をパルスとみなせるような十分
な長さを持っていなければならない。In the present invention, a metal rod 2 is used as a medium through which elastic waves generated by impact propagate. The metal rod 2 must have a small cross-sectional size so that the one-dimensional wave equation approximation holds true, and a sufficient length so that the elastic waves generated by the impact can be regarded as pulses.
評価の対象となる歪ゲージ3は、金属棒2の端面近くに
接着される。The strain gauge 3 to be evaluated is glued near the end surface of the metal rod 2.
レーザ干渉計によって棒の端面の加速度を計測するため
に、金属棒2の衝撃が加えられないほうの端面ここ、鏡
を貼るかスパッタリングで反射面を作成しなければなら
ない。In order to measure the acceleration of the end face of the rod using a laser interferometer, a reflective surface must be created by pasting a mirror or sputtering on the end face of the metal rod 2 to which no impact is applied.
一次元波動方程式を境界条件を考慮して解くと、金属棒
2の端面4には、弾性波伝播速度と歪速度の積の2倍の
加速度が発生することが導ける。When the one-dimensional wave equation is solved taking into account the boundary conditions, it can be derived that an acceleration that is twice the product of the elastic wave propagation velocity and the strain rate is generated on the end face 4 of the metal rod 2.
本測定法は、この物理的関係をもとにして加速度の精密
な計測結果からインパルス歪を計測しようとするもので
ある。This measurement method attempts to measure impulse strain from accurate measurement results of acceleration based on this physical relationship.
衝撃によって発生する金属棒2の時間的に変動する微少
変位を測定するにはレーザ干渉計が適している。レーザ
干渉計システムを構成するためには、周波数の安定した
レーザ干渉計用光源5が必要となる。A laser interferometer is suitable for measuring minute displacements of the metal rod 2 that vary over time due to impact. In order to configure a laser interferometer system, a laser interferometer light source 5 with a stable frequency is required.
レーザ干渉計システムでは、半透鏡6、変位測定の基準
となる鏡7、干渉縞測定用の光検出器8、干渉縞カウン
タ装置9などが必要となる。The laser interferometer system requires a semi-transparent mirror 6, a mirror 7 serving as a reference for displacement measurement, a photodetector 8 for measuring interference fringes, an interference fringe counter device 9, and the like.
[発明の効果]
以上に説明した本発明の歪ゲージのインパルス応答測定
法を用いると、従来タブ−視されていた感のある歪ゲー
ジを用いた動的計測におけるゲージのインパルス応答に
関して、信頼性のある基礎データを提供することが可能
になる。[Effects of the Invention] By using the strain gauge impulse response measurement method of the present invention described above, the reliability of the impulse response of the strain gauge in dynamic measurement using a strain gauge, which has been considered taboo in the past, can be improved. It becomes possible to provide certain basic data.
第1図は、本発明に係わる歪ゲージのインパルス応答法
にもとすく測定装置の断面図である。
1・・衝撃発生用の弾丸
2・・金属棒
3・・歪ゲージ
4・・鏡
5・・レーザ干渉計用レーザ光源本体
6・・半透鏡
7・・反射鏡
8・・光検出器
9・・干渉縞カウンタ装置
指定代理人FIG. 1 is a sectional view of a measuring device for use in the impulse response method of strain gauges according to the present invention. 1. Bullet for impact generation 2. Metal rod 3. Strain gauge 4. Mirror 5. Laser light source body for laser interferometer 6. Semi-transparent mirror 7. Reflector 8. Photo detector 9.・Designated agent for interference fringe counter device
Claims (1)
撃を加えることによって発生した弾性波が残りの端面に
到達した時に生じる面の加速度を計測し、積分演算処理
等を加えることによって歪ゲージのインパルス応答を推
定することを特徴とする歪ゲージのインパルス応答測定
法。1. By attaching a strain gauge to be measured to a metal rod, applying an impact to the end of the rod, and measuring the acceleration of the surface generated when the elastic wave reaches the remaining end, and adding integral calculation processing, etc. A strain gauge impulse response measurement method characterized by estimating the impulse response of the strain gauge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63102059A JPH0650302B2 (en) | 1988-04-25 | 1988-04-25 | Strain gauge impulse response measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63102059A JPH0650302B2 (en) | 1988-04-25 | 1988-04-25 | Strain gauge impulse response measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01272903A true JPH01272903A (en) | 1989-10-31 |
JPH0650302B2 JPH0650302B2 (en) | 1994-06-29 |
Family
ID=14317198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63102059A Expired - Lifetime JPH0650302B2 (en) | 1988-04-25 | 1988-04-25 | Strain gauge impulse response measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0650302B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7076991B2 (en) | 2002-03-29 | 2006-07-18 | National Institute Of Advanced Industrial Science And Technology | Calibration evaluation method and device for acceleration sensor |
-
1988
- 1988-04-25 JP JP63102059A patent/JPH0650302B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7076991B2 (en) | 2002-03-29 | 2006-07-18 | National Institute Of Advanced Industrial Science And Technology | Calibration evaluation method and device for acceleration sensor |
Also Published As
Publication number | Publication date |
---|---|
JPH0650302B2 (en) | 1994-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Smith | Vibration measurement and analysis | |
Figueroa et al. | An ultrasonic ranging system for structural vibration measurements | |
KR970059895A (en) | Coordinate input device and its control method | |
JP4304325B2 (en) | Acceleration sensor calibration evaluation method and apparatus | |
Kreger et al. | High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry | |
JPS6156450B2 (en) | ||
JPH0827217B2 (en) | Deformation detection device for structural member, structural member deformation evaluation method, and elastically deformable structure | |
US6286359B1 (en) | Method for testing frequency response characteristics of laser displacement/vibration meters | |
JP2647815B2 (en) | Frequency measurement method of laser displacement meter / laser vibrometer | |
JPH01272903A (en) | Impulse response measuring method for strain gauge | |
EP1531326B1 (en) | Material testing method | |
JP3653545B2 (en) | Linearity measuring method and measuring apparatus for dynamic response characteristics of strain gauge | |
Taudou et al. | Experimental determination of the dynamic stress-intensity factor using caustics and photoelasticity | |
US20120046898A1 (en) | Systems and methods for pressure measurement using optical sensors | |
JPS63157029A (en) | Measuring method for dynamic response characteristic or strain gauge | |
JPH03191297A (en) | Method and device for measuring kinetic characteristics | |
JPH0493653A (en) | Dynamic response characteristic measuring method for ae sensor | |
Pulliam et al. | Development of fiber optic aerodynamic sensors for high Reynolds number supersonic flows | |
GB2318872A (en) | Blast wave detection | |
SU1679394A1 (en) | Accelerometer | |
Kamath et al. | On Rayleigh wave emissions in brittle fracture | |
Dhawan et al. | Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors | |
JPH06123663A (en) | Measuring method of dynamic load | |
KR101617729B1 (en) | Apparatus and methods for vibration using change of the amount of light, Analysis system for analyzing sample and Method thereof | |
JPH10221020A (en) | Length measuring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |