JPH01272824A - Electrically conductive fiber and production thereof - Google Patents

Electrically conductive fiber and production thereof

Info

Publication number
JPH01272824A
JPH01272824A JP10315188A JP10315188A JPH01272824A JP H01272824 A JPH01272824 A JP H01272824A JP 10315188 A JP10315188 A JP 10315188A JP 10315188 A JP10315188 A JP 10315188A JP H01272824 A JPH01272824 A JP H01272824A
Authority
JP
Japan
Prior art keywords
fiber
polypyrrole
pyrrole
oxidation potential
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10315188A
Other languages
Japanese (ja)
Inventor
Tatsuro Mizuki
達郎 水木
Koji Watanabe
渡辺 幸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10315188A priority Critical patent/JPH01272824A/en
Publication of JPH01272824A publication Critical patent/JPH01272824A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fiber having excellent conductivity, abrasion resistance and endurance such as resistance to washing and suitable for an antistatic clothing and carpet, by subjecting a fiber to composite spinning with a solution of pyrrole and an oxidant used as a core component. CONSTITUTION:(A) Pyrrole and (B) an oxidant (e.g., iron chloride) are dissolved in (C) a solvent (e.g., dimethyl formamide) having >=900mV or <=400mV oxidation potential. (D) A fiber of polymethacrylate, etc., is subjected to composite spinning using the above-mentioned solution as a core component and then reaction is carried out by impregnating (E) a solvent (e.g., methanol or water) having 400-900mV oxidation potential into the resultant composite fiber and replacing the component C with the component E to provide the aimed fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリピロールを繊維の内部に存在させた導電
性繊維およびその製造方法に関する。さらに詳しくは、
耐摩擦性、耐洗濯性などの耐久性に優れた導電性繊維お
よびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a conductive fiber in which polypyrrole is present inside the fiber and a method for producing the same. For more details,
The present invention relates to a conductive fiber with excellent durability such as abrasion resistance and washing resistance, and a method for producing the same.

(従来の技術) 導電性高分子を用いて繊維に導電性を付与することは、
通常の導電性無機微粒子を、繊維に混合または付着させ
た導電性繊維に比べて、導電率が高い、製法が容易など
の特徴がおる。特に、ピロールの重合物を用いた場合は
ドーピングなしでも高い導電性が1qられるのみならず
、安定性も高いため、注目を集めている。
(Conventional technology) Adding conductivity to fibers using conductive polymers is
Compared to conductive fibers in which ordinary conductive inorganic particles are mixed or attached to fibers, they have characteristics such as higher conductivity and easier production. In particular, when a polymer of pyrrole is used, it is attracting attention because it not only has high conductivity of 1q even without doping, but also has high stability.

しかし、導電性高分子を用いて繊維に導電性を付与する
場合、その方法は酸化剤を含有する高分子にピロールを
接触させる方法(特開昭63−20361号公報、特開
昭63−42972号公報)や電解重合により電極表面
にポリピロールを生成させる方法に限定されていた。す
なわち、そのいずれもが基材となる高分子の表層部にポ
リピロールが付着しているのみであった。そのため、耐
摩擦性、耐洗濯性などの耐久性に劣るという問題があっ
た。
However, when imparting conductivity to fibers using a conductive polymer, the method is to bring pyrrole into contact with a polymer containing an oxidizing agent (JP-A-63-20361, JP-A-63-42972). The method was limited to methods in which polypyrrole is produced on the electrode surface by electrolytic polymerization. That is, in all of them, polypyrrole was only attached to the surface layer of the polymer serving as the base material. Therefore, there was a problem that durability such as abrasion resistance and washing resistance was inferior.

また特開昭61−282479号公報には、合成重合体
からなる繊維表層部にピロールを含浸漬沃素溶液を作用
させピロールの酸化重合物と沃素置換とを同時に行い繊
維内部にまでポリピロールを生成させる方法が示されて
いる。しかし、この方法において得られた繊維も、導電
性を有するポリピロールはほとんどが繊維の表面に付着
しているのみであり、ざらには過剰に付着した沃素が繊
維や繊維が接触する他の物質の特性を劣化させるという
問題点も生じていた。
Furthermore, in JP-A No. 61-282479, the surface layer of a fiber made of a synthetic polymer is impregnated with pyrrole, and an iodine solution is applied thereto to simultaneously replace the oxidized polymer of pyrrole with iodine, thereby producing polypyrrole even inside the fiber. A method is shown. However, in the fibers obtained using this method, most of the electrically conductive polypyrrole is only attached to the surface of the fibers, and the excess iodine attached to the grains is absorbed by the fibers and other substances with which they come into contact. There also occurred the problem that the characteristics deteriorated.

(発明が解決しようとする課題) 本発明はかかる課題を解決し、高い導電性を有し、かつ
耐摩擦性、耐洗濯性などの耐久性に優れた導電性繊維お
よびその製造方法を容易に提供するものである。
(Problems to be Solved by the Invention) The present invention solves the above problems and easily provides a conductive fiber having high conductivity and excellent durability such as abrasion resistance and washing resistance, and a method for manufacturing the same. This is what we provide.

(課題を解決するための手段) 上記目的を達成するために本発明は、次の構成を有する
(Means for Solving the Problems) In order to achieve the above object, the present invention has the following configuration.

(1)l稚内部にポリピロールを含有することを特徴と
する導電性繊維。
(1) A conductive fiber characterized by containing polypyrrole inside the fiber.

(2)ピロールと酸化剤を、酸化ポテンシャルが9oo
mv以上または400mv以下でおる溶剤中に同時に共
存させ、該溶液を芯成分として複合紡糸を行ない、次い
で上記溶剤の酸化ポテンシャルを400mv以上900
mv以下に変化させて繊維内部にポリピロールを生成さ
せることを特徴とする導電性繊維の製造方法。
(2) Pyrrole and oxidizing agent have an oxidation potential of 9oo
mv or more or 400 mv or less, composite spinning is performed using the solution as a core component, and then the oxidation potential of the solvent is set to 400 mv or more and 900 mv or less.
1. A method for producing conductive fibers, the method comprising producing polypyrrole inside the fibers by changing the conductive fibers to less than mv.

(3)紡糸方法が湿式もしくは乾湿式である請求項2に
記載の導電性繊維の製造方法。
(3) The method for producing conductive fibers according to claim 2, wherein the spinning method is a wet method or a wet-dry method.

(4)酸化剤が塩化第二鉄である請求項2に記載の導電
性繊維の製造方法。
(4) The method for producing conductive fibers according to claim 2, wherein the oxidizing agent is ferric chloride.

(5)酸化ポテンシャルが900mv以上または400
mv以下である溶剤がジメチルスルホキシドを含む混合
溶剤である請求項2に記載の導電性繊維の製造方法。
(5) Oxidation potential is 900 mv or more or 400 mv or more
3. The method for producing conductive fibers according to claim 2, wherein the solvent having a molecular weight of less than mv is a mixed solvent containing dimethyl sulfoxide.

(6)繊維がポリアクリロニトリル繊維でおる請求項2
に記載の導電性繊維の製造方法。
(6) Claim 2, wherein the fiber is polyacrylonitrile fiber.
A method for producing a conductive fiber as described in .

(7)ピロールと酸化剤を、酸化ポテンシャルが900
mv以上または400mv以下である溶剤中に同時に共
存させ、該成分を芯成分として乾式紡糸を行い、次いで
上記溶剤を蒸発させて繊維内部にポリピロールを生成さ
せることを特徴とする導電性繊維の製造方法。
(7) Pyrrole and oxidizing agent have an oxidation potential of 900
A method for producing conductive fibers, which comprises simultaneously coexisting in a solvent with mv or more and 400 mv or less, performing dry spinning using the component as a core component, and then evaporating the solvent to generate polypyrrole inside the fiber. .

に関するものである。It is related to.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明でいう導電性繊維は、ピロールの重合が進まない
溶剤中でピロールと酸化剤を均一溶液として共存させ、
該溶液を繊維内部に存在させた後、ピロールの重合を起
こし導電性を有するポリピロールを繊維内部に存在させ
ることで1qられる。
The conductive fiber in the present invention is made by coexisting pyrrole and an oxidizing agent as a homogeneous solution in a solvent in which polymerization of pyrrole does not proceed.
After the solution is made to exist inside the fiber, pyrrole is polymerized and polypyrrole having conductivity is made to exist inside the fiber, thereby obtaining 1q.

本発明の導電性繊維は、繊維内部に含有するポリピロー
ルにより高い導電性を有している。しかも、繊維内部に
ポリピロールが存在するため、ポリピロールの脱離がな
く、耐摩擦性、耐洗)8性などの耐久性に優れている。
The conductive fiber of the present invention has high conductivity due to the polypyrrole contained inside the fiber. Furthermore, since polypyrrole exists inside the fiber, there is no detachment of polypyrrole, and it has excellent durability such as abrasion resistance and washing resistance.

繊維内部に存在するポリピロールは、繊維断面の中心部
や一部に遍在していてもよいし、断面に均一に分布して
いてもよい。そのほとんどが繊維内部に存在していれば
一部が表面にあっても特に差支えないが、ポリピロール
が繊維軸方向に実質的に連続していることが繊維の長さ
方向の導電性を出すために好ましい。
The polypyrrole present inside the fiber may be ubiquitous in the center or a part of the cross section of the fiber, or may be uniformly distributed over the cross section. As long as most of the polypyrrole exists inside the fiber, there is no particular problem even if some of it is on the surface, but since polypyrrole is substantially continuous in the fiber axis direction, it provides electrical conductivity in the fiber length direction. preferred.

しかし、必ずしもポリピロールは切断なく連続である必
要はなく、−中位の長さが数cm−数十cmおれば、全
体としての導電性は保持される。
However, polypyrrole does not necessarily have to be continuous without cutting, and as long as the median length is several centimeters to several tens of centimeters, the conductivity as a whole is maintained.

以下、本導電性繊維の製造方法を説明する。The method for manufacturing the present conductive fiber will be explained below.

本発明における特徴は、従来、繊維表面にしか付与でき
なかったポリピロールを繊維内部に存在させることであ
る。すなわち、従来は、最終的にピロールを重合する段
階で初めて酸化剤とピロールを接触させていたのに対し
、本発明においては、ピロールと酸化剤を重合が進まな
い条件下であらかじめ共存させておき、繊維内部に両者
を存在させた後、重合を行うことでポリピロールの繊維
内部への存在を可能にしたのである。
A feature of the present invention is that polypyrrole, which conventionally could only be applied to the fiber surface, is present inside the fiber. That is, in the past, the oxidizing agent and pyrrole were brought into contact for the first time at the stage of final polymerization of pyrrole, whereas in the present invention, the pyrrole and oxidizing agent are allowed to coexist in advance under conditions that do not allow polymerization to proceed. By making both of them exist inside the fiber and then polymerizing them, it was possible to make polypyrrole exist inside the fiber.

本発明でいう酸化剤とは、ピロールを重合させるにあた
って触媒として作用するばかりでなく、ときとしてドー
ピング剤として作用するものであり、とくに制限はない
が、ピロールの重合速度の点などから好ましい物質とし
て、各種金属塩、特に金属塩化物が挙げられる。具体例
としては、塩化鉄、塩化錫、塩化亜鉛、塩化モリブデン
、塩化アンチモン、塩化アルミニウムなど種々のものが
使用可能であり、塩化第二鉄がより好ましい。場合によ
っては、酸化剤や助触媒を共存させてもさしつかえない
。この例として、酸化マンガン、酸化鉛、塩化銅などが
挙げられる。さらに、数種の金属塩化物を組み合わせて
使用したり、必要に応じて添加物を加えてもよい。
The oxidizing agent used in the present invention not only acts as a catalyst in polymerizing pyrrole, but also sometimes acts as a doping agent, and although there are no particular limitations, it is a preferable substance from the viewpoint of the polymerization rate of pyrrole. , various metal salts, especially metal chlorides. As specific examples, various substances such as iron chloride, tin chloride, zinc chloride, molybdenum chloride, antimony chloride, and aluminum chloride can be used, and ferric chloride is more preferable. Depending on the case, an oxidizing agent and a co-catalyst may be present together. Examples include manganese oxide, lead oxide, copper chloride, and the like. Furthermore, several types of metal chlorides may be used in combination, and additives may be added as necessary.

本発明においてピロールと上記酸化剤を共存させ、かつ
ピロールの重合が進まない条件は、両者を均一に溶解さ
せる溶剤の酸化ポテンシャルをコントロールすることで
得られる。すなわち、溶剤の酸化ポテンシャルが900
mv以上または400mv以下であれば重合は進まない
。酸化ポテンシャルが900mv以上または400mv
以下である溶剤の具体例としては、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジメチルスルホキシド、ベ
ンゼン、アセトン、アセトニトリルなどが挙げられるが
これに限定されるものではなく、上記条件を満たせば数
種の溶剤を混合して用いてももちろんよい。例えば、メ
タノールは単独では酸化ポテンシャルが約500mvで
あり、ピロールと酸化剤が共存すると直ちに重合が進む
が、これにジメチルスルホキシドをメタノールに対して
同量添加した混合溶剤とすると重合は進まず、使用しう
る。ジメチルスルホキシドは、他の溶剤との相溶性が良
いと同時に、混合溶剤の一つとして用いることで酸化ポ
テンシャルのコントロールを容易に行いうるため好まし
い溶剤である。
In the present invention, the conditions under which pyrrole and the above-mentioned oxidizing agent coexist and the polymerization of pyrrole does not proceed can be obtained by controlling the oxidation potential of a solvent that uniformly dissolves both. That is, the oxidation potential of the solvent is 900
If it is above mv or below 400 mv, polymerization will not proceed. Oxidation potential is 900mv or more or 400mv
Specific examples of the following solvents include, but are not limited to, dimethylformamide, dimethylacetamide, dimethylsulfoxide, benzene, acetone, acetonitrile, etc. Several types of solvents may be mixed as long as the above conditions are met. Of course, you can use it as well. For example, methanol alone has an oxidation potential of approximately 500mV, and when pyrrole and an oxidizing agent coexist, polymerization proceeds immediately. However, when a mixed solvent containing dimethyl sulfoxide in the same amount as methanol is added, polymerization does not proceed, and the polymerization does not proceed. I can do it. Dimethyl sulfoxide is a preferred solvent because it has good compatibility with other solvents and at the same time, the oxidation potential can be easily controlled by using it as one of the mixed solvents.

本発明でいう溶剤の酸化ポテンシャルは、通常の測定方
法で求め)qる。例えば、参照極に飽和カロメル電極(
SCE)、作用極に白金を用い、三電極方式で測定され
る。
The oxidation potential of the solvent referred to in the present invention is determined by a conventional measuring method). For example, the reference electrode is a saturated calomel electrode (
SCE), measured using a three-electrode method using platinum as the working electrode.

ピロールと酸化剤が共存する溶液を繊維内部に存在させ
る方法は、該溶液を芯成分、もしくは島成分に配置する
通常の複合紡糸で達成される。上記芯成分または島成分
と、鞘成分もしくは海成分との粘度を合わせるために酸
化ポテンシャルが変わらない範囲で増粘剤を添加するこ
とは何ら差支えない。また、ブレンド紡糸によっても達
成される。
A method of making a solution in which pyrrole and an oxidizing agent coexist exist inside the fiber is accomplished by ordinary composite spinning in which the solution is placed in the core component or the island component. There is no problem in adding a thickener to match the viscosity of the core component or island component and the sheath component or sea component as long as the oxidation potential does not change. It can also be achieved by blend spinning.

本発明における繊維は、特に制限はないが、上記紡糸方
法を取り1qるために合成繊維や再生繊維が好ましい。
The fibers used in the present invention are not particularly limited, but synthetic fibers and regenerated fibers are preferable in order to use the above-mentioned spinning method.

具体的には、ボリアリレート、ポリメタクリレート、ポ
リメチルメタクリレート、ポリエチレン、ポリプロピレ
ン、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポ
リエーテル、ポリエステル、ポリアミド、ポリイミド、
シリコン、ポリビニルアルコール、ポリビニルピロリド
ン、ポリアクリルアミド、ポリスルホン、ポリフエニレ
ンサルフフイド、ポリウレタン、ポリアクリル酸などを
原料とした合成繊維や、セルロース、セルロース誘導体
などを原料とした再生繊維が挙げられる。
Specifically, polyarylate, polymethacrylate, polymethylmethacrylate, polyethylene, polypropylene, polystyrene, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyether, polyester, polyamide, polyimide,
Examples include synthetic fibers made from silicone, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polysulfone, polyphenylene sulfide, polyurethane, polyacrylic acid, etc., and regenerated fibers made from cellulose, cellulose derivatives, etc.

本発明において、繊維内部にポリピロールを生成させる
ためには、繊維内部に存在させたごロールと酸化剤の共
存溶液の酸化ポテンシャルをポリピロールの重合が進む
条件に変化させる必要がある。これは、酸化ポテンシャ
ルを400mv以上900mv以下にすることで達成さ
れる。酸化ポテンシャルを変化させる方法としては、と
くに制限はなく、得られた繊維を酸化ポテンシャルが4
00mv以上900mv以下である溶剤中に浸し芯成分
の溶剤を徐々に置換する方法等が用いられる。この溶剤
の具体例としては、メタノール、エタノール、プロピル
アルコールなどの低級アルコール、ペンタノール、オク
タツール、水、エチレングリコールなどが挙げられる。
In the present invention, in order to generate polypyrrole inside the fiber, it is necessary to change the oxidation potential of the coexisting solution of polypyrrole and an oxidizing agent present inside the fiber to conditions that allow the polymerization of polypyrrole to proceed. This is achieved by setting the oxidation potential to 400 mv or more and 900 mv or less. There are no particular restrictions on the method of changing the oxidation potential, and the method for changing the oxidation potential of the obtained fiber is 4.
A method is used in which the core component is gradually replaced with a solvent of 00 mv or more and 900 mv or less, for example. Specific examples of this solvent include lower alcohols such as methanol, ethanol, and propyl alcohol, pentanol, octatool, water, and ethylene glycol.

取り扱いが容易でおる、ピロールの重合をすみやかに進
むなどの点からは水、低級アルコールがより好ましい。
Water and lower alcohols are more preferred from the viewpoints of ease of handling and prompt polymerization of pyrrole.

このとき、酸化ポテンシャルの変更を行う条件は特に制
限なく、例えば室温で反応は速やかに進行しうる。また
混合溶剤の場合、得られた繊維を乾燥し特定溶剤を蒸発
により除去することで酸化ポテンシャルは変更させうる
At this time, the conditions for changing the oxidation potential are not particularly limited, and the reaction can proceed rapidly, for example, at room temperature. In the case of a mixed solvent, the oxidation potential can be changed by drying the resulting fiber and removing the specific solvent by evaporation.

紡糸方法が、湿式もしくは乾湿式紡糸の場合は、凝固浴
を角いて繊維成分の凝固と酸化ポテンシャルの変化を同
時に成し得るため特に好ましい。
When the spinning method is wet or dry-wet spinning, it is particularly preferable because the coagulation bath can be used to coagulate the fiber components and change the oxidation potential at the same time.

すなわち、凝固が溶剤に対するポリマーの溶解度を落す
ことで成されるとき、凝固液が繊維内部に侵入するのを
利用し、同時に芯成分中へも凝固液を侵入させ、芯成分
の溶剤の酸化ポテンシャルをも変更させるのである。こ
のとき、まだ繊維が緻密でなく、溶剤の交換がスムーズ
に進む利点もあり、反応は短時間で行われる。さらに、
糸状形成時に重合を進めることにより、ピロールの切断
もなく、良好なポリピロールの連続状態が達成され、高
い導電性が得られる利点もおる。このような方法で作り
うる繊維の具体例として、ポリアクリロニトリル繊維、
ポリビニルアルコール繊維、ポリビニルピロリドン繊維
、ポリスルホン繊維などが挙げられる。芯成分の溶剤の
一種として好ましいジメチルスルホキシドを用いて紡糸
が可能なポリアクリロニトリル繊維は、特に好ましい繊
維でおる。
In other words, when coagulation is achieved by reducing the solubility of the polymer in the solvent, the coagulation liquid penetrates into the fibers, and at the same time the coagulation liquid also penetrates into the core component, reducing the oxidation potential of the solvent in the core component. It also changes the. At this time, the fibers are not yet dense, which has the advantage that the solvent can be exchanged smoothly, and the reaction takes place in a short time. moreover,
By proceeding with polymerization during the formation of filaments, there is no breakage of pyrrole, a good continuous state of polypyrrole is achieved, and there is also the advantage that high electrical conductivity can be obtained. Specific examples of fibers that can be made using this method include polyacrylonitrile fibers,
Examples include polyvinyl alcohol fiber, polyvinylpyrrolidone fiber, and polysulfone fiber. Polyacrylonitrile fibers that can be spun using dimethyl sulfoxide, which is preferred as a type of solvent for the core component, are particularly preferred fibers.

芯成分に用いた酸化ポテンシャル900mv以上または
400mv以下の溶剤を乾燥などにより単に除去するこ
とでもポリピロールの重合は進む。紡糸方法が乾式紡糸
の場合には、一連の紡糸工程中で鞘成分の脱溶媒に伴な
う糸状形成と同時に上記重合を起すことが可能となりよ
り好ましい。このような方法で作り得る繊維の具体例と
して、ポリアクリルニトリル繊維、ポリウレタン繊維、
ポリビニルアルコール繊維などが挙げられる。
Polypyrrole polymerization can also proceed by simply removing the solvent used for the core component, which has an oxidation potential of 900 mv or more or 400 mv or less, by drying or the like. When the spinning method is dry spinning, it is more preferable because it is possible to cause the above-mentioned polymerization to occur at the same time as thread-like formation accompanying desolvation of the sheath component during a series of spinning steps. Specific examples of fibers that can be made using this method include polyacrylonitrile fibers, polyurethane fibers,
Examples include polyvinyl alcohol fiber.

本発明において特にポリピロールを繊維の中心部に生成
させたとき、繊維の色はポリピロールの黒色に支配され
ることなく、繊維本来の色をほとんど損ねることがない
。これは、従来、繊維表面にポリピロールを付着させた
場合には繊維の色がポリピロールの黒色であり、用途に
制限がめったことを改良するものである。
In the present invention, especially when polypyrrole is formed in the center of the fiber, the color of the fiber is not dominated by the black color of the polypyrrole, and the original color of the fiber is hardly impaired. This is an improvement over the fact that conventionally, when polypyrrole was attached to the fiber surface, the fiber color was the black color of polypyrrole, which often limited its use.

本発明でいう導電性を有する高分子であるポリピロール
はその副生成物を含んでもよい。さらには、導電性を有
すればポリピロールの誘導体でもよい。
Polypyrrole, which is a conductive polymer as used in the present invention, may contain its by-products. Furthermore, a derivative of polypyrrole may be used as long as it has conductivity.

また、本発明により得られた導電性繊維を他の繊維と組
み合わせて全体として導電性、制電性を持たせることは
もちろん可能である。
Furthermore, it is of course possible to combine the conductive fibers obtained according to the present invention with other fibers to impart conductivity and antistatic properties as a whole.

本発明の導電性繊維は、静電気が問題となり、訓電性が
必要となる衣料分野やカーペットなどの産業用途ミ導電
性を必要とする産業分野、コンピューター分野など電磁
気遮蔽が必要となる用途に適する。
The conductive fiber of the present invention is suitable for industrial fields such as clothing and carpets where static electricity is a problem and requires conductive properties, industrial fields that require conductivity, and applications where electromagnetic shielding is required such as computer fields. .

以下、本発明による導電性繊維を実施例を用いて説明す
る。
Hereinafter, the conductive fiber according to the present invention will be explained using Examples.

(実施例) 実施例1 メタノール10部に塩化第二鉄3部を加え、均一な溶液
とした1変、ジメチルスルホキシドを5部添加し、た。
(Example) Example 1 3 parts of ferric chloride was added to 10 parts of methanol to make a homogeneous solution, and 5 parts of dimethyl sulfoxide was added.

該溶液の酸化ポテンシャルを参照極に飽和カロメル電極
(SCE)、作用極に白金を用いて測定したところ30
0mvであった。次いで、該溶液にピロールを3部添加
し塩化第二鉄と共存させたが、溶液は褐色透明で沈澱物
の生成は認められなかった。
The oxidation potential of the solution was measured using a saturated calomel electrode (SCE) as a reference electrode and platinum as a working electrode.
It was 0 mv. Next, 3 parts of pyrrole was added to the solution and allowed to coexist with ferric chloride, but the solution was transparent and brown, and no precipitate was observed.

上記溶液を芯成分に用い、鞘成分としてはポリアクリル
ニトリルを20%溶解させたジメチルスルホキシド溶液
を用い、孔数100で通常の複合湿式紡糸を行なった。
The above solution was used as the core component, and a dimethyl sulfoxide solution in which 20% polyacrylonitrile was dissolved was used as the sheath component, and normal composite wet spinning was performed with 100 holes.

この時、凝固浴はジメチルスルホキシド/水=1/3の
混合溶媒を用い、水に凝固と酸化ポテンシャル変更の両
件用をさせた。なお、凝固浴中の繊維の滞留時間は約1
0秒であった。
At this time, a mixed solvent of dimethyl sulfoxide/water = 1/3 was used as the coagulation bath, and the water was used for both coagulation and changing the oxidation potential. The residence time of the fibers in the coagulation bath is approximately 1
It was 0 seconds.

凝固浴槽に押し出された紡糸原液は速やかに凝固し糸状
形成をするとともに、芯成分に含まれるジメチルスルホ
キシドが凝固浴中の水と置換することで芯成分の溶液の
酸化ポテンシャルが上がり数秒のうちにピロールの重合
が行なわれた。これは、形成される糸の色が白色ではな
く、糸内部が着色してくることで容易に判断できる。
The spinning dope extruded into the coagulation bath quickly coagulates to form a filament, and the dimethyl sulfoxide contained in the core component replaces water in the coagulation bath, increasing the oxidation potential of the core component solution within a few seconds. Polymerization of pyrrole was carried out. This can be easily determined by the fact that the color of the formed thread is not white, but that the inside of the thread is colored.

該繊維は最終的に、水洗及び、延伸工程を経て、最終的
に20m/minで巻き取った。
The fibers were finally washed with water and stretched, and finally wound up at 20 m/min.

得られた繊維の断面をSEMで観察したところ、繊維表
面にはほとんど付着物がなく、滑らかであり、繊維内部
にポリピロールが生成していることが確かめられた。
When the cross section of the obtained fiber was observed by SEM, it was found that the fiber surface was smooth with almost no deposits, and it was confirmed that polypyrrole was generated inside the fiber.

該繊維を通常の4端子法で電気抵抗を測定したところ、
7.6xlO1Ω・cmと良好な導電性を示した。次い
で、市販品粉末洗剤を用い、家庭用電気洗濯機で本繊維
を15分間洗濯し、次いで5分間脱水した。このサイク
ルを3回繰り返した後、電気抵抗を測定したところ、3
.0x102Ω◆cmと処理前とほぼ同等の導電性を示
し、低下のないことが確認された。
When the electrical resistance of the fiber was measured using the usual four-probe method, it was found that
It showed good conductivity of 7.6xlO1Ω·cm. Next, the fibers were washed for 15 minutes in a household electric washing machine using a commercially available powdered detergent, and then dehydrated for 5 minutes. After repeating this cycle three times, we measured the electrical resistance and found that 3
.. The conductivity was 0x102Ω◆cm, which was almost the same as that before treatment, and it was confirmed that there was no decrease.

実施例2 クロロホルム10部に塩化第二鉄3部を加え、均一な溶
液とした後、該溶液の酸化ポテンシャルを実施例1とと
同様の方法で測定したところ1200mvであった。次
いで、該溶液にピロールを3部添加し塩化第二鉄と共存
させたが、溶液は褐色透明で沈澱物の生成は認められな
かった。
Example 2 After adding 3 parts of ferric chloride to 10 parts of chloroform to make a homogeneous solution, the oxidation potential of the solution was measured in the same manner as in Example 1 and found to be 1200 mv. Next, 3 parts of pyrrole was added to the solution and allowed to coexist with ferric chloride, but the solution was transparent and brown, and no precipitate was observed.

上記溶液を芯成分に変更した以外は、実施例1と同様の
複合湿式紡糸を行なった。この時、凝固浴はジメチルス
ルホキシド/エタノール=1/3の混合溶媒を用いた。
Composite wet spinning was carried out in the same manner as in Example 1, except that the above solution was changed to the core component. At this time, a mixed solvent of dimethyl sulfoxide/ethanol = 1/3 was used as the coagulation bath.

凝固浴槽に押し出された紡糸原液は速やかに凝固し糸状
形成をするとともに、芯成分の溶液の酸化ポテンシャル
が下がり数秒のうちにピロールの重合が行なわれた。こ
れは、形成される糸の色が白色ではなく、糸内部が着色
してくることで容易に判断できる。
The spinning dope extruded into the coagulation bath rapidly coagulated to form a filament, and the oxidation potential of the core component solution decreased and pyrrole polymerization occurred within a few seconds. This can be easily determined by the fact that the color of the formed thread is not white, but that the inside of the thread is colored.

該繊維は最終的に、水洗及び、延伸工程を経て、最終的
に20m/m i nで巻き取った。
The fibers were finally washed with water and stretched, and finally wound up at 20 m/min.

SEMによる得られた繊維の断面は、実施例1で得られ
たものと同じで繊維内部にポリピロールが生成している
ことが確かめられた。
The cross section of the obtained fiber by SEM was the same as that obtained in Example 1, and it was confirmed that polypyrrole was generated inside the fiber.

該繊維を通常の4端子法で電気抵抗を測定したところ、
9.4X102Ω・cmと良好な導電性を示した。次い
で、実施例1で行った耐洗濯テストを施した後、電気抵
抗を測定したところ、2.8X103Ω・cmと処理前
とほぼ同等の導電性を示し、低下のないことが確認され
た。
When the electrical resistance of the fiber was measured using the usual four-probe method, it was found that
It showed good conductivity of 9.4×10 2 Ω·cm. Next, after carrying out the washing resistance test in Example 1, the electrical resistance was measured, and it was found that the conductivity was 2.8×10 3 Ω·cm, which was almost the same as before the treatment, and there was no decrease in conductivity.

実施例3 市販品ポリビニルアルコールの40%水溶液を鞘成分、
芯成分は実施例1の芯成分を用い、孔数20゜口金温度
75°Cで複合乾式紡糸を行った。この時、乾燥筒の温
度120℃、巻き取り速度300m/m i nの条件
を用いた。本例において、乾燥筒を通過した糸は、芯成
分も脱溶媒が起こり速やかにピロールの重合が進んだ。
Example 3 A 40% aqueous solution of commercially available polyvinyl alcohol was used as a sheath component,
The core component of Example 1 was used as the core component, and composite dry spinning was performed at a hole number of 20° and a spindle temperature of 75°C. At this time, conditions were used: the temperature of the drying cylinder was 120° C., and the winding speed was 300 m/min. In this example, in the thread that passed through the drying tube, the core component was also desolvated and polymerization of pyrrole proceeded rapidly.

これは、口金直下では透明であった糸が、乾燥筒を通過
後は、やや灰色に変色していることで確認できる。
This can be confirmed by the fact that the thread, which was transparent directly under the nozzle, turns slightly gray after passing through the drying tube.

4端子法により、該繊維の電気抵抗を測定したところ、
5.7X103Ω・cmと良好な導電性を示した。
When the electrical resistance of the fiber was measured by the four-terminal method,
It showed good conductivity of 5.7×10 3 Ω·cm.

さらに、該繊維は、実施例1とと同様の耐洗濯テスト後
において、7.0X103Ω・cmの優れた導電性を示
し、摩擦や洗濯に対して耐久性のあることが示された。
Furthermore, after the same washing resistance test as in Example 1, the fibers exhibited excellent electrical conductivity of 7.0 x 10 3 Ω·cm, indicating that they were durable against friction and washing.

比較例1 市販品ポリアクリルニトリル繊維を20%塩化鉄水溶液
に含浸させた後、水分を蒸発させ、繊維表面に、塩化鉄
を付着させたポリアクリルニトリル繊維を得た。
Comparative Example 1 A commercially available polyacrylonitrile fiber was impregnated with a 20% iron chloride aqueous solution, and then water was evaporated to obtain a polyacrylonitrile fiber with iron chloride adhered to the fiber surface.

該繊維を液温110度のピロール液面上10Cmにざら
し、ピロール蒸気を必でたところ5秒で繊維表面に黒色
のポリピロールが生成した。
The fibers were exposed to a height of 10 cm above the surface of the pyrrole liquid at a liquid temperature of 110 degrees Celsius to generate pyrrole vapor, and black polypyrrole was formed on the surface of the fibers in 5 seconds.

この状態で4端子方法により電気抵抗を測定したところ
、2.5X103Ω・cmと良好な導電性を示した。
When the electrical resistance was measured in this state by a four-terminal method, it showed good electrical conductivity of 2.5×10 3 Ω·cm.

ついで、該繊維を実施例1と同様の耐洗濯テストを行っ
たところ、繊維表面に生成付着していたポリピロールは
繊維から脱離し、電気抵抗測定では、7.0X108Ω
・cmと著しい導電性の劣化が認られた。
Then, when the fiber was subjected to the same washing resistance test as in Example 1, the polypyrrole that had formed and adhered to the fiber surface was detached from the fiber, and the electrical resistance was determined to be 7.0×10 8 Ω.
・A significant deterioration in conductivity was observed.

比較例2 メタノール10部に塩化第二鉄3部を加え、均一な溶液
とした後、該溶液の酸化ポテンシャルを実施例1と同様
の方法で測定したところ550mvであった。次いで、
該溶液にピロールを3部添加し紡糸原液として用いよう
としたところ、ピロールを添加後直ちに黒色の沈澱が生
じ、紡糸原液として使用不可能であった。
Comparative Example 2 After adding 3 parts of ferric chloride to 10 parts of methanol to form a homogeneous solution, the oxidation potential of the solution was measured in the same manner as in Example 1 and found to be 550 mv. Then,
When 3 parts of pyrrole was added to the solution and an attempt was made to use it as a spinning stock solution, a black precipitate formed immediately after the addition of pyrrole, making it impossible to use it as a spinning stock solution.

(発明の効果) 本発明により、高い導電性を有する繊維が、容易に得ら
れる。特に、耐摩擦性、耐洗濯性などの耐久性に優れた
導電性繊維が容易に得られる。
(Effects of the Invention) According to the present invention, fibers having high conductivity can be easily obtained. In particular, conductive fibers with excellent durability such as abrasion resistance and washing resistance can be easily obtained.

Claims (7)

【特許請求の範囲】[Claims] (1)繊維内部にポリピロールを含有することを特徴と
する導電性繊維。
(1) A conductive fiber characterized by containing polypyrrole inside the fiber.
(2)ピロールと酸化剤を、酸化ポテンシャルが900
mv以上または400mv以下である溶剤中に同時に共
存させ、該溶液を芯成分として複合紡糸を行い、次いで
上記溶剤の酸化ポテンシャルを400mv以上900m
v以下に変化させて繊維内部にポリピロールを生成させ
ることを特徴とする導電性繊維の製造方法。
(2) Pyrrole and oxidizing agent have an oxidation potential of 900
mv or more and 400 mv or less, composite spinning is performed using the solution as a core component, and then the oxidation potential of the solvent is 400 mv or more and 900 mv or less.
1. A method for producing conductive fibers, the method comprising producing polypyrrole inside the fibers by changing the polypyrrole to less than v.
(3)紡糸方法が湿式もしくは乾湿式である請求項2に
記載の導電性繊維の製造方法。
(3) The method for producing conductive fibers according to claim 2, wherein the spinning method is a wet method or a wet-dry method.
(4)酸化剤が塩化第二鉄である請求項2に記載の導電
性繊維の製造方法。
(4) The method for producing conductive fibers according to claim 2, wherein the oxidizing agent is ferric chloride.
(5)酸化ポテンシャルが900mv以上または400
mv以下である溶剤がジメチルスルホキシドを含む混合
溶剤である請求項2に記載の導電性繊維の製造方法。
(5) Oxidation potential is 900 mv or more or 400 mv or more
3. The method for producing conductive fibers according to claim 2, wherein the solvent having a molecular weight of less than mv is a mixed solvent containing dimethyl sulfoxide.
(6)繊維がポリアクリロニトリル繊維である請求項2
に記載の導電性繊維の製造方法。
(6) Claim 2, wherein the fiber is polyacrylonitrile fiber.
A method for producing a conductive fiber as described in .
(7)ピロールと酸化剤を酸化ポテンシャルが900m
v以上または400mv以下である溶剤中に同時に共存
させ、該成分を芯成分として乾式紡糸を行ない、次いで
上記溶剤を蒸発させて繊維内部にポリピロールを生成さ
せることを特徴とする導電性繊維の製造方法。
(7) The oxidation potential of pyrrole and oxidizing agent is 900 m
A method for producing conductive fibers, which comprises simultaneously coexisting in a solvent with a voltage of V or more and 400 mV or less, performing dry spinning using the component as a core component, and then evaporating the solvent to generate polypyrrole inside the fiber. .
JP10315188A 1988-04-26 1988-04-26 Electrically conductive fiber and production thereof Pending JPH01272824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10315188A JPH01272824A (en) 1988-04-26 1988-04-26 Electrically conductive fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10315188A JPH01272824A (en) 1988-04-26 1988-04-26 Electrically conductive fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH01272824A true JPH01272824A (en) 1989-10-31

Family

ID=14346504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10315188A Pending JPH01272824A (en) 1988-04-26 1988-04-26 Electrically conductive fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH01272824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105113050A (en) * 2015-09-06 2015-12-02 天津工业大学 Method for preparing conductive polymer/adhesive hybrid fiber through blending spinning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105113050A (en) * 2015-09-06 2015-12-02 天津工业大学 Method for preparing conductive polymer/adhesive hybrid fiber through blending spinning

Similar Documents

Publication Publication Date Title
US6083562A (en) Methods for making antistatic fibers [and methods for making the same]
JP2008156810A (en) Core-sheath composite conductive fiber
JP2006328610A (en) Conductive fiber and method for producing the same
JP5131930B2 (en) Conductive polymer fiber and method for producing the same
JPH01272824A (en) Electrically conductive fiber and production thereof
KR102063466B1 (en) Method for manufacturing fine fiber for electrode
JPH01306608A (en) Production of electro-conductive fiber
JP2006233349A (en) Method for producing conductive fiber base material
JP4825772B2 (en) Conductive animal hair fiber sliver and production method thereof, conductive spun yarn obtained from the sliver, and fiber product using the conductive spun yarn
JP2986857B2 (en) Method for producing conductive fiber substrate
JPH0565603B2 (en)
JPH01266280A (en) Production of electrically conductive yarn
JPS6330432B2 (en)
US5186861A (en) Intrinsically conductive moulding compound
JPH03294580A (en) Electrically conductive fiber
JP2820976B2 (en) Composite fiber excellent in dimensional stability and method for producing the same
JPH0726332B2 (en) Method for producing conductive fiber
JPH08337925A (en) Electroconductive acrylic fiber and its production
JPH038872A (en) Production of electrically conductive fiber
JPS61138710A (en) Production of acrylic yarn having improved durability
JPS62299575A (en) Conductive fiber product and its production
JP2005264395A (en) Electroconductive fiber and method for producing the same
JPH0578499A (en) Production of conductive molded product
JP2874334B2 (en) Conductive fiber and method for producing the same
JPS59223313A (en) Electrically conductive acrylic synthetic fiber and production thereof