JPH01272148A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH01272148A
JPH01272148A JP63101805A JP10180588A JPH01272148A JP H01272148 A JPH01272148 A JP H01272148A JP 63101805 A JP63101805 A JP 63101805A JP 10180588 A JP10180588 A JP 10180588A JP H01272148 A JPH01272148 A JP H01272148A
Authority
JP
Japan
Prior art keywords
field effect
nodal point
node
effect transistor
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63101805A
Other languages
Japanese (ja)
Inventor
Shinken Okawa
大川 真賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63101805A priority Critical patent/JPH01272148A/en
Publication of JPH01272148A publication Critical patent/JPH01272148A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To conduct guarantee to the sudden washing-away of charges from a nodal point at a high level, and to obtain more stable static operation by using a TFT as active block to a resistor as passive block. CONSTITUTION:When a high level is written to a nodal point A and a low level to a nodal point B from the outside, only a MOSFET N2 is conducted, and other N1, TN1 and TN2 are not conducted. Consequently, the nodal point B continues to be discharged at ground potential through the N2, and the nodal point A is detached from both VDD and GND and the high level is held. When the charges of the nodal point A suddenly washes away by alpha-rays at that time, the charges of a gate electrode C are discharged with the time later than the nodal point A by a certain value by a resistor R1 and a capacitance C1. Accordingly, potential difference is generated between the source (the nodal point A) of the TFTT N1 and the gate (electrode C), the TFTT N1 is conducted and the nodal point A is supplied with charges from VDD, and the breaking of information is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は半導体記憶装置の構成に間し、特にスタティッ
クラム(RAM)用メモリセルの構成に間する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the construction of semiconductor memory devices, and particularly to the construction of memory cells for static RAM (RAM).

[従来の技術] 電界効果トランジスタ(以下、M OSF E T )
を用いるスタティックRAM用メモリセルの回路は第4
図に示す回路が主流となっている。第4図においてNチ
ャンネルMOSFETNI 1及びN12のソースは接
地電位(GNDと記す)に接続される。NチャンネルM
O9FETNI 1のドレイン及びNチャンネルMOS
FETNi2のゲートは節点A2て共通に接続され、N
チャンネルMOSFETNl2のドレイン及びNチャン
ネルMOSFETN11のゲートは節点B2で共通に接
続される。節点A2.B2は電源(VDDと記す)の間
にそれぞれ抵抗R11,R12が接続される。
[Prior art] Field effect transistor (hereinafter referred to as MOSFET)
The circuit of the static RAM memory cell using
The circuit shown in the figure is the mainstream. In FIG. 4, the sources of N-channel MOSFETs NI1 and N12 are connected to a ground potential (denoted as GND). N channel M
Drain of O9FETNI 1 and N-channel MOS
The gates of FETNi2 are commonly connected at node A2, and N
The drain of channel MOSFET N12 and the gate of N-channel MOSFET N11 are commonly connected at node B2. Node A2. Resistors R11 and R12 are connected between B2 and a power supply (denoted as VDD), respectively.

また節点A2とビット線りの間にはNチャンネルMOS
FETN13が、節点B2とビット線D(オーバーパー
)の間にNチャンネルMOSFETN14が接続され、
NチャンネルMOSFETN13、N14のゲートには
ワード線Wが接続される。第5図は第4図の回路を半導
体基板上に作成する際のレイアウトの一例を示す平面図
である。
In addition, there is an N-channel MOS between node A2 and the bit line.
FETN13 is connected to N-channel MOSFETN14 between node B2 and bit line D (over par),
A word line W is connected to the gates of N-channel MOSFETs N13 and N14. FIG. 5 is a plan view showing an example of the layout when the circuit shown in FIG. 4 is created on a semiconductor substrate.

301はNチャンネルMO3FETNI 1のソース、
トレインとなる単結晶シリコン基板上に形成されたN型
領域、30.2は第1の多結晶シリコンで形成されたN
チャンネルMO5FETNIIのゲート電極である。3
03はNチャンネルMOSFETN12.N14となる
N型領域であり、304は第1の多結晶シリコン層で形
成されたNチャンネルMOSFETNl2のゲート電極
である。
301 is the source of N-channel MO3FET NI 1,
An N-type region 30.2 is formed on the single-crystal silicon substrate as a train, and 30.2 is an N-type region formed of the first polycrystalline silicon.
This is the gate electrode of channel MO5FET NII. 3
03 is an N-channel MOSFET N12. This is an N-type region N14, and 304 is a gate electrode of an N-channel MOSFET N12 formed of the first polycrystalline silicon layer.

305はNチャンネルMOSFETN13となるN型領
域であり、306はNチャンネルMOSFETN13.
N14のゲート電極となる第1の多結晶シリコン層で形
成されたワード線Wである。
305 is an N-type region that becomes N-channel MOSFET N13, and 306 is N-channel MOSFET N13.
This is a word line W formed of a first polycrystalline silicon layer which becomes a gate electrode of N14.

点線307はN型領域と第1の多結晶シリコン層を接続
する領域である。311,312はそれぞれ抵抗R11
,R12となる第2の多結晶シリコン層であり、3】3
は第1と第2の多結晶シリコン層を接続する領域である
。第4図におけるVDD、GNDあるいはビット線り、
D(オーバーパー)との接続については後述する本発明
における真に重要な部分ではないので省略する。
A dotted line 307 is a region connecting the N-type region and the first polycrystalline silicon layer. 311 and 312 are each resistor R11
, R12, and 3]3
is a region connecting the first and second polycrystalline silicon layers. VDD, GND or bit line in Figure 4,
The connection with D (over par) is omitted because it is not a truly important part in the present invention, which will be described later.

第4,5図に示した例は負荷抵抗型セルと呼ばれるもの
で記憶動作である状態の保持はNチャンネルMOSFE
TNIIと抵抗R1、NチャンネルMOSFETN12
と抵抗R2の抵抗比を用いて行われる。一般にNチャン
ネルM OS F E Tの抵抗値はゲート電極が高レ
ベル(VDDと同一電位)で導通状態であるときはキロ
オーム(KΩ)のオーダーであり、ゲート電極が低レベ
ル(GNDと同一電位)で非導通状態であるときは数百
テラΩ(TΩ)のオーダーとなる。抵抗R1,R2はメ
ガΩ(MΩ)からギガオーム(GΩ)程度で設計される
The example shown in Figures 4 and 5 is called a load resistance type cell, and the memory operation is maintained using an N-channel MOSFE.
TNII and resistor R1, N-channel MOSFET N12
This is performed using the resistance ratio of the resistance R2 and the resistance R2. In general, the resistance value of an N-channel MOSFET is on the order of kiloohms (KΩ) when the gate electrode is at a high level (same potential as VDD) and conductive, and when the gate electrode is at a low level (same potential as GND). When it is in a non-conducting state, it is on the order of several hundred teraΩ (TΩ). The resistors R1 and R2 are designed to be approximately mega ohms (M Ω) to giga ohms (G Ω).

いま、かりに外部より節点A2が高レベルに、節点B2
が低レベルに書き込まれたとすると、節点B2のレベル
によりNチャンネルMOS F E TNilは非導通
状態となり節点A2は抵抗R1によってVDDに接続さ
れていると見ることができ、節点A2は高レベルに保持
される。NチャンネルMOSFETNl2は節点A2の
レベルにより導通状態となり節点B2のレベルはNチャ
ンネルMOSFETN12と抵抗R1の抵抗比で決定さ
れ、上述したように抵抗R2の抵抗値は導通時のMOS
FETの抵抗値に比べて3桁以上大きいので節点B2は
極めてGNDに近い電位に保持される。
Now, node A2 is at a high level from the outside, and node B2 is at a high level.
Suppose that is written to a low level, the level of node B2 makes the N-channel MOS F E TNil non-conductive, and node A2 can be seen as being connected to VDD by resistor R1, and node A2 is held at high level. be done. The N-channel MOSFET Nl2 becomes conductive depending on the level of the node A2, and the level of the node B2 is determined by the resistance ratio of the N-channel MOSFET N12 and the resistor R1, and as described above, the resistance value of the resistor R2 is the MOS when conductive.
Since the resistance value is three orders of magnitude larger than the resistance value of the FET, the node B2 is held at a potential extremely close to GND.

[発明が解決しようとする問題点] 上述した従来例では、II LITレベルの節点82側
は抵抗R2とNチャンネルMOSFETN12によりV
DDとGNDの間に直流路が形成され、その消費電力は
抵抗R2でほぼ決定される。このため消費電力を低減す
る目的で抵抗R1,R2は高抵抗に設計されている。例
えば最近発表された1メガビットSRAMでは数千0Ω
〜数TΩにもなっている。次世代の大容量メモリでは消
費電力低減のためにさらなる高抵抗が要求される。この
ため抵抗値はMOSFETの非導通時の抵抗値と極めて
近くなり第4図の例では外部雑音やα線等により急激に
節点A2から電荷の流失が起こった場合にVDDからの
充電を抵抗R1により行うことができず記憶した情報が
破壊されるという欠点がある。また実際の素子の製造に
於て第5図311.312に示すように多結晶シリコン
層に極めて高い抵抗を製造することは技術的に困難さを
伴うという欠点がある。
[Problems to be Solved by the Invention] In the conventional example described above, the node 82 side at the II LIT level is connected to V by the resistor R2 and the N-channel MOSFET N12.
A DC path is formed between DD and GND, and its power consumption is approximately determined by resistor R2. Therefore, the resistors R1 and R2 are designed to have high resistance in order to reduce power consumption. For example, in the recently announced 1 megabit SRAM, several thousand Ω
~ Several TΩ. Next-generation large-capacity memories will require even higher resistance to reduce power consumption. Therefore, the resistance value is very close to the resistance value when the MOSFET is non-conducting, and in the example shown in Figure 4, when charge suddenly flows away from node A2 due to external noise or alpha rays, charging from VDD is stopped by resistor R1. This has the disadvantage that the stored information will be destroyed. Furthermore, in the actual manufacturing of the device, there is a drawback that it is technically difficult to manufacture extremely high resistance in the polycrystalline silicon layer as shown in FIG. 5, 311 and 312.

[発明の従来技術に対する相違点] 上述した従来のスタティックRAM用メモリセルに対し
、本発明は抵抗の替わりに能動素子を用いることにより
高レベル節点からのα線などによって起きる急激な電荷
の流失に対する保証を行いスタティック動作を可能にす
るという相違点を有する。また抵抗に比べると製造も比
較的容易になる。
[Differences between the invention and the prior art] In contrast to the conventional static RAM memory cell described above, the present invention uses an active element instead of a resistor to prevent sudden charge loss caused by α rays from high-level nodes. The difference is that it provides guarantees and enables static operation. It is also relatively easy to manufacture compared to resistors.

[問題点を解決するための手段] 本発明の要旨は半導体基板上に形成された一導電型の第
1及び第2の電界効果トランジスタと、シリコン薄膜に
形成された前記一導電型の第3及び第4の電界効果トラ
ンジスタとで構成され、前記第1および第4の電界効果
トランジスタのゲート電極は第1の導電層で共通に形成
され、前記第2及び第3の電界効果トランジスタのゲー
ト電極は第2の導電層で共通に形成され、前記第1及び
第2の電界効果トランジスタのソースは第1の電源に接
続され、前期第3及び第4の電界効果トランジスタのド
レインは第2の電源に接続され、前記第1の電界効果ト
ランジスタのドレインと前記第3の電界効果トランジス
タのソースとを接続した第1の節点と、前記第1の節点
と前記第2の導電層を接続する第1の抵抗製素子と、前
記第2の電界効果トランジスタのドレインと前記第4の
電界効果トランジスタのソースとを接続した第2の節点
と、前記第2の節点と前記第1の導電層とを接続する第
2の抵抗製素子とを有することである。
[Means for Solving the Problems] The gist of the present invention is to provide first and second field effect transistors of one conductivity type formed on a semiconductor substrate, and a third field effect transistor of one conductivity type formed on a silicon thin film. and a fourth field effect transistor, gate electrodes of the first and fourth field effect transistors are commonly formed of a first conductive layer, and gate electrodes of the second and third field effect transistors are formed in common. are commonly formed in a second conductive layer, the sources of the first and second field effect transistors are connected to a first power supply, and the drains of the third and fourth field effect transistors are connected to a second power supply. a first node that connects the drain of the first field effect transistor and the source of the third field effect transistor; a first node that connects the first node and the second conductive layer; a resistor element, a second node connecting the drain of the second field effect transistor and the source of the fourth field effect transistor, and connecting the second node to the first conductive layer. and a second resistive element.

[実施例] 次に本発明について図面を参照して説明する。[Example] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1実施例を示す回路図である。N1
〜N4は半導体基板上に形成されるNチャンネルMO9
FETであり、GND、ワード線W、ビット線り、D(
オーバーパー)あるいは節点A、  Bとの接続関係は
第4図のNll−N14、GND、 W、  D、  
D (オーバーパー)あるいはA2、B2と同一である
。第1図の特徴は第4図におけるVDDと節点A2、B
2との間に接続された抵抗R11,R12の替わりにシ
リコン薄膜内にソース、ドレイン及びチャンネル領域を
形成するNチャンネル薄膜トランジスタ(Thin  
Film  Transistor:以下TFTと記す
)TNI、TN2を用い、また節点AとN2、TNIの
ゲート電極Cの間に抵抗R1を節点BとNl、TN2の
ゲート電極りの間に抵抗R2を挿入したことである。ゲ
ート電極C,Dについている容ff1c1.C2はゲー
ト容量などの寄生容量であるが別に容量素子を設けるこ
とができる。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. N1
~N4 is an N-channel MO9 formed on a semiconductor substrate
FET, GND, word line W, bit line, D(
(over par) or the connections with nodes A and B are Nll-N14, GND, W, D, in Figure 4.
D (over par) or the same as A2 and B2. The characteristics of Figure 1 are VDD and nodes A2 and B in Figure 4.
In place of the resistors R11 and R12 connected between the N-channel thin film transistor (Thin
Film Transistor (hereinafter referred to as TFT) TNI and TN2 were used, and a resistor R1 was inserted between nodes A and N2 and the gate electrode C of TNI, and a resistor R2 was inserted between nodes B and Nl and the gate electrode of TN2. It is. Capacitors ff1c1. attached to gate electrodes C and D. Although C2 is a parasitic capacitance such as a gate capacitance, a capacitive element can be provided separately.

第1図に示す本発明による回路の動作は、仮に外部から
節点Aに高レベルが節点Bに低レベルが書き込まれたと
すると、M OS F E T N 2のみ導通し、他
のNl、TNI、TN2は非導通となる。
The operation of the circuit according to the present invention shown in FIG. 1 is that if a high level is written to node A and a low level is written to node B from the outside, only MOS FET N2 becomes conductive, and the other Nl, TNI, TN2 becomes non-conductive.

これにより節点BはN2を通して接地電位に放電され続
け、節点AはV D D、  G N D双方と切り離
されて高レベルが保持される。
As a result, node B continues to be discharged to the ground potential through N2, and node A is disconnected from both VDD and GND and is held at a high level.

ここでα線などによって接点Aの電荷が急激に流失した
場合、ゲート電極Cの電荷は抵抗R1、容ff1c1に
より節点Aよりある一定の遅れをもって放電される。こ
のためTPTTNlのソース(節点A)とゲート(電極
C)の間に電位差が生じ、TFTTNIが導通してVD
Dより節点Aに電荷を供給し、情報が破壊されるのを防
ぐ。
Here, when the charge at the contact A is rapidly dissipated due to α rays or the like, the charge at the gate electrode C is discharged with a certain delay from the node A by the resistor R1 and the capacitor ff1c1. Therefore, a potential difference occurs between the source (node A) and gate (electrode C) of TPTTN1, and TFTTN1 becomes conductive, causing VD
Charge is supplied from D to node A to prevent information from being destroyed.

次に本実施例を半導体基板上に作成する際のレイアウト
について説明する。第2A図はそのレイアウトを示す平
面図であり、第2B図は第2八図中のx−x’断面図で
ある。図において1はNチャンネルMO5FETNIと
なる単結晶シリコン 。
Next, a layout for fabricating this embodiment on a semiconductor substrate will be explained. FIG. 2A is a plan view showing the layout, and FIG. 2B is a sectional view taken along the line xx' in FIG. 28. In the figure, 1 is single crystal silicon that becomes the N-channel MO5FETNI.

基板上に形成されたN型領域、2はNチャンネルMO5
FETNI及びTFTTN2のゲート電極りとなる多結
晶シリコン層、3はNチャンネルMOSFETN2.N
4となるN型領域、4はNチャンネルMOSFETN2
及びTFTTNIのゲート電極Cとなる多結晶シリコン
層、5はNチャンネルMOSFETN4となるN型領域
、6はNチャンネルMOSFETN3.N4のゲート電
極となる多結晶シリコン層で形成されたワード線W。
N-type region formed on the substrate, 2 is N-channel MO5
A polycrystalline silicon layer 3 serves as the gate electrode of FETNI and TFTTN2, and 3 is an N-channel MOSFETN2. N
4 is the N-type region, 4 is the N-channel MOSFET N2
and a polycrystalline silicon layer which becomes the gate electrode C of TFTTNI, 5 an N-type region which becomes an N-channel MOSFET N4, and 6 an N-channel MOSFET N3. A word line W formed of a polycrystalline silicon layer serves as a gate electrode of N4.

7はN型領域と多結晶シリコン層を接続する領域、8は
TPTTN2となるシリコン薄膜、9はTFTTNIと
なるシリコン薄膜である。8.9は第2B図に示すよう
にそれぞれ多結晶シリコン2゜4上にゲート絶縁膜とな
る薄い絶縁膜を介して設けられる。10は多結晶シリコ
ン層とシリコン薄膜の接続領域であり、同時に3つの異
なる層を互いに接続した形になっている。11は多結晶
シリコン2,4の一部に設けられた高抵抗領域であり、
12はN型領域同士を分離する絶縁層である。
7 is a region connecting the N-type region and the polycrystalline silicon layer, 8 is a silicon thin film that becomes TPTTN2, and 9 is a silicon thin film that becomes TFTTNI. 8 and 9 are respectively provided on the polycrystalline silicon 2.4 with a thin insulating film serving as a gate insulating film interposed therebetween, as shown in FIG. 2B. Reference numeral 10 denotes a connection region between the polycrystalline silicon layer and the silicon thin film, and has a shape in which three different layers are connected to each other at the same time. 11 is a high resistance region provided in a part of polycrystalline silicon 2 and 4;
12 is an insulating layer that separates the N-type regions from each other.

第2A図〜第2B図において、a、  bはTFTTN
I、TN2のチャンネル領域である。a、  bの形成
には第2B図に示すようにシリコン薄膜がゲート電極上
にあるので、TPTのソース、ドレインを形成する際に
チャンネル領域上に、フォトレジストなどによる不純物
拡散の阻止材を形成する必要があるが、チャンネル領域
を下部の電極より大きな範囲に形成することにより、非
導通時のリーク電流を減少させることができる。
In Figures 2A to 2B, a and b are TFTTN
I, the channel region of TN2. In forming a and b, as shown in Figure 2B, a silicon thin film is on the gate electrode, so when forming the source and drain of TPT, an impurity diffusion blocking material such as photoresist is formed on the channel region. However, by forming the channel region over a larger area than the lower electrode, leakage current during non-conduction can be reduced.

第3A図は本発明の第2実施例のレイアウトを示す平面
図、第3B図は第3A図のx−x’断面図である。第3
A図〜第3B図における201〜209.211,21
2.c、dはそれぞれ第2A図〜第2B図の1〜9. 
11. 12.  a、  bに対応する。本実施例の
特徴は第3B図に示すようにシリコン薄膜を多結晶シリ
コン層の下部に設けたことにある。したがって、N型領
域とシリコン薄膜の接続領域213と、シリコン薄膜と
多結晶シリコン層の接続領域214が新たに加わる。
FIG. 3A is a plan view showing the layout of a second embodiment of the present invention, and FIG. 3B is a sectional view taken along line xx' in FIG. 3A. Third
201 to 209.211, 21 in Figure A to Figure 3B
2. c and d are 1 to 9 in FIGS. 2A to 2B, respectively.
11. 12. Corresponds to a and b. The feature of this embodiment is that a silicon thin film is provided under the polycrystalline silicon layer as shown in FIG. 3B. Therefore, a connection region 213 between the N-type region and the silicon thin film and a connection region 214 between the silicon thin film and the polycrystalline silicon layer are newly added.

本実施例においては、TPTのチャンネルC2dを形成
する際に多結晶シリコンを不純物拡散の阻止材として自
己整合的にソース、トレイン領域を形成でき、第1実施
例に比へ製造工程を簡略化できる利点がある。
In this embodiment, when forming the TPT channel C2d, the source and train regions can be formed in a self-aligned manner using polycrystalline silicon as an impurity diffusion blocking material, and the manufacturing process can be simplified compared to the first embodiment. There are advantages.

[発明の効果コ 以上説明したように本発明は従来例の受動阻止である抵
抗に対して能動阻止であるTPTを用いることにより、
高レベル節点からの急激な電荷の流失に対する保証を行
い、より安定なスタティック動作を得ることができる。
[Effects of the Invention] As explained above, the present invention uses TPT, which is an active blocking method, in contrast to the conventional passive blocking resistor.
It is possible to guarantee against sudden charge loss from high level nodes and obtain more stable static operation.

又抵抗阻止も従来例のような極めて高抵抗にする必要が
ないため、従来例の抵抗阻止に比べると製造が容易に行
うことができる。
Further, since the resistance block does not need to have extremely high resistance as in the conventional example, it can be manufactured more easily than the resistance block in the conventional example.

尚、TPTとなるシリコン薄膜についてその結晶性はど
のようなものを用いてもよい。
Note that the silicon thin film serving as TPT may have any crystallinity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す回路図、第2A図は
第1実施例を半導体基板上に作成する際のレイアウトを
示す平面図、第2B図は第2A図のx−x’断面図、第
3A図は本発明の第2実施例のレイアウトを示す平面図
、第3B図は第3A図のx−x’断面図、第4図は従来
例の回路図、第5図は従来例を半導体基板上に作成する
際のレイアウトを示す平面図である。 N1〜N4゜ Nil〜N14・・・NチャンネルMO9FET。 TNI、TN2・・・シリコン薄膜トランジスタ、R1
,R2,R11,R12・・・抵抗性素子、CI、C2
・・・・・容量、 A、B、A2.B2・ ・・節点、 C,D・・・・・・ゲート電極、 VDD・・・・・ ・電源、 W・ ・ ・ ・ ・ ・ ・ ・ワード線、D、D(
オーバーパー)・・・・ビット線、1、 3. 5. 
201゜ 203、 205. 301゜ 303.305・・・・・・・・・N型領域、2、 4
. 6. 202゜ 204、 206. 302゜ 304.306・・・・・・・多結晶シリコン層、7.
207,307・・・N型領域と多結晶シリコン層の接
続領域、 8.9,208,209・・・シリコン薄膜、10.2
14・・・・・・シリコン薄膜と多結晶シリコン層の接
続領域、 213・・・N型領域とシリコン薄膜の接続領域、11
.211・・・・多結晶シリコン層に設けた高抵抗領域
、 12.212・ ・ ・ ・絶縁層、 311.312・・・抵抗となる第2の多結晶シリコン
層、 313・・・・311と302,312と303の接続
領域、 a、  b、  c、  d・・・TFTのチャンネル
領域。 特許出願人  日本電気株式会社 代理人 弁理士  桑 井 清 − 第1図 第2A図 第2B図 第3A図 第4図 第5図
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, FIG. 2A is a plan view showing a layout when the first embodiment is created on a semiconductor substrate, and FIG. 2B is a line x-x in FIG. 2A. Fig. 3A is a plan view showing the layout of the second embodiment of the present invention, Fig. 3B is a sectional view taken along the line xx' in Fig. 3A, Fig. 4 is a circuit diagram of the conventional example, and Fig. 5 FIG. 2 is a plan view showing a layout when a conventional example is created on a semiconductor substrate. N1~N4°Nil~N14...N channel MO9FET. TNI, TN2...Silicon thin film transistor, R1
, R2, R11, R12...resistive element, CI, C2
...Capacity, A, B, A2. B2... Node, C, D... Gate electrode, VDD... Power supply, W... Word line, D, D (
Over par)...Bit line, 1, 3. 5.
201°203, 205. 301゜303.305・・・・・・N-type region, 2, 4
.. 6. 202°204, 206. 302°304.306... Polycrystalline silicon layer, 7.
207,307...Connection region between N-type region and polycrystalline silicon layer, 8.9,208,209...Silicon thin film, 10.2
14... Connection region between silicon thin film and polycrystalline silicon layer, 213... Connection region between N-type region and silicon thin film, 11
.. 211... High resistance region provided in polycrystalline silicon layer, 12.212... Insulating layer, 311.312... Second polycrystalline silicon layer serving as resistance, 313... 311 and Connection area between 302, 312 and 303, a, b, c, d...TFT channel area. Patent applicant: NEC Corporation Representative Patent attorney Kiyoshi Kuwai - Figure 1 Figure 2A Figure 2B Figure 3A Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成された一導電型の第1及び第2の電
界効果トランジスタと、シリコン薄膜に形成された前記
一導電型の第3及び第4の電界効果トランジスタとで構
成され、前記第1および第4の電界効果トランジスタの
ゲート電極は第1の導電層で共通に形成され、前記第2
及び第3の電界効果トランジスタのゲート電極は第2の
導電層で共通に形成され、前記第1及び第2の電界効果
トランジスタのソースは第1の電源に接続され、前期第
3及び第4の電界効果トランジスタのドレインは第2の
電源に接続され、前記第1の電界効果トランジスタのド
レインと前記第3の電界効果トランジスタのソースとを
接続した第1の節点と、前記第1の節点と前記第2の導
電層を接続する第1の抵抗性素子と、前記第2の電界効
果トランジスタのドレインと前記第4の電界効果トラン
ジスタのソースとを接続した第2の節点と、前記第2の
節点と前記第1の導電層とを接続する第2の抵抗性素子
とを有することを特徴とした半導体記憶装置。
The first field effect transistor is composed of first and second field effect transistors of one conductivity type formed on a semiconductor substrate, and third and fourth field effect transistors of one conductivity type formed on a silicon thin film. and the gate electrode of the fourth field effect transistor is formed in common with the first conductive layer, and the gate electrode of the fourth field effect transistor is formed in common with the first conductive layer;
The gate electrodes of the first and second field effect transistors are commonly formed in a second conductive layer, the sources of the first and second field effect transistors are connected to the first power supply, and the gate electrodes of the third and fourth field effect transistors are connected to the first power supply. A drain of the field effect transistor is connected to a second power supply, a first node connects the drain of the first field effect transistor and the source of the third field effect transistor, and the first node and the a first resistive element connecting the second conductive layer; a second node connecting the drain of the second field effect transistor and the source of the fourth field effect transistor; and the second node and a second resistive element connecting the first conductive layer and the first conductive layer.
JP63101805A 1988-04-25 1988-04-25 Semiconductor storage device Pending JPH01272148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101805A JPH01272148A (en) 1988-04-25 1988-04-25 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101805A JPH01272148A (en) 1988-04-25 1988-04-25 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH01272148A true JPH01272148A (en) 1989-10-31

Family

ID=14310352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101805A Pending JPH01272148A (en) 1988-04-25 1988-04-25 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH01272148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475688A2 (en) * 1990-09-05 1992-03-18 Sharp Kabushiki Kaisha Method for manufacturing memories with thin film transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475688A2 (en) * 1990-09-05 1992-03-18 Sharp Kabushiki Kaisha Method for manufacturing memories with thin film transistors

Similar Documents

Publication Publication Date Title
EP0535681B1 (en) Semiconductor body, its manufacturing method, and semiconductor device using the body
US5952678A (en) SRAM cell with no PN junction between driver and load transistors and method of manufacturing the same
JP2628359B2 (en) Fuse state detection circuit
US8193062B2 (en) Asymmetric silicon-on-insulator SRAM cell
US6639326B2 (en) Full CMOS SRAM cell
US6801449B2 (en) Semiconductor memory device
US5281843A (en) Thin-film transistor, free from parasitic operation
JP2518133B2 (en) Static type semiconductor memory device
JP3039245B2 (en) Semiconductor memory device
JPH06104405A (en) Static memory
JP2976903B2 (en) Semiconductor storage device
US5535155A (en) SRAM cell having load thin film transistors
JPH04113587A (en) Semiconductor memory
US5204834A (en) Static semiconductor memory device
JPH01272148A (en) Semiconductor storage device
JP4618914B2 (en) Semiconductor device
US5491654A (en) Static random access memory device having thin film transistor loads
JP4351178B2 (en) Semiconductor memory device
KR960015912A (en) Soft Error Suppression Resistor Loaded SRAM Cells
JPH0438146B2 (en)
US5886921A (en) Static random access memory cell having graded channel metal oxide semiconductor transistors and method of operation
EP0496360A2 (en) Semiconductor memory cell
JPS6343901B2 (en)
JPH10222984A (en) Structure of sram storing cell having n-channel thin film transistor load device and manufacture thereof
JP3334789B2 (en) Semiconductor storage device