JPH01270678A - Monitoring apparatus of power distribution line - Google Patents

Monitoring apparatus of power distribution line

Info

Publication number
JPH01270678A
JPH01270678A JP63100766A JP10076688A JPH01270678A JP H01270678 A JPH01270678 A JP H01270678A JP 63100766 A JP63100766 A JP 63100766A JP 10076688 A JP10076688 A JP 10076688A JP H01270678 A JPH01270678 A JP H01270678A
Authority
JP
Japan
Prior art keywords
sensor
electric line
core
optical
frame body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63100766A
Other languages
Japanese (ja)
Inventor
Onori Ishikawa
石河 大典
Kazuo Toda
戸田 和郎
Osamu Kamata
修 鎌田
Akihiro Miura
章弘 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Panasonic Holdings Corp
Original Assignee
Kansai Electric Power Co Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Matsushita Electric Industrial Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP63100766A priority Critical patent/JPH01270678A/en
Priority to EP89107063A priority patent/EP0338542B1/en
Priority to DE89107063T priority patent/DE68907979T2/en
Priority to US07/340,934 priority patent/US4999571A/en
Priority to KR1019890005336A priority patent/KR960006865B1/en
Publication of JPH01270678A publication Critical patent/JPH01270678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To install an apparatus and to enable the monitoring of each three-phase electric line in the state wherein the electric lines are installed at a prescribed interval between them, by forming a recessed part for installing the electric lines in a sensor accommodating frame body. CONSTITUTION:An apparatus comprises an optical type current sensor 12, an optical type voltage sensor 13, a sensor accommodating frame body 14, a core 15 for converging a magnetic field, a screw body for fixing the core, a T-shaped pin body 17 for fixing the frame body 14 to an electric line 11, and a protective cover body. As for the gist of installation, the frame body 14 wherein the optical type current sensor 12 or the optical type voltage sensor 13 is accommodated is held by hand and put in the electric line 11, the T-shaped member 17 for fixation, for instance, is inserted between the frame body 14 and the electric line 11, and the hand is detached from the frame body 4. Then the optical sensor 12 and 13 are fixed on the electric line 11. On the occasion, the positional relationship between the electric line 11 and the optical sensors 12, 13 can be fixed without an error. Then, by fitting the core 15 to the frame body 14, the concentration of a magnetic field on the optical sensors 12, 13 is facilitated, and by projecting a light to a sensor element after installation, the state of operation of the electric line 11 can be monitored.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は配電線モニタリング装置に関し、この2ハ延−
−7 装置は比較的電圧の高い配電線あるいは送電線の運転状
況を監視するために設置されるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a power distribution line monitoring device.
-7 The device is installed to monitor the operating status of relatively high voltage distribution lines or transmission lines.

現代社会では、瞬時の停電も許されない状況下にあり常
時、送電あるいは配電の状況を把握し、事故の発生の予
知あるいは未然に事故の防止を図る必要が“ある。本発
明の配電線モニタリング装置は、そのような事故の防止
のため三相電線路に設置され、三相線路の各々電流電圧
センナを設置し、三相のバランスを見るものである。
In modern society, we are in a situation where instantaneous power outages are not tolerated, and it is necessary to constantly grasp the status of power transmission or distribution and to predict or prevent accidents from occurring.Distribution line monitoring device of the present invention In order to prevent such accidents, a current/voltage sensor is installed on each three-phase line to monitor the balance of the three phases.

従来の技術 従来、架空配電線路に用いる配電線モニタリング装置は
、電柱上に設置されだ継電開閉器に内蔵されだ零相変流
器(以後ZCTと称す)と称するリング状のコアの中央
貫通孔に三相電線路をまとめて挿入し、各相の電圧電流
のアンバランスが生じた場合に生じるZCTからの信号
出力を検知していた。しかしこの方法では、高電圧が印
加されている電線路を継電開閉器内のZCT部分にまと
めるため、絶縁が非常に困難となってくる。また常時Z
CT内では高電圧が近接しており、長時間3ノ・−ノ の信頼性に対して酬えられない。そして、従来事故の発
生はこの部分が多く、未然の防止には定期に継電開閉器
内の電線路の交換などを必要としていた。第5図に、電
柱上の継電開閉器の設置状況を示す。
Conventional technology Conventionally, distribution line monitoring devices used for overhead distribution lines have been installed on utility poles and built into relay switches. Three-phase electric wires were inserted into the hole and the signal output from the ZCT was detected when there was an imbalance in the voltage and current of each phase. However, in this method, the electrical lines to which high voltage is applied are grouped together in the ZCT section within the relay switch, making insulation extremely difficult. Also always Z
High voltages are in close proximity within the CT, and long-term reliability cannot be guaranteed. In the past, many accidents occurred in this area, and to prevent them, it was necessary to periodically replace the electrical lines in the relay switch. Figure 5 shows how relay switches are installed on utility poles.

電柱1上に三相電線路2が設置されている。電線路2は
、電柱1」−の一定区間毎に設けられた張碍子3により
電柱−にの腕金4に固定され引張られている。第6図で
は電線路2を切断しウィンチ(図示せず)などにより電
線路2を引張り、たるみのない配電線路とし、次への接
続間に継電開閉器5などの装置を設置している。第6図
においては、電線路間に継電開閉器5を設置し、矢印6
の三相電線路2は張碍子3を経て継電開閉器5を介して
矢印7の三相電線路2につながる。第5図に示した継電
開閉器5の内部には前記のZCT及び電線路しゃ断スイ
ッチ(両者とも図示せず)が内蔵されており、電線路途
中での異常をZCTが検知し、スイッチを切るものであ
る。
A three-phase electric line 2 is installed on a utility pole 1. The electric line 2 is fixed and tensioned to a brace 4 on the electric pole 1 by means of tension insulators 3 provided at certain intervals on the electric pole 1''. In Figure 6, the electric line 2 is cut and pulled using a winch (not shown) to create a distribution line with no slack, and a device such as a relay switch 5 is installed between the connections. . In Fig. 6, a relay switch 5 is installed between the electric lines, and an arrow 6
The three-phase electric line 2 is connected to the three-phase electric line 2 indicated by the arrow 7 via the insulator 3 and the relay switch 5. The relay switch 5 shown in FIG. 5 has the above-mentioned ZCT and electric line cutoff switch (both not shown) built in, and when the ZCT detects an abnormality in the electric line, the switch is activated. It is something to cut.

発明が解決しようとする課題 第5図に示したように、三本の電線路2は継電開閉器5
の部で集中する。K型開閉器5の内部では三本の電線路
はさらに近接しZCTの内側に集まることになる。この
ため三本の電線路の相電圧が非常に狭い」易所に印加さ
れることになり、長時間の使用による劣化や継電開閉器
5の気密状態によっては絶縁が・保持できなくなり、線
間の短絡あるいは線路とZCTの短絡などに進行し停電
事故の原因となることがあった。このような課題に対し
、本発明は三相電、腺路が各々一定間隔で設置された状
態で、モニタリング装置を設置し各々の電線路の情報を
得ようとするものである。さらに得られる情報も、電線
路を操作作業することなく、設置した1才で電線路に流
れる電流及び電圧を同時に常時監視て、長期間の設置に
よっても誤差か生じず、さらに三本の電線路の設置ばら
つきの少ないものでなくては彦らない。
Problems to be Solved by the Invention As shown in FIG. 5, three electric lines 2 are connected to a relay switch 5.
Concentrate on the section. Inside the K-type switch 5, the three electric lines become even closer and gather inside the ZCT. As a result, the phase voltage of the three wires is applied to a very narrow area, and depending on deterioration due to long-term use or the airtightness of the relay switch 5, insulation may not be maintained. This could lead to a short circuit between the line or between the line and the ZCT, resulting in a power outage. In order to solve this problem, the present invention attempts to obtain information on each power line by installing a monitoring device in a state where three-phase power lines and gland lines are installed at regular intervals. Furthermore, the information obtained is that the current and voltage flowing through the electric line can be constantly monitored at the same time without having to operate the electric line, and even after long-term installation, there will be no errors, and there are three electric lines. It must be something that has little variation in installation.

課題を解決するだめの手段 本発明は、光方式に電流又は゛電圧センサを収納j〜た
センサ収納枠体に電線路設置用四部を形成し、5 へ− この四部に電線路を挿入し、さらに凹部に固定用部材を
挿入し、収納枠体に電線路を固定するものである。
Means for Solving the Problems The present invention provides four parts for installing electric wires in a sensor storage frame that houses an optical current or voltage sensor, and inserts electric wires into these four parts. Furthermore, a fixing member is inserted into the recess to fix the electric line to the storage frame.

また、収納枠体の一部に磁界収束用コアを取付け、収納
枠体内にコンデンサ分圧器を設置する構成を用いてもよ
く、磁界収束用コアを、その中心に電線路が位置するよ
うに設置し、コアのエアギャップ部に光方式電流センサ
を位置させる構成も可能である。
Alternatively, a configuration may be used in which a magnetic field convergence core is attached to a part of the storage frame and a capacitor voltage divider is installed inside the storage frame, and the magnetic field convergence core is installed so that the electric line is located in the center. However, a configuration in which the optical current sensor is located in the air gap portion of the core is also possible.

作  用 上記の構成により配電線モニタリング装置の電線路への
設置が極めて簡単になる。設置要領として光方式の電流
又は電圧センサの収納された枠体を手に持ち電線路には
め込み、たとえばT字型固定用部材をセンサ収納枠体と
電線路の間に挿入してセンサ収納枠体から手を離すと電
線路上にモニタリングセンサーが固定される。このとき
、電線路と光センサの位置関係を誤差なく一定にするこ
とができる。そして、コアを枠体に取付けることでセン
サへの磁界集中を容易に行うことが可能と6 へ−7 なる。そして、設置後直ちにセンサ部に光を投入するこ
とにより配電線(電線路)の運転状態を監視できるため
周辺に対する影響が々く、電力関連産業に対し大きな貢
献を奏することかできる。この光方式による電流又は電
圧の検出により、本発明では高絶謙の検出システムが可
能となり、従来の事故原因を減少させることができ、さ
らに光フアイバケーブルによる信号伝送により遠隔地か
らの異常検出あるいは制御が可能となる。本発明は配電
線の運転状態を監視モニタリングするものであるか、そ
の際三相の電線路に限ぎるものではなく、−相あるいは
二相など監視しても、同様のモニタリングは可能である
Operation The above configuration makes it extremely easy to install the distribution line monitoring device on the power line. To install the sensor storage frame, hold the frame housing the optical current or voltage sensor in your hand and fit it into the power line, for example, insert a T-shaped fixing member between the sensor storage frame and the power line. When you release your hand, the monitoring sensor will be fixed on the wire. At this time, the positional relationship between the electric line and the optical sensor can be kept constant without any error. By attaching the core to the frame, it becomes possible to easily concentrate the magnetic field on the sensor. Furthermore, since the operating status of the power distribution line (electrical line) can be monitored by shining light into the sensor unit immediately after installation, it has a large impact on the surrounding area and can make a major contribution to the power-related industry. By detecting current or voltage using this optical method, the present invention enables a highly reliable detection system, which can reduce the causes of conventional accidents.Furthermore, by transmitting signals using optical fiber cables, it is possible to detect abnormalities or control them from a remote location. It becomes possible. The present invention monitors the operating status of power distribution lines, and is not limited to three-phase power lines; similar monitoring is also possible by monitoring negative-phase or two-phase lines.

実施例 本発明に用いる光方式電流センサ及び電圧センサの一例
の原理を簡単にのべる。まず光方式電流センサば、ファ
ラデー効果を利用したもので電線路に電流が流れたとき
周辺に発生ずる磁界を磁気光学素子により検知するもの
である。
EXAMPLE The principle of an example of the optical current sensor and voltage sensor used in the present invention will be briefly described. First, an optical current sensor utilizes the Faraday effect, and uses a magneto-optical element to detect the magnetic field generated in the vicinity when current flows through an electric line.

具体的に第3図により光方式電流センサの説明7 へ−
ノ を行なうと、LED等の光源101のランダム光102
を偏光板103に通し直線偏光104とし長さしの結晶
を有した磁気光学結晶105に入射させる。
Refer to Figure 3 for a detailed explanation of the optical current sensor.
When you do this, random light 102 from a light source 101 such as an LED
The light is passed through a polarizing plate 103 to form linearly polarized light 104 and is made incident on a magneto-optic crystal 105 having a length of crystal.

この光の進光方向と同一方向に磁界H106が加えると
、出射光107の偏光面が角度θ108だけ回転する。
When a magnetic field H106 is applied in the same direction as the traveling direction of this light, the polarization plane of the emitted light 107 is rotated by an angle θ108.

このθ108の回転角の大きさを出力側に設置した検光
子109により光の強度として取り出すことができる。
The magnitude of the rotation angle of θ108 can be extracted as light intensity using an analyzer 109 installed on the output side.

偏光子103と検光子109の透過偏光方向を45° 
ずらしておくと光出力強度は次式で表わされる。
The transmitted polarization direction of the polarizer 103 and analyzer 109 is set to 45°.
When shifted, the light output intensity is expressed by the following equation.

pasin(2θ)〜2θ=2VLH (θ<<1)V:ベルデ定数、L:材料長、θ(1の時
、光出力Pは磁界H106に比例する。このような構成
により導体(たとえば電線路)に電流が流れる時、導体
のまわりに発生する磁界106を測定することによって
流れる電流の大きさを測定することができるものである
pasin(2θ) ~ 2θ=2VLH (θ<<1) V: Verdet constant, L: material length, when θ(1), the optical output P is proportional to the magnetic field H106. With this configuration, the optical output P is proportional to the magnetic field H106. ), the magnitude of the flowing current can be measured by measuring the magnetic field 106 generated around the conductor.

次に光方式電圧センサは、ポッケルス効果を利用したも
のでポッケルス素子中を光が通過する際結晶の複層が電
界に対して変化する量を感じ、電界を検知するものであ
る。具体的に第4図により光方式電圧センサの説明を行
なうと、光源(図示していない)からのランダム光30
1を偏光板302を通し直線偏光303とし次に光源波
長の%の波長板304を通し円偏光305とする。円偏
光305を、ポッケルス素子306に通し検光子307
で受ける。この際ポッケルス素子306に、導体(たと
えば電線路と大地間)電圧308の印加を行ない、その
方向性及び電圧印加の強弱により、円偏光305が縦長
の楕円偏光309になったり横長の楕円偏光310とな
ったりする。
Next, the optical voltage sensor utilizes the Pockels effect, and detects the electric field by sensing the amount that the crystal multilayer changes in response to the electric field when light passes through the Pockels element. Specifically, the optical voltage sensor will be explained with reference to FIG. 4. Random light 30 from a light source (not shown)
1 is passed through a polarizing plate 302 to become linearly polarized light 303, and then passed through a wavelength plate 304 of % of the light source wavelength to become circularly polarized light 305. Circularly polarized light 305 is passed through a Pockels element 306 and an analyzer 307
Receive it at At this time, a voltage 308 is applied to the conductor (for example, between an electric line and the ground) to the Pockels element 306, and depending on the directionality and the strength of the voltage application, the circularly polarized light 305 becomes vertically elongated elliptically polarized light 309, or the circularly polarized light 305 becomes horizontally elongated elliptically polarized light 310. It becomes.

この変化を検光子307で受け、光量変化を電圧変化に
換算する。
This change is received by an analyzer 307, and the change in light amount is converted into a voltage change.

次に第1図は、本発明の一実施例の装置を電線路に取付
けた断面であって、センサ部、コア部。
Next, FIG. 1 is a cross section of a device according to an embodiment of the present invention attached to an electric line, showing a sensor section and a core section.

コンデンサ分圧部を示す。本発明のモニタリング部の構
成は、電線路11周辺に発生する磁界を集中化するだめ
の周回積分用コア(磁気コア)15を有した光方式電流
センサ12と、電線路11と9 ヘ一/。
The capacitor voltage dividing section is shown. The configuration of the monitoring section of the present invention includes an optical current sensor 12 having a lap integration core (magnetic core) 15 for concentrating the magnetic field generated around the electric line 11, and a link between the electric lines 11 and 9. .

大地間の電圧をコンデンサ分圧するだめの分圧器201
よりの分圧電圧が直接印加される光方式電圧センサ13
よりなる。これらを一体化したセンサ収納枠体14を電
線路11に設置固定しする。
Voltage divider 201 that divides the voltage between the ground and the capacitor
Optical voltage sensor 13 to which a divided voltage of
It becomes more. A sensor storage frame 14 in which these are integrated is installed and fixed on the electric line 11.

々お分圧器201と光方式電圧センサ13は細線202
により配線されている。また光方式の電流。
The voltage divider 201 and the optical voltage sensor 13 are connected to a thin wire 202.
Wired by. Also light method current.

電圧センサ12,13からは、光ファイバ19が外部発
光受光素子(第1図には図示せず)に各々接続される。
Optical fibers 19 are connected from the voltage sensors 12 and 13 to external light emitting and receiving elements (not shown in FIG. 1).

第1図では、枠体14は電線路11に一個に取りつけら
れた構成を示しているが、実際には配電線は三相であり
三本の電線路にそれぞれ同一の枠体14が設置されるこ
とになる。電線路へのモニタリング装置の設置に対して
内部に収納された光方式電流センサ12は周回積分の磁
界収束用コアのエアギャップに位置させる。
Although FIG. 1 shows a structure in which the frame 14 is attached to the electric line 11 as a single piece, the distribution line is actually three-phase, and the same frame 14 is installed on each of the three electric lines. That will happen. For installation of the monitoring device on the electric line, the optical current sensor 12 housed inside is located in the air gap of the core for converging the magnetic field of circuit integration.

これらを考慮し、第2図で明らかなように、枠体14は
活線状態の電線路を設置するための凹部22を有し、磁
界を収束させるコア15が固定可能でコンデンサ分圧器
201が内蔵された凸部10 ベージ 14Aを有している。枠体14の四部22を電線路11
に挿入し、矢印23のごとく1字型ピン体17を挿入し
固定する。固定された枠体14の凸部14Aにコアギャ
ップコア15を矢印24のごとく設置し、コアを固定す
るネジ体16を矢印27の方向に動かし枠体14のネジ
28に結合する。
Taking these into consideration, as is clear from FIG. 2, the frame body 14 has a recess 22 for installing a live electric line, a core 15 for converging the magnetic field can be fixed, and a capacitor voltage divider 201 is installed. It has a built-in protrusion 10 and a base 14A. The four parts 22 of the frame 14 are connected to the electric line 11
, and insert the single-shaped pin body 17 as shown by the arrow 23 and fix it. The core gap core 15 is installed on the convex portion 14A of the fixed frame body 14 as shown by the arrow 24, and the screw body 16 for fixing the core is moved in the direction of the arrow 27 and coupled to the screw 28 of the frame body 14.

すなわち、ネジ体16の一部26は切断されており、そ
の一部26を利用してネジ体16を電線路11にはめ込
み、矢印27の方向に動かし枠体凸部14Aにネジ込む
。枠体14には下方より電流センサおよび電圧センサが
挿入固定してあり、各々のセンサからは光ファイバ19
A、19Bが出ており、信号処理回路(図示せず)に入
る構成である。さらに枠体14は外部の環境よりセンサ
部を保護するだめ全体カバー18をかぶせる構成として
いる。
That is, a portion 26 of the screw body 16 is cut, and the screw body 16 is fitted into the electric line 11 using the portion 26, moved in the direction of the arrow 27, and screwed into the frame convex portion 14A. A current sensor and a voltage sensor are inserted and fixed into the frame 14 from below, and an optical fiber 19 is connected from each sensor.
A and 19B are exposed and are configured to enter a signal processing circuit (not shown). Further, the frame body 14 is configured to be covered with an overall cover 18 to protect the sensor section from the external environment.

さらに、第2図を用いて実施例を説明する。第2図は実
施の具体例で第1図に示す概略図を詳細に示し、電線路
に固定する際の分解斜視図である。
Further, an example will be described using FIG. 2. FIG. 2 shows in detail the schematic diagram shown in FIG. 1 in a specific example of implementation, and is an exploded perspective view when it is fixed to an electric line.

従って、第1図には示していない。全体カバーやjl、
3.; コアを固定するネジ体電線路への固定を行なうピン体な
ど示している。第2図は1木の電線路11に設置された
配電線モニタリング装置の一部である。装置は三相の電
線路のバランスを監視するが3木の電線路に設置するセ
ンサ形状はまったく同一である。配電線モニタリング装
置は、光方式電流センサ12、光方式電圧センサ13、
それらのセンサを収納する枠体14、磁界収束用コア1
6、コアの固定用ネジ体16、枠体14を電線路11に
固定するだめの1字型ピン体17、保護カバー体18よ
りなる。
Therefore, it is not shown in FIG. Whole cover and JL,
3. ; The screw body that fixes the core, the pin body that fixes it to the electric wire, etc. are shown. FIG. 2 shows a part of a distribution line monitoring device installed on a single tree power line 11. The device monitors the balance of the three-phase power lines, and the sensors installed on the three power lines are exactly the same. The distribution line monitoring device includes an optical current sensor 12, an optical voltage sensor 13,
A frame body 14 that accommodates those sensors, a magnetic field convergence core 1
6. Consists of a screw body 16 for fixing the core, a single-shaped pin body 17 for fixing the frame body 14 to the electric line 11, and a protective cover body 18.

光方式電流センサ12及び光方式電圧センサ13は、光
ファイバ19により各々のセンサケース体の内部に導か
れ電流センサはファラデー素子(センサ内の)を通過さ
せる。電圧センサはポッケルス素子(センサ内の)を通
過させる。このような電流センサ12、電圧センサ13
を下方からセンサ収納枠体14に設けられた収納部20
(一部図示せず)に挿入する。電流センサ12は枠体1
4の収納部20に挿入しコア収納部21にのぞくよう設
置する。この電流センサ12、電圧センサ13はあらか
じめ設置しておく事が作業性上良いのは当然があるとと
もに、振動によるズレ等も生じない。なお、さらに下か
らのケース止め(図示せず)もあっても良い。このよう
に用意されたものを電線路11下方より枠体の一部に形
成された凹部22に設置1〜.1字型挿入ピン体14を
図後方より枠体14に矢印23方向より挿入する。この
1字型挿入ピン体14は電線路11の太さの円周形状を
一都有しており電線路11にピッタリ合致する。
The optical current sensor 12 and the optical voltage sensor 13 are guided into the interior of each sensor case body by an optical fiber 19, and the current sensor is passed through a Faraday element (inside the sensor). The voltage sensor passes through a Pockels element (inside the sensor). Such a current sensor 12 and voltage sensor 13
The storage section 20 provided in the sensor storage frame 14 from below
(partially not shown). The current sensor 12 is the frame body 1
It is inserted into the storage section 20 of No. 4 and installed so as to look into the core storage section 21. It goes without saying that it is better to install the current sensor 12 and voltage sensor 13 in advance in terms of workability, and also prevents displacement due to vibration. Note that the case may be further secured from below (not shown). The thing prepared in this way is installed from below the electric line 11 into the recess 22 formed in a part of the frame 1 to 1. The single-shaped insertion pin body 14 is inserted into the frame body 14 from the rear in the figure in the direction of arrow 23. This single-shaped insertion pin body 14 has a circumferential shape with the same thickness as the electric line 11, and fits perfectly with the electric line 11.

当然枠体にも同一の形状は電線路に接触する部分は形成
しである。寸だその円周形状した一部には枠体14が横
にずれていかないようすべり止めの工夫も考えられる(
図示せず)。
Naturally, the same shape is formed on the frame body in the portion that contacts the electric wire. It is conceivable that a part of the circumferential shape could be made to prevent the frame 14 from slipping laterally (
(not shown).

この状態で枠体14より手を前しても落下するととはな
く後の作業が容易に出来ることになる。
In this state, even if you put your hand forward from the frame 14, it will not fall and the subsequent work can be done easily.

次に枠体前方の矢印24より磁界収束用コア15を挿入
矢印24の方向に移動し、コア収納部21に設置する。
Next, the magnetic field convergence core 15 is moved in the direction of the insertion arrow 24 from the arrow 24 in front of the frame and installed in the core storage section 21 .

この際あらかじめ挿入固定1〜である電流センサ12を
、コア15のエアギャップ部2513 \−2 にはめ込む。このコア15はギャップ25以外は連続し
ており、磁束のとぎれのない集中度の高い構造である。
At this time, the current sensors 12, which are inserted and fixed 1 to 1, are fitted into the air gap portion 2513 \-2 of the core 15 in advance. This core 15 is continuous except for the gap 25, and has a structure in which the magnetic flux is highly concentrated without interruption.

次にコアの固定のため一部に切り込み26を有したコア
固定用ネジ体16を電線路11にはめ込み矢印27の方
向に挿入しネジ部28によりネジ込みコア15を固定す
る。コア15のギャップならびに分圧器とセンサ12,
13との位置関係は正確に設定される。
Next, a core fixing screw body 16 having a notch 26 in a part for fixing the core is fitted into the electric line 11 and inserted in the direction of the arrow 27, and the screwed core 15 is fixed by the screw portion 28. the gap in the core 15 and the voltage divider and sensor 12,
The positional relationship with 13 is set accurately.

以上のように一体化されたセンサ部を保護するため保護
カバー18を上方よりかぶせる。なお、この状態では風
雨により水分の浸入のおそれがある場合さらに下方より
カバーをする事を考慮しても良い。
In order to protect the integrated sensor section as described above, a protective cover 18 is placed over it from above. In addition, in this state, if there is a risk of moisture infiltration due to wind and rain, you may consider covering it from below.

以上のような構成及び組立により他の2本の電線路にも
センサを設置する。まだ、配電線モニタリング装置のセ
ンサ部への光の入射、出射は、電柱中段に別な制御箱(
図示せず)を設は行なう3、以上の実施例では、光方式
センサとして′電圧。
With the above configuration and assembly, sensors are also installed on the other two electric lines. There is still a separate control box located in the middle of the utility pole (
3. In the above embodiments, the optical sensor is used as a voltage sensor (not shown).

電流2種類収納した装置を述べだが、どちらか−方を用
いてもよいとともに、光方式センサとじて14  g 
−9 は他の原理のものを用いてもよい。″また、コンデンザ
分圧器、コア等は必須のものでないとともに、その数例
は位置等も構成により任意に選択することはできる。
Although we have described a device that accommodates two types of current, it is also possible to use either one, and the optical sensor also has a capacity of 14 g.
-9 may be based on another principle. ``Furthermore, the capacitor voltage divider, core, etc. are not essential, and the positions of some of them can be arbitrarily selected depending on the configuration.

発明の効果 本発明により、次のような効果を奏することができる。Effect of the invention According to the present invention, the following effects can be achieved.

すなわち、光方式の電流又は電圧の検出を行ない高絶縁
を保持することが出来、捷だ光フアイバケーブルによる
信号伝送で遠隔制御かり能となるモニタリング装置を、
電線路を活線状態とした丑まで取付けが可能であり、ピ
ン等の挿入のみで固定できる。そして取りはずしも容易
であるとともにこの時も配電線系に影響を与えない。さ
らに枠体内にあらかじめ電流センサ又は電圧センサの設
置場所を決めておくことができ、電線路への取付は時の
調整等は不要である。丑だ、磁界収束用コアを収納枠体
に取付け、あるいはコンデンザ分圧器を枠体内に設置す
ることにより、振動などによるズレか生じないとともに
、センサとコアあるいは分圧器の位置関係を常に正確に
設定する15へ−7 ことが可能となる。
In other words, we have created a monitoring device that can perform optical current or voltage detection, maintain high insulation, and enable remote control by transmitting signals using twisted optical fiber cables.
It can be installed up to the point where the electric line is in a live state, and can be fixed by simply inserting a pin, etc. Moreover, it is easy to remove and does not affect the power distribution line system. Furthermore, the installation location of the current sensor or voltage sensor can be determined in advance within the frame, and there is no need to make any adjustments when installing it on the electric line. By attaching the magnetic field convergence core to the storage frame or installing the capacitor voltage divider inside the frame, there will be no deviation due to vibration, and the positional relationship between the sensor and the core or voltage divider can always be set accurately. It becomes possible to do 15-7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の配電線モニタリング装置の
要部概略断面図、第2図は本発明の一実施例の配電線モ
ニタリング装置の分解斜視図、第3図は光方式電流セン
サの原理図、第4図は光方式電圧センサの原理図、第5
図は従来の零相変流器が内蔵された継電開閉器の電柱上
設置図である。 11・・・・・・電線路、12・・・・・光方式電流セ
ンサ、13・・・・・・光方式電圧センサ、14・・・
・・・センサ収納枠体、16・・・・・・磁界収束用コ
ア、16・・・・・・コア固定用ネジ体、17・・・・
・・1字型ピン体、18・・・・・・保護カバ一体。
Fig. 1 is a schematic sectional view of the main parts of a distribution line monitoring device according to an embodiment of the present invention, Fig. 2 is an exploded perspective view of a distribution line monitoring device according to an embodiment of the present invention, and Fig. 3 is an optical current sensor. Figure 4 is the principle diagram of the optical voltage sensor. Figure 5 is the principle diagram of the optical voltage sensor.
The figure shows a conventional relay switch with a built-in zero-phase current transformer installed on a utility pole. 11...Electric line, 12...Optical current sensor, 13...Optical voltage sensor, 14...
... Sensor storage frame, 16 ... Core for magnetic field convergence, 16 ... Screw body for fixing the core, 17 ...
・1-shaped pin body, 18... Protective cover integrated.

Claims (2)

【特許請求の範囲】[Claims] (1)光方式の電流又は電圧センサを収納したセンサ収
納枠体に電線路設置用凹部を形成し、前記凹部に電線路
を挿入し、前記凹部に固定用部材を挿入してなることを
特徴とする配電線モニタリング装置。
(1) A sensor storage frame housing an optical current or voltage sensor is formed with a recess for installing an electric line, the electric line is inserted into the recess, and a fixing member is inserted into the recess. Distribution line monitoring equipment.
(2)収納枠体の一部に磁界収束用コアを取付け、前記
収納枠体内にコンデンサ分圧器を設置してなることを特
徴とする特許請求の範囲第1項に記載の配電線モニタリ
ング装置。(3)電線路が中心に位置するように磁界収
束用コアを設置し、このコアのエアギャップ部に光方式
電流センサが位置することを特徴とした特許請求の範囲
第1項に記載の配電線モニタリング装置。
(2) The distribution line monitoring device according to claim 1, characterized in that a magnetic field convergence core is attached to a part of the storage frame, and a capacitor voltage divider is installed inside the storage frame. (3) The arrangement according to claim 1, characterized in that a magnetic field convergence core is installed so that the electric line is located at the center, and an optical current sensor is located in the air gap of this core. Wire monitoring device.
JP63100766A 1988-04-22 1988-04-22 Monitoring apparatus of power distribution line Pending JPH01270678A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63100766A JPH01270678A (en) 1988-04-22 1988-04-22 Monitoring apparatus of power distribution line
EP89107063A EP0338542B1 (en) 1988-04-22 1989-04-19 A current and/or voltage detector for a distribution system
DE89107063T DE68907979T2 (en) 1988-04-22 1989-04-19 Current and / or voltage detector for a distribution system.
US07/340,934 US4999571A (en) 1988-04-22 1989-04-20 Current and/or voltage detector for a distribution system
KR1019890005336A KR960006865B1 (en) 1988-04-22 1989-04-22 Current and/or voltage detector for a distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63100766A JPH01270678A (en) 1988-04-22 1988-04-22 Monitoring apparatus of power distribution line

Publications (1)

Publication Number Publication Date
JPH01270678A true JPH01270678A (en) 1989-10-27

Family

ID=14282624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63100766A Pending JPH01270678A (en) 1988-04-22 1988-04-22 Monitoring apparatus of power distribution line

Country Status (1)

Country Link
JP (1) JPH01270678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286303A (en) * 2009-06-10 2010-12-24 Yazaki Corp Current sensor
CN112362920A (en) * 2020-11-11 2021-02-12 贵州电网有限责任公司 State monitoring sensor protection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014058U (en) * 1973-05-31 1975-02-14
JPS62132178A (en) * 1985-12-03 1987-06-15 Sumitomo Electric Ind Ltd Voltage/current detector
JPS6319273B2 (en) * 1983-05-19 1988-04-21 Dengensha Mfg Co Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014058U (en) * 1973-05-31 1975-02-14
JPS6319273B2 (en) * 1983-05-19 1988-04-21 Dengensha Mfg Co Ltd
JPS62132178A (en) * 1985-12-03 1987-06-15 Sumitomo Electric Ind Ltd Voltage/current detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286303A (en) * 2009-06-10 2010-12-24 Yazaki Corp Current sensor
CN112362920A (en) * 2020-11-11 2021-02-12 贵州电网有限责任公司 State monitoring sensor protection device
CN112362920B (en) * 2020-11-11 2023-01-24 贵州电网有限责任公司 State monitoring sensor protection device

Similar Documents

Publication Publication Date Title
US4999571A (en) Current and/or voltage detector for a distribution system
EP1820034B1 (en) Compensation of simple fiberoptic faraday effect sensors
CN102713699B (en) Optical sensor assembly and method for measuring current in an electric power distribution system
US5202812A (en) Apparatus for detecting faults on power transmission lines
US20120187937A1 (en) Master-Slave Fiber Optic Current Sensors for Differential Protection Schemes
US8525512B2 (en) Faraday optical current sensor arrangement
US20110115469A1 (en) Optical fiber electric current sensor, electric current measurement method, and fault zone detection apparatus
US10006944B2 (en) Electro-optic current sensor with high dynamic range and accuracy
CN103477232A (en) An AC or DC power transmission system and a method of measuring a voltage
JPH01270678A (en) Monitoring apparatus of power distribution line
JPH01270679A (en) Monitoring apparatus of power distribution line
US9347973B2 (en) Stress control assembly and methods of making the same
JPH0439606Y2 (en)
KR100319829B1 (en) Distribution automatic switch measuring with optical sensor
JPH0450663A (en) Current measuring device
JPH0668509B2 (en) Zero-phase voltage detector for three-phase power line
TWI432739B (en) Optical converter for electronic equipment
US20050237051A1 (en) Optical current sensor with flux concentrator and method of attachment for non-circular conductors
JPH03235070A (en) Apparatus for detecting fault section of line
JPH11108973A (en) Watthour meter
WO2011078096A1 (en) Single-phase optical current transformer
JPH0562954B2 (en)
JPS6350765A (en) Optical fiber zero phase current transformer
JPH02108976A (en) Double rated type light applied current sensor
JPS63121758A (en) Method for measuring zero phase current by using electro-optic effect element