JPH01270651A - Processing method of data in x-ray diffraction apparatus - Google Patents

Processing method of data in x-ray diffraction apparatus

Info

Publication number
JPH01270651A
JPH01270651A JP10100088A JP10100088A JPH01270651A JP H01270651 A JPH01270651 A JP H01270651A JP 10100088 A JP10100088 A JP 10100088A JP 10100088 A JP10100088 A JP 10100088A JP H01270651 A JPH01270651 A JP H01270651A
Authority
JP
Japan
Prior art keywords
intensity
rays
diffracted
data
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10100088A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
公 山本
Taiji Matsumura
泰治 松村
Masayuki Matsuo
正之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Shimadzu Corp
Original Assignee
Shimadzu Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Kawasaki Steel Corp filed Critical Shimadzu Corp
Priority to JP10100088A priority Critical patent/JPH01270651A/en
Publication of JPH01270651A publication Critical patent/JPH01270651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To determine a position and the intensity of a diffraction peak, by a method wherein three or more measuring points are set within the distribution width of diffracted X-rays, the shape of the diffraction peak is adapted to a Gaussian error distribution curve, and an undetermined constant is calculated from the intensity of X-rays obtained. CONSTITUTION:In an X-ray detecting device 4, X-ray detectors 41, 42...418 are arranged in three arrays each comprising six of them. A sample being set on a goniometer 3, the center (the middle of the detectors 49 and 410) of the device 4 is made to coincide with an expected central position of a diffraction peak in an angular position whereat diffracted rays to be measured appear. A control device 6 integrates outputs of the detectors 41-418 for a prescribed time and takes in the result as measured data, and after the execution of sensitivity correction, it sends the data to a host computer 7 to be processed. First base line correction is executed to determine measured data Pi, a value of an angular position corresponding thereto is set as Xi, and the intensity P (Xi) of diffracted rays corresponding to the value Xi is determined by the application of a Gaussian distribution curve. Three constants in the distribution curve can be decided from a number of expressions of the intensity P (Xi) by a least squares method, for instance. 1: X-ray tube, 2,8: solar slit.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明はX線回折装置における回折X線のピーク中心位
置ピーク高さ半値幅等を求めための測定出力に対するデ
ータ処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a data processing method for measurement output for determining the peak center position, peak height, half width, etc. of diffracted X-rays in an X-ray diffraction apparatus.

(従来の技術) X線回折装置によって材料の応力組成等を測定する場合
、回折X線のピーク位置および強度を精密に測定する必
要がある。従来は回折X線のピーク位置2強度の測定精
度を上げるため回折装置の角度送りの一ステップの送り
角を小さ(設定するき云う方法を用いていた。ステップ
送りの角度を小さくずれば測定精度は向」−するが、測
定回数が多くなるため、測定所要時間が大へん長(なり
、研究室的な測定の場合には実行できても、作業現場で
測定データをオンラインでポストコンピュータに送り、
データ処理してその結果を作業現場にフィードバックす
ると云うような場合には不向きな方法である。
(Prior Art) When measuring the stress composition of a material using an X-ray diffraction device, it is necessary to accurately measure the peak position and intensity of diffracted X-rays. Conventionally, in order to increase the measurement accuracy of the peak position 2 intensity of diffracted X-rays, a method was used in which the feed angle of one step of the angle feed of the diffractometer was set small.If the step feed angle was shifted small, the measurement accuracy could be improved. However, since the number of measurements required is large, the time required for measurement is very long (and although it can be carried out in the case of laboratory measurements, it is necessary to send the measurement data online to a postcomputer at the work site). ,
This method is not suitable for cases where data is processed and the results are fed back to the work site.

(発明が解決しようとする課題) 本発明は短時間で精度良(回折X線ピークの位置および
強度が測定できるようにしようとするもので、X線回折
装置の角度送りにおけるーステップの送り角を大きく設
定してしかもfil11定精度を上げることが発明課題
である。
(Problems to be Solved by the Invention) The present invention aims to enable accurate measurement of the position and intensity of diffraction X-ray peaks in a short time. The object of the invention is to increase the fil11 constant accuracy while setting the value large.

(課題を解決するだめの手段) 回折装置における測定角度間隔を回折X線の分布幅内に
3点以」二側定点が存在し得る値に設定し、回折ピーク
の形をガウス或はガウスーL1−レンスの誤差分布曲線
として、同誤差分布曲線を表わす式の未定定数を−1−
記数定角度間隔て得られたX線強度から算定するこ七に
より、回折ピークの位置および強度を決定するようにし
た。
(Another means to solve the problem) The measurement angle interval in the diffractometer is set to a value that allows the existence of three or more fixed points on two sides within the distribution width of diffracted X-rays, and the shape of the diffraction peak is Gaussian or Gaussian-L1. - As the lens error distribution curve, set the undetermined constant of the formula representing the error distribution curve to -1-
The position and intensity of the diffraction peak were determined by calculating from the X-ray intensities obtained at regular angle intervals.

(作 用) ガウスのB1′!差分布曲線は P(x)−Kc、−・(γ−“)″   、= (1)
で表される。上式て、Xは回折角てあり■ぐ、21゜)
)が未決定数で、P (x)はx =−)、)を中心に
左右対称の形をしており、x=bがピーク中心位置で、
Kがピーク強度であり、:1はピークの半値幅に対応す
る蚤となる。今x=x1..x2・・・でP(xl)、
P (x2) ・・なる41す定値が得られた場合丁’
(xl、)=Ke−”(′−63”P (x 2 > 
= K e−”?−”なる多数の式が得られるから、例
えば最小自乗法により、■ぐ、a、bを決定することか
で・きる。
(Action) Gauss'B1'! The difference distribution curve is P(x) − Kc, −・(γ − “)″, = (1)
It is expressed as In the above formula, X is the diffraction angle, 21°)
) is the undetermined number, P (x) is symmetrical around x = -), ), and x = b is the peak center position,
K is the peak intensity, and :1 is the flea corresponding to the half width of the peak. Now x=x1. .. P(xl) at x2...
P (x2)...If a constant value of 41 is obtained, then D'
(xl,)=Ke-"('-63"P (x 2 >
Since a large number of equations such as = K e-"?-" can be obtained, it is possible to determine, for example, a, b by the method of least squares.

K、a、bの決定は最小自乗法に限らず、例えば測定値
P (xll 、P (x2)・・・等から適当に三個
をとり、それらを(1)式に代入して、K、a、bを算
出すると云う操作を三個−組の測定値の組合せを色/、
に変えて行い、夫//の場合に求まったK 、a + 
bの値を平均すると云うようにしてもよい。
The determination of K, a, and b is not limited to the method of least squares; for example, take three values from the measured values P (xll, P (x2), etc.) and substitute them into equation (1) to calculate K , a, b The combination of three sets of measured values is colored /,
K, a + obtained in the case of husband//
The values of b may be averaged.

従来法は複数の測定点における測定値にスムージング処
理を施して回折X線のピークブ[コツアイルを求めるも
のであるが、この場合ピータブ1−1フアイル上の幾つ
かの点を同個数の測定値から決定していることになる。
The conventional method applies smoothing processing to the measured values at multiple measurement points to obtain the peak curve of the diffraction X-ray. It has already been decided.

本発明は回折X線のピークプロファイルがガウス分布曲
線で・あることを利用しているので、3個の定数を決定
ずれはよく、複数の測定結果がその3個の定数の決定に
用いられるので、全体としての測定時間力做豆くても、
3個の定数に関しては長時間をかけたのき同しになる。
Since the present invention makes use of the fact that the peak profile of diffracted X-rays is a Gaussian distribution curve, it is easy to determine the three constants incorrectly, and multiple measurement results are used to determine the three constants. , even if the total measurement time is small,
As for the three constants, they are the same even if they take a long time.

例えば9点の測定値により、従来はブ■]フrイル上の
9点の高さを決めていたが、本発明では3個の定数を決
めればよいので、同じ測定時間で3定数の測定精度はf
1倍に向上し、ピークプロファイルの形はこの3個の定
数で決まるので、ピークプロファイルそのものがJ−3
倍の精度に決められることになる。以上の説明はピーク
プロファイルがガウス誤差分布の形を示すことに立脚し
たが、更に高精度を望むときはガウス−ローレンス誤差
分布の形により、−1−と同様にしてビークプI」ファ
イルを決定できる。
For example, conventionally, the heights of nine points on the frill were determined based on the measured values of nine points, but with the present invention, it is only necessary to determine three constants, so three constants can be measured in the same measurement time. Accuracy is f
The shape of the peak profile is determined by these three constants, so the peak profile itself is J-3.
This will result in twice the precision. The above explanation was based on the fact that the peak profile shows the shape of the Gaussian error distribution, but if even higher precision is desired, the "Beakup I" file can be determined in the same way as in -1- based on the shape of the Gauss-Lawrence error distribution. .

(実施例〉 第1図は本発明の一実施例を示す。この装置は多チヤン
ネル型のX ′!f1.回折装置で、1はX線管、2は
ソーラスリットて試料面」二のゴニオメータ中心中心線
に沿う細長い領域にX線の平行束を投射する。3はゴニ
オメータて、ゴニオメータ中上)に試料Sが回転可能に
セットされている。4はX線検出装置で、ゴニオメータ
中心に回転中心を有する腕5に取イζj(すられている
。試料Sおよび腕5は夫々パルスモータで駆動され、夫
/7のゴニオメータ上の角位置は制御装置Oにおいて検
知されている。
(Embodiment) Figure 1 shows an embodiment of the present invention. This device is a multi-channel type X'!f1. diffraction device, in which 1 is an X-ray tube, 2 is a solar slit, and 2 is a goniometer at the sample surface. A parallel beam of X-rays is projected onto a long and narrow area along the center line. 3 is a goniometer, and a sample S is rotatably set in the goniometer (in the middle upper part of the goniometer). Reference numeral 4 is an X-ray detection device, which is mounted on an arm 5 whose rotation center is at the center of the goniometer.The sample S and the arm 5 are each driven by a pulse motor, and the angular position of the husband/7 on the goniometer is It is detected by the control device O.

X線検出装置4は多数のX腺検用器41.42・・・4
18が6個−列で三列に配列されたものである。−列の
X線検出器は隣同士のものがゴニオメータ中心に対し角
度で2.1°離れており、このような列が列同士の間で
0.7°ずらせて三列に配列されている。各X線検出器
の前面には夫々ゴニオメータの回転中心に直交する方向
にソーラスリット8が設けられている。従って全体とし
て0.7°の間隔で全体で11,9°の各範囲を一度に
測定できる。
The X-ray detection device 4 includes a large number of X-ray detectors 41, 42...4
18 are arranged in three rows of six rows. - The rows of X-ray detectors are spaced 2.1 degrees apart from each other with respect to the center of the goniometer, and these rows are arranged in three rows with a 0.7 degree offset between the rows. . A solar slit 8 is provided on the front surface of each X-ray detector in a direction perpendicular to the rotation center of the goniometer. Therefore, a total range of 11.9 degrees can be measured at once at intervals of 0.7 degrees.

測定動作は次のように行われる。&(料をレットし、測
定しようとする回折線の現れる角位置にX線検出装置4
の中心、具体的には検出器49と410との中間が回折
ピークの予定中心位置に一致するように腕5を動かし、
その後制御装置6は各X線検出器41〜418の出力を
一定時間積分してその結果を測定データとして取込み、
各検出器の上記測定データに夫々の検出器の感度補止係
数を掛けた値を夫々の測定データに対応するゴニオメー
タの角度データと共にポストコンピュータ7に送り、ホ
ストコンピュータでデータ処理を行う。データ処理をと
こで行うかは任意で制御装置6でデータ処理を行っても
良いことは云うまでもない。
The measurement operation is performed as follows. & (Let the sample be removed, and place the
Move the arm 5 so that the center of the diffraction peak, specifically the middle between the detectors 49 and 410, coincides with the expected center position of the diffraction peak,
After that, the control device 6 integrates the output of each X-ray detector 41 to 418 for a certain period of time and takes in the result as measurement data.
The value obtained by multiplying the measurement data of each detector by the sensitivity correction coefficient of each detector is sent to the post computer 7 together with the angle data of the goniometer corresponding to each measurement data, and the data is processed by the host computer. It goes without saying that the data processing may be performed by the control device 6 at any location.

」二連測定動作で、各検出器41〜418の感度補正は
次のようにして行われる。任意試料をセットシ、全ての
X451検出器41〜418がその試料の一つの回折線
ピークを通過するように腕5を回転させ、各X線検出器
の出力を腕5の角位置の関数として記録する。この記録
は一つの回折線のプロファイルの記録であるから、各検
出器の感度が全て同してあれば各記録におけるピークの
高さは全て等しく、各記録におけるピーク高さの違いは
各検出器の感度の違いを表している。従って各記録にお
けるど−ク高さの平均を分子とし、個々検出器の記録の
ピーク高さを分母とした数値が補正係数であって、この
ような測定によって求めた補正係数を制御装置6に記憶
させておくのである。
'' In the double measurement operation, the sensitivity correction of each detector 41 to 418 is performed as follows. Set any sample, rotate arm 5 so that all X451 detectors 41-418 pass through one diffraction line peak of the sample, and record the output of each X-ray detector as a function of the angular position of arm 5. do. This record is a record of one diffraction line profile, so if the sensitivity of each detector is the same, the peak heights in each record are all equal, and the difference in peak height in each record is due to the difference in peak height between each detector. represents the difference in sensitivity. Therefore, the correction coefficient is a value whose numerator is the average peak height of each record and the denominator is the peak height of each detector record, and the correction coefficient obtained by such measurements is sent to the control device 6. Let it be remembered.

次に」二連した感度補正された測定データに対するデー
タ処理について説明する。測定データは一つの回折ピー
クのプロファイルの角度で0.7゜飛びの測定データで
ある。これらのデータからまずベースライン補正を行う
。X線検出装置4は一度に測定できる角範囲が約±5°
であるから、検出波Ff4の両端付近の幾つかの検出器
は回折線ピークの裾から外れた所lこある。従って、X
線検出器41〜43および同416〜418の6個の検
出器の測定データを用いて、−本の2次曲線を算定し、
これをベースラインとして各検出器44〜415のデー
タから引算したものがベースライン補正された測定デー
タである。データ処理にはこれらの測定データと夫々の
測定データを与えた各XI検出器の角位置のデータが用
いられる。上記ベースライン補正された測定データをP
iそれに対応する角位置のデータをXiとする。今前記
(1)式で各定数に、a、bが正しく求まっているもの
とすると、回折X線の角位置Xiにおける正しい強度は p < x 1> :== K oQ’X” l’)”
て与えられ、 Δ1=Pi−P(Xi) は角位置X1におけるX &’1強度の測定誤差である
。最小自乗法は S−Σ(△1)1 が最小になるようにに、a、bを決定するものである。
Next, data processing for two series of sensitivity-corrected measurement data will be explained. The measurement data is the measurement data of the profile angle of one diffraction peak in 0.7° increments. Baseline correction is first performed from these data. The angular range that the X-ray detector 4 can measure at one time is approximately ±5°.
Therefore, some detectors near both ends of the detected wave Ff4 are located outside the tail of the diffraction line peak. Therefore, X
Using the measurement data of six line detectors 41 to 43 and 416 to 418, -calculate the quadratic curve,
What is subtracted from the data of each detector 44-415 by using this as a baseline is baseline-corrected measurement data. For data processing, these measurement data and data on the angular position of each XI detector providing the respective measurement data are used. The above baseline-corrected measurement data is P
Let the data of the angular position corresponding to i be Xi. Now, assuming that a and b are correctly determined for each constant in equation (1) above, the correct intensity of the diffracted X-ray at the angular position Xi is p < x 1> :== K oQ'X"l') ”
and Δ1=Pi−P(Xi) is the measurement error of X &'1 intensity at angular position X1. The method of least squares determines a and b so that S-Σ(Δ1)1 is minimized.

従って」二足Sの表式をに、a、bで夫々偏微分して夫
々をOと置くと、K、a、bについて三個の式が出来る
から、これからIぐ、a、bを算定すればよい。指数演
算は面倒であるから(1)式の両辺の対数をとって e ogP  (X  i  )  −f!ogK−a
   (X  i  −b)  −(2)とし、各測定
データPiも対数変換しての三式からに、a、bを求め
るのである。
Therefore, if we partially differentiate the expression for the bipedal S with respect to a and b and set each as O, we will have three expressions for K, a, and b, so from this we can calculate I, a, and b. do it. Since exponent operations are troublesome, we take the logarithms of both sides of equation (1) and calculate e ogP (X i ) −f! ogK-a
(X i -b) - (2), and a and b are obtained from the three equations obtained by logarithmically transforming each measurement data Pi.

上述実施例ではX線の回折角の測定は0.7゜飛びで行
われているのて、要求精度±0.035゜〜±0.07
°に対応することができる。測定精度をこれより倍だけ
」二げようとするききは検出装置4を一つの角位置に置
いて各検出器の出力デー=  9 −− 夕を取り、次に腕5を0635°動かしてもう一度同じ
測定をずればよい。
In the above embodiment, the X-ray diffraction angle is measured at 0.7° intervals, so the required accuracy is ±0.035° to ±0.07°.
° can be accommodated. If you want to increase the measurement accuracy by twice as much, place the detector 4 in one angular position, wait for the output data of each detector to be = 9, then move the arm 5 by 0635 degrees and repeat Just take the same measurements at different times.

上の実施例では多チヤンネル型の回折装置を用いたが、
単一検出器の装置で、必要な角度飛びに順に測定する場
合にも本発明が適用できることは云うまでムない。
In the above example, a multi-channel diffraction device was used.
It goes without saying that the present invention can also be applied to the case where measurements are performed sequentially at necessary angular jumps using a single detector device.

(発明の効果) 本発明は複数の測定より3個の定数を決定するので、一
定数についてみれば従来に比しより多くの測定結果の平
均をとることになるので、同じ時間をかければ従来より
精度が向上し、同じ精度を得る場合には測定時間が短縮
できて、測定能率を著しく向上できる。
(Effect of the invention) Since the present invention determines three constants from multiple measurements, it means that for a given number, more measurement results are averaged than in the past, so if the same amount of time is spent, The accuracy is further improved, and when the same accuracy is obtained, the measurement time can be shortened, and the measurement efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例装置の斜視図である。 1・・・X線管、2・・・ソーラスリット、3・・・ゴ
ニオメータ、4・・・X線検出装置、5・・・腕、6・
・・制御装置、7・・・ホストコンピュータ、S・・・
試料。 代理人  弁理士 縣  浩 介
The drawing is a perspective view of an apparatus according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... X-ray tube, 2... Solar slit, 3... Goniometer, 4... X-ray detection device, 5... Arm, 6...
...Control device, 7...Host computer, S...
sample. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] X線回折装置において測定しようとする回折X線の分布
する角範囲内に測定点が3個以上含まれるように測定角
度間隔を設定し、回折X線のピーク波形をガウス或はガ
ウス−ローレンスの誤差分布曲線として、上記各各位置
における測定値から、上記誤差分布曲線を決める定数を
算定することにより、回折X線の回折角、強度、半値幅
等を決定することを特徴とするX線回折装置におけるデ
ータ処理方法。
The measurement angle interval is set so that three or more measurement points are included in the angular range where the diffracted X-rays to be measured are distributed in the X-ray diffractometer, and the peak waveform of the diffracted X-rays is determined by Gauss or Gauss-Lawrence. X-ray diffraction characterized in that the diffraction angle, intensity, half-value width, etc. of diffracted X-rays are determined by calculating constants that determine the error distribution curve from the measured values at each of the positions as the error distribution curve. Data processing method in the device.
JP10100088A 1988-04-22 1988-04-22 Processing method of data in x-ray diffraction apparatus Pending JPH01270651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10100088A JPH01270651A (en) 1988-04-22 1988-04-22 Processing method of data in x-ray diffraction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10100088A JPH01270651A (en) 1988-04-22 1988-04-22 Processing method of data in x-ray diffraction apparatus

Publications (1)

Publication Number Publication Date
JPH01270651A true JPH01270651A (en) 1989-10-27

Family

ID=14289008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10100088A Pending JPH01270651A (en) 1988-04-22 1988-04-22 Processing method of data in x-ray diffraction apparatus

Country Status (1)

Country Link
JP (1) JPH01270651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152472A (en) * 2014-02-17 2015-08-24 株式会社島津製作所 System for calculating sensitivity correction coefficient, and x-ray analyzer
US10145809B2 (en) 2016-06-28 2018-12-04 Shimadzu Corporation X-ray diffraction device and sensitivity calibration method for X-ray diffraction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152472A (en) * 2014-02-17 2015-08-24 株式会社島津製作所 System for calculating sensitivity correction coefficient, and x-ray analyzer
US10145809B2 (en) 2016-06-28 2018-12-04 Shimadzu Corporation X-ray diffraction device and sensitivity calibration method for X-ray diffraction device

Similar Documents

Publication Publication Date Title
JPS6348249Y2 (en)
JPH0134337B2 (en)
US6281498B1 (en) Infrared measuring gauges
JPS5833105A (en) Device for discriminating one element among plurality of element
KR950703139A (en) ONLINE TOMOGRAPHIC GAUGING OF SHEET METAL
JPH08327545A (en) Infrared gas analyzer
JPH01270651A (en) Processing method of data in x-ray diffraction apparatus
JPS636428A (en) Measuring method for surface temperature of body
JPH01227050A (en) Method and apparatus for measuring density and others of object
JP2685726B2 (en) X-ray analyzer
JPS6262304B2 (en)
JPS60142204A (en) Dimension measuring method of object
RU2738763C1 (en) Method of measuring intensity of a pulsed radiation source in conditions of circular movement of a source
JPH01260389A (en) Radiation measuring apparatus
CN114609083B (en) Gas concentration field reconstruction system and method under two-dimensional geometric path
JPS6228606A (en) Film thickness measuring instrument
Halliwell Measurement of specimen tilt and beam tilt in the Bond method
JPH0695080B2 (en) X-ray diffractometer
JP2000046764A (en) Method and apparatus for fluorescent x-ray analysis by quantitative analysis
JPS61250508A (en) Apparatus for measuring film thickness
RU2011164C1 (en) Method for measuring thickness of coating
JPH05340897A (en) X-ray spectrometer
JPH03148056A (en) Total-reflection x-ray fluorescence analysis apparatus
JPS59168309A (en) Displacement-quantity measuring device
JPH0358646B2 (en)