JPH01270601A - Freezing depth sensor - Google Patents

Freezing depth sensor

Info

Publication number
JPH01270601A
JPH01270601A JP9997888A JP9997888A JPH01270601A JP H01270601 A JPH01270601 A JP H01270601A JP 9997888 A JP9997888 A JP 9997888A JP 9997888 A JP9997888 A JP 9997888A JP H01270601 A JPH01270601 A JP H01270601A
Authority
JP
Japan
Prior art keywords
electrodes
pipe
soil
filler
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9997888A
Other languages
Japanese (ja)
Inventor
Masanaga Namekawa
滑川 真永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9997888A priority Critical patent/JPH01270601A/en
Publication of JPH01270601A publication Critical patent/JPH01270601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To automatically measure the freezing depth of the same point continuously for a long period of time, by arranging many sets of electrodes to a pipe in the longitudinal direction thereof at a predetermined interval and filling the pipe with a filler having the same physical properties as an object to be measured. CONSTITUTION:A pipe 1 is formed from a coldness-resistant synthetic resin having the same characteristics as the specific heat and heat conductivity of soil and many electrodes 2, each of which is formed by arranging two conductors so as to separate the same at a predetermined interval, are arranged in the pipe along the longitudinal direction thereof. These electrodes 2 are respectively connected in parallel and the output terminals OUT thereof are led out to the outside. The pipe 1 is filled with the same earth and sand as the soil to be measured as a filler 3 and the electrodes 2 are embedded in said filler 3. In use, the sensor thus constituted is vertically provided in the ground and the output terminals OUT are connected to a resistance value automatic recorder. As a freezing depth increases, the filler 3 is successively frozen in synchronous relation to the freezing of the soil of the outside. Therefore, resistance becomes successively large from the electrodes on the surface side of the ground and the resistance values of the output terminals become gradually large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は凍結を検出するための深度センサに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a depth sensor for detecting freezing.

〔従来の技術〕[Conventional technology]

一般に、寒冷地においては、冬期に土壌が凍結すること
が知られている。
It is generally known that in cold regions, soil freezes during the winter.

しかし土壌の凍結は、農林はもとより土木建築の分野に
も多大な影響を与えるため、その実状を把握することは
産業面から強い要請がある。
However, as soil freezing has a significant impact not only on agriculture and forestry but also on civil engineering and construction fields, there is a strong demand from the industrial side to understand the actual situation.

そこで従来は、この種のデータを採取する場合に地面を
実際に掘削して測定するか、或は地面にポーリングをし
てサンプルを採取した後その深度を測定する手法が採ら
れている。
Conventionally, when collecting this type of data, methods have been adopted in which the ground is actually excavated and measured, or the ground is polled, a sample is collected, and the depth is then measured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記した従来の方法では、同一地点における凍
結深度を継続的に測定することは不可能であるため、デ
ータの信頼性に欠けるという問題がある。即ち、掘削ま
たはポーリングした部分は外気にさらされることとなる
ため既に周囲の自然情況とは相異し、別の場所で新たな
サンプルを採取する必要があるからである。
However, in the conventional method described above, it is impossible to continuously measure the freezing depth at the same point, so there is a problem that the data lacks reliability. That is, since the excavated or polled area is exposed to the outside air, it is already different from the surrounding natural situation, and it is necessary to collect a new sample from a different location.

さらに、従来の方法では測定の都度、人為的な労力が必
要となるため、測定できる地域に大幅な制約を受けると
いう欠点がある。
Furthermore, conventional methods require manual labor each time a measurement is performed, which has the disadvantage of severely restricting the area that can be measured.

本発明は前記事項に鑑みてなされたもので、設置が容易
であるとともに、長期間継続して同一地点の凍結深度を
無人で計測し得るようにした凍結深度センサとすること
を技術的課題とする。
The present invention has been made in view of the above-mentioned matters, and the technical problem is to provide a freezing depth sensor that is easy to install and that can continuously measure the freezing depth at the same point unattended for a long period of time. do.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記技術的課題を解決するために、以下のよう
な構成とした。
In order to solve the above technical problem, the present invention has the following configuration.

即ち、管1内に、複数組みの電極2を管1の長手方向に
所定間隔を以て配列する。
That is, a plurality of sets of electrodes 2 are arranged within the tube 1 at predetermined intervals in the longitudinal direction of the tube 1.

そして、この管1内に、凍結深度が測定される被測定物
と同様の物性を有する充填体3を充填する。
Then, this tube 1 is filled with a filling body 3 having the same physical properties as the object to be measured whose freezing depth is to be measured.

前記複数の電極2は並列接続し、並列合成抵抗として出
力することができ、また、個々に出力して夫々の抵抗を
個別に計測することも可能である。
The plurality of electrodes 2 can be connected in parallel and output as a parallel combined resistance, or can be output individually and the resistance of each can be measured individually.

前記管Iの材質は、凍結深度が測定される被測定物、例
えば、土壌の比熱及び熱伝導率と同様の特性に設定する
ことが望ましい。また、充填体3の物性とは熱的及び電
気的なものを含む。
The material of the tube I is desirably set to have similar characteristics to the specific heat and thermal conductivity of the object to be measured, such as soil, for which the freezing depth is to be measured. Further, the physical properties of the filling body 3 include thermal and electrical properties.

〔作用〕[Effect]

本出願人は、物質の凍結状態にお1」る電気抵抗の変化
について以下の実験を行った。
The applicant conducted the following experiments regarding the change in electrical resistance of a substance in a frozen state.

即ち、2本の導体を所定の間隔離して設置してなる電極
2を土壌中に埋設し、この土壌を凍結させてその電気抵
抗の変化を測定したところ、含水率が100%、即ち、
非凍結状態にあっては2゜KΩとなり、この抵抗値は凍
結がある程度まで進行して含水率が30%となるまで維
持された。そして、含水率が30%を越えた時点で抵抗
値が上昇し、含水率か0%、即ち、完全凍結状態で数十
MΩないし無限大どなった。
That is, when the electrode 2, which is made up of two conductors separated for a predetermined period of time, is buried in the soil, and the soil is frozen and the change in electrical resistance is measured, the water content is 100%, that is,
In the non-frozen state, the resistance value was 2°KΩ, and this resistance value was maintained until freezing progressed to a certain extent and the water content reached 30%. When the water content exceeds 30%, the resistance value increases, ranging from several tens of MΩ to infinity when the water content is 0%, that is, in a completely frozen state.

この実験結果は、測定する土壌の含水率、その他電界質
等の含有成分によって異なるものの、略一定の値を示し
た。
Although the results of this experiment varied depending on the moisture content of the soil being measured and other components such as electrolytes, they showed approximately constant values.

本発明は以上の実験結果を応用したしのであり、管1周
囲の温度低下に伴って充填体3が凍結することによる電
極2の抵抗値の変化で凍結深度情報を得るものである。
The present invention is an application of the above experimental results, and information on the freezing depth is obtained from the change in the resistance value of the electrode 2 due to the freezing of the filling body 3 as the temperature around the tube 1 decreases.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

管1は、土壌の比熱及び熱伝導率と同様の特性を有する
耐寒性合成樹脂により形成されている。
The pipe 1 is made of a cold-resistant synthetic resin having properties similar to the specific heat and thermal conductivity of soil.

この管1内には2本の導体を所定の間隔離して設置して
なる電極2が管1の長手方向に沿って複数個配列されて
おり、これら電極2は夫々並列に接続されており、その
出力端OU Tは外部に導出されている。そして、管1
内に充填体3として、計測すべき土壌と同様の土砂を充
填して前記各電極2を埋入しである。
Inside this tube 1, a plurality of electrodes 2, which are two conductors separated by a predetermined interval, are arranged along the longitudinal direction of the tube 1, and these electrodes 2 are connected in parallel. Its output terminal OUT is led out. And tube 1
Each of the electrodes 2 is embedded inside the chamber as a filler 3 with earth and sand similar to the soil to be measured.

使用に際しては、前記構成になるセンサSを地中に立設
し、その出力端OUTを抵抗値自動記録装置(図示せず
)に接続する。前記したように凍結深度が深まるにつれ
て、充填体3が外部の土壌の凍結に同期して順次凍結す
る。このため、地表側の電極から順次抵抗が大きくなり
、出力端o U ’I’の抵抗値は除徐に大きくなる。
In use, the sensor S having the above configuration is installed underground, and its output terminal OUT is connected to an automatic resistance value recording device (not shown). As described above, as the freezing depth increases, the filling bodies 3 are sequentially frozen in synchronization with the freezing of the external soil. For this reason, the resistance increases sequentially from the electrode on the ground side, and the resistance value of the output terminal oU'I' gradually increases.

また、周囲温度の上昇によって氷解した場合には出力端
OUTの抵抗値は除徐に小ざくなる。
Further, when the ice melts due to a rise in ambient temperature, the resistance value of the output terminal OUT gradually decreases.

このように抵抗値の変化によって土壌の凍結深度を計測
することができるため、僅かな電力で計測することがで
きる。したがって抵抗値自動記録装置もバッテリー駆動
の小形のものでよく、長期間の計測が可能となる。
In this way, the freezing depth of the soil can be measured based on the change in resistance value, so it can be measured with a small amount of electric power. Therefore, the resistance value automatic recording device can also be a small battery-powered device, and long-term measurement is possible.

なお、前記したように電極2を夫々並列に接続すると、
出力系、計測系共に単純化できるという利点があるが、
個々の電極2の抵抗値を夫々個別に計測することも可能
である。また、被測定物は土壌に限定されるものではな
く、含水性の物質であればその種類を問わないのは勿論
である。
Note that if the electrodes 2 are connected in parallel as described above,
It has the advantage of simplifying both the output system and measurement system, but
It is also possible to measure the resistance value of each electrode 2 individually. Furthermore, the object to be measured is not limited to soil, and of course, any type of substance may be used as long as it is a water-containing substance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、管1内に、複数組みの電極2を管lの
長手方向に所定間隔を以て配列するとともに、この管I
内に、凍結深度が測定される被測定体と同様の熱的物性
を有する充填体3を充填したので、管I周囲の温度低下
に伴って充填体3が順次凍結し電極2の抵抗値が変化す
る。
According to the present invention, a plurality of sets of electrodes 2 are arranged in the tube 1 at predetermined intervals in the longitudinal direction of the tube 1, and the tube I
Since the inside of the tube is filled with a filling body 3 having thermal properties similar to those of the object to be measured whose freezing depth is to be measured, the filling body 3 gradually freezes as the temperature around the tube I decreases, and the resistance value of the electrode 2 decreases. Change.

このため、電極2の抵抗値を計測することによって同一
地点の凍結深度を計測することができ、長期に亘ってデ
ータを自動採取することが可能である。しかも管1を地
面等に縦に埋入するだけで設置することができるため設
置が容易である等の優れた効果がある。
Therefore, by measuring the resistance value of the electrode 2, the freezing depth at the same point can be measured, and data can be automatically collected over a long period of time. Moreover, since the pipe 1 can be installed simply by vertically burying it in the ground, etc., there are excellent effects such as ease of installation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示す縦断面図である。 ■・・−管、            2・・・電極、
3・・充填体。
The drawings are longitudinal sectional views showing embodiments of the present invention. ■...-tube, 2...electrode,
3. Filling body.

Claims (1)

【特許請求の範囲】[Claims] (1)管1内に、複数組みの電極2が管1の長手方向に
所定間隔を以て配列されているとともに、この管1内に
、凍結深度が測定される被測定物と同様の物性を有する
充填体3が充填されていることを特徴とする凍結深度セ
ンサ。
(1) A plurality of sets of electrodes 2 are arranged in the tube 1 at predetermined intervals in the longitudinal direction of the tube 1, and the tube 1 has the same physical properties as the object to be measured whose freezing depth is to be measured. A freezing depth sensor characterized by being filled with a filling body 3.
JP9997888A 1988-04-22 1988-04-22 Freezing depth sensor Pending JPH01270601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9997888A JPH01270601A (en) 1988-04-22 1988-04-22 Freezing depth sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9997888A JPH01270601A (en) 1988-04-22 1988-04-22 Freezing depth sensor

Publications (1)

Publication Number Publication Date
JPH01270601A true JPH01270601A (en) 1989-10-27

Family

ID=14261758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9997888A Pending JPH01270601A (en) 1988-04-22 1988-04-22 Freezing depth sensor

Country Status (1)

Country Link
JP (1) JPH01270601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894213A (en) * 2018-01-08 2018-04-10 河北科技大学 Optical fiber frost penetration sensor
CN107976150A (en) * 2017-12-06 2018-05-01 淮阴师范学院 For adaptive the frost penetration measuring device and measuring system being detected to frost penetration
CN117387532A (en) * 2023-12-12 2024-01-12 哈尔滨师范大学 Soil freezing depth measuring device and measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976150A (en) * 2017-12-06 2018-05-01 淮阴师范学院 For adaptive the frost penetration measuring device and measuring system being detected to frost penetration
CN107894213A (en) * 2018-01-08 2018-04-10 河北科技大学 Optical fiber frost penetration sensor
CN117387532A (en) * 2023-12-12 2024-01-12 哈尔滨师范大学 Soil freezing depth measuring device and measuring method
CN117387532B (en) * 2023-12-12 2024-02-23 哈尔滨师范大学 Soil freezing depth measuring device and measuring method

Similar Documents

Publication Publication Date Title
Hinkel et al. Identification of heat‐transfer processes during soil cooling, freezing, and thaw in central alaska
Hinkel et al. Seasonal patterns of coupled flow in the active layer at three sites in northwest North America
CN105092824B (en) Self-recording type measurement device for ice content of frozen soil
Berggren Prediction of temperature‐distribution in frozen soils
CN112554120A (en) Bridge deck automatic snow melting and ice melting system and method based on terrestrial heat
CN104677422B (en) Many method of testings and equipment are carried out using the cold area's sandy soil embankment of fiber grating pair
AU619568B2 (en) Moisture detection probe
Zhan et al. Instrumentation of an unsaturated expansive soil slope
CN101936932A (en) Measuring probe of soil thermal resistivity based on point heat source method
JPH01270601A (en) Freezing depth sensor
CN202548085U (en) Detection device for burial depth of dam cut-off wall
Liu et al. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?
CN213275416U (en) Water heat dynamic change detector for soil freezing and thawing process
CN110108748B (en) Frost heaving experimental device
CN110470691A (en) The experimental provision and preparation method of measuring frozen and buried pipeline interaction
Outcalt et al. Soil temperature and electric potential during diurnal and seasonal freeze-thaw
Sun et al. Development and Application of Fiber-Optic Sensing Technology for Monitoring Soil Moisture Field
Indrawan et al. Field instrumentation for monitoring of water, heat, and gas transfers through unsaturated soils
Parameswaran et al. Electrical freezing potentials measured in a pingo growing in the western Canadian Arctic
Unit Subsurface temperatures and moisture contents in six New Jersey soils, 1954-1955
Atkins Determination of frost penetration by soil resistivity measurements
CN111189878A (en) Soil water content detection system and soil slimming early warning method
CN111366093A (en) Multifunctional distributed optical fiber sensor for road strain test and heat conduction snow melting
Stacheder TDR and low-frequency measurements for continuous monitoring of moisture and density in a snow pack
Lloyd The application of an instrument for non-destructive measurements of soil temperature and resistance profiles at a high Arctic field site