JPH01269863A - Refrigeration cycle controller - Google Patents

Refrigeration cycle controller

Info

Publication number
JPH01269863A
JPH01269863A JP9778888A JP9778888A JPH01269863A JP H01269863 A JPH01269863 A JP H01269863A JP 9778888 A JP9778888 A JP 9778888A JP 9778888 A JP9778888 A JP 9778888A JP H01269863 A JPH01269863 A JP H01269863A
Authority
JP
Japan
Prior art keywords
refrigerant
degree
superheat
target value
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9778888A
Other languages
Japanese (ja)
Inventor
Yuji Honda
本田 祐次
Hiroshi Fukuura
宏 福浦
Akio Matsuoka
彰夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9778888A priority Critical patent/JPH01269863A/en
Publication of JPH01269863A publication Critical patent/JPH01269863A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PURPOSE:To make it possible to control appropriately the degree of superheat of a refrigerant and to display constantly a necessary and sufficient cooling capability, by providing a controlling means for controlling the opening of an expansion valve means so as to make a determined degree of superheat agree with a determined target value. CONSTITUTION:A controlling means 9 controls the opening of an expansion valve means 5 according to both a target value of degree of superheat determined according to a detected pressure and a detected rotating speed by a target value-determining means 8 and a degree of superheat determined according to a detected temperature and the detected pressure by a superheat degree-determining means 7. The target value determined by the means 8 is higher or lower according as the detected pressure and the detected rotating speed are lower or higher. When the opening of the expansion valve means 5 is controlled based on the target value of degree of superheat thus determined, a sufficient degree of superheat of a refrigerant can be secured through a reduction in cooling capability of an evaporating means 1 based on the small opening of the valve means 5 at the time of a low load on the evaporating means 1 under a low rotating speed of a compressing means 2. At the time of a high load on the evaporating means 1, a high cooling capability of the evaporating means 1 based on the large opening of the valve means 5 can be satisfactorily secured under a reduction in the degree of superheat.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気調和装置、冷蔵装置、冷凍装置等に採用
するに通した冷凍サイクル制御装置に係り、特に、電気
式膨張弁を備えた冷凍サイクル制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a refrigeration cycle control device that is used in air conditioners, refrigerators, freezing devices, etc., and particularly relates to a refrigeration cycle control device that is equipped with an electric expansion valve. The present invention relates to a refrigeration cycle control device.

(従来技術) 従来、この種の冷凍サイクル制御装置においては、例え
ば、特開昭60−218559号公報に示されているよ
うに、あらゆる負荷条件に対応するために、冷媒圧力又
は冷媒温度に応じて、エバポレータの出口における冷媒
の過熱度制御と、コンプレッサの吸入口における冷媒の
過熱度制御とを切換制御するようにしたものがある。
(Prior Art) Conventionally, in this type of refrigeration cycle control device, as shown in Japanese Patent Application Laid-Open No. 60-218559, in order to cope with all load conditions, a control system is used to adjust the refrigerant pressure or refrigerant temperature. There is a system that performs switching control between the degree of superheating of the refrigerant at the outlet of the evaporator and the degree of superheating of the refrigerant at the inlet of the compressor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、このような構成においては、上述の切換制御に
あたり、エバポレータの出口における冷媒の圧力及び温
度を検出する圧力センサ及び温度センサと、コンプレッ
サの吸入口における冷媒の圧力及び温度を検出する圧力
センサ及び温度センサとを採用しなければならず、その
結果、センサ数の増大によるコスト高を招いていた。
However, in such a configuration, in the above switching control, a pressure sensor and a temperature sensor that detect the pressure and temperature of the refrigerant at the outlet of the evaporator, and a pressure sensor and a temperature sensor that detect the pressure and temperature of the refrigerant at the suction port of the compressor are used. As a result, an increase in the number of sensors leads to an increase in costs.

そこで、本発明は、このようなことに対処すべく、電気
式膨張弁を備えた冷凍サイクル制御装置において、必要
最小限の数のセンサの採用でもって、冷媒の過熱度を適
正に制御しつつ過不足なき冷却能力を常に発揮し得るよ
うにしようとするものである。
Therefore, in order to cope with this problem, the present invention employs a minimum number of sensors in a refrigeration cycle control device equipped with an electric expansion valve to appropriately control the degree of superheating of the refrigerant. The aim is to always be able to exhibit just the right amount of cooling capacity.

〔課題を解決するための手段〕[Means to solve the problem]

かかる課題の解決にあたり、本発明の構成上の特徴は、
第1図にて例示するごとく、流入冷媒の蒸発との関連に
より流入空気流を冷却する蒸発手段1と、この蒸発手段
1からの蒸発冷媒を圧縮する圧縮手段2と、前記蒸発冷
媒の圧力を蒸発手段1側において一定値以下とならない
ように制御する蒸発圧力制御手段3と、前記圧縮冷媒を
凝縮する凝縮手段4と、前記凝縮冷媒を開度に応じて膨
張させ、蒸発圧力制御手段3から圧縮手段2への冷媒の
過熱度を目標値にするように制御しつつ蒸発手段lに流
入させる電気式膨張弁手段5とを備えた冷凍サイクル制
御装置において、蒸発圧力制御手段3から圧縮手段2へ
の冷媒の温度を検出する温度検出手段6aと、蒸発圧力
制御手段3から圧縮手段2への冷媒の圧力を検出する圧
力検出手段6bと、圧縮手段2の回転速度を検出する回
転速度検出手段6Cと、前記検出温度及び検出圧力に基
づき前記冷媒の過熱度を決定する過熱度決定手段7と、
前記過熱度の目標値を、前記検出回転速度及び検出圧力
の双方の増大(又は減少)に応じ減少(又は増大)する
ように決定する目標値決定手段8と、前記決定過熱度を
前記決定目標値に一致させるように膨張弁手段50開度
を制御する制御手段9とを設けるようにしたことにある
In solving this problem, the structural features of the present invention are as follows:
As illustrated in FIG. 1, evaporation means 1 for cooling the incoming air stream in connection with the evaporation of the incoming refrigerant, compression means 2 for compressing the evaporative refrigerant from the evaporation means 1, and compressing means 2 for compressing the evaporative refrigerant from the evaporating means 1, An evaporation pressure control means 3 that controls the evaporation pressure so that it does not fall below a certain value on the evaporation means 1 side, a condensation means 4 that condenses the compressed refrigerant, and an evaporation pressure control means 3 that expands the condensed refrigerant according to the degree of opening. In a refrigeration cycle control device comprising an electric expansion valve means 5 which controls the superheat degree of the refrigerant to the compression means 2 to a target value and causes the refrigerant to flow into the evaporation means 1, the refrigerant is transferred from the evaporation pressure control means 3 to the compression means 2. temperature detection means 6a for detecting the temperature of the refrigerant flowing from the evaporation pressure control means 3 to the compression means 2, pressure detection means 6b for detecting the pressure of the refrigerant from the evaporation pressure control means 3 to the compression means 2, and rotation speed detection means for detecting the rotation speed of the compression means 2. 6C, and superheat degree determining means 7 for determining the degree of superheat of the refrigerant based on the detected temperature and detected pressure,
target value determining means 8 for determining the target value of the degree of superheat to decrease (or increase) in accordance with increases (or decreases) in both the detected rotational speed and the detected pressure; A control means 9 is provided for controlling the opening degree of the expansion valve means 50 so as to match the opening degree of the expansion valve means 50.

〔作用効果〕[Effect]

このように本発明を構成したことにより、制御手段9が
、目標値決定手段8により前記検出圧力及び検出回転速
度に応じ決定される前記過熱度の目標値及び過熱度決定
手段7により前記検出温度及び検出圧力に応じ決定され
る過熱度に応じ、膨張弁手段5の開度を制御する。かか
る場合、目標値決定手段8により決定される過熱度の目
標値は、前記検出圧力及び検出回転速度が低い程大きく
、高い程小さくなる。従って、このようにして決定され
る過熱度の目標値に基づき上述のように膨張弁手段5の
開度を制御すれば、圧縮手段2の低回転速度下での蒸発
手段1の低負荷時には、膨張弁手段5の開度小に基く蒸
発手段1の冷却能力軽減下にて、冷媒の十分な過熱度を
確保でき、省動力化をもたらす。一方、圧縮手段2の低
回転速度下における蒸発手段1の高負荷時には膨張弁手
段5の開度大に基く蒸発手段1の高冷却能力を、過熱度
の軽減下にて十分に確保し得る。かかる場合、圧縮手段
2の回転速度及び蒸発手段1の負荷が共に高いときには
、前記回転速度が高い程前記過熱度の目標値をさらに低
くして高冷却能力を確保しつつ圧縮手段2の吐出冷媒の
不必要な温度上昇を抑制する。一方、前記回転速度が高
くても蒸発手段1の負荷が低い場合には、前記過熱度の
目標値を大きくして省動力化を確保する。また、上述の
ような作用効果が、三つの検出手段6a〜6cのみの採
用により達成され得るので、この種装置のコスト低減に
つながる。
By configuring the present invention in this way, the control means 9 can control the target value of the degree of superheat determined by the target value determining means 8 according to the detected pressure and the detected rotational speed, and the detected temperature by the degree of superheat determining means 7. The degree of opening of the expansion valve means 5 is controlled according to the degree of superheat determined according to the detected pressure. In such a case, the target value of the degree of superheat determined by the target value determining means 8 becomes larger as the detected pressure and rotational speed are lower, and becomes smaller as the detected pressure and rotational speed are higher. Therefore, if the opening degree of the expansion valve means 5 is controlled as described above based on the target value of the degree of superheat determined in this way, when the load of the evaporation means 1 is low when the rotation speed of the compression means 2 is low, A sufficient degree of superheating of the refrigerant can be ensured while the cooling capacity of the evaporation means 1 is reduced due to the small opening degree of the expansion valve means 5, resulting in power saving. On the other hand, when the evaporation means 1 is under a high load when the compression means 2 is at a low rotational speed, the high cooling capacity of the evaporation means 1 based on the large opening degree of the expansion valve means 5 can be sufficiently ensured while reducing the degree of superheating. In such a case, when both the rotational speed of the compression means 2 and the load on the evaporation means 1 are high, the higher the rotational speed is, the lower the target value of the degree of superheat is to reduce the refrigerant discharged from the compression means 2 while ensuring a high cooling capacity. suppress unnecessary temperature rises. On the other hand, when the load on the evaporator 1 is low even if the rotational speed is high, the target value of the degree of superheat is increased to ensure power saving. Further, the above-mentioned effects can be achieved by employing only the three detection means 6a to 6c, which leads to cost reduction of this type of device.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明すると、第2
図は、本発明に係る冷凍サイクル制御装置が車両用空気
調和装置に通用された例を示している。空気調和装置は
、エアダクト10を備えており、このエアダクト10内
には、その上流から下流にかけて、ブロワ20、エバポ
レータ30、エアミックスダンパ40及びヒータコア5
0が順次配設されている。ブロワ20はエアダク)10
内に空気流を導入しエバポレータ30、エアミックスダ
ンパ40及びヒータコア50を通して当該車両の車室内
に吹出す。エバポレータ30はその流入冷媒の蒸発作用
に応じブロワ20からの空気流を冷却する。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
The figure shows an example in which the refrigeration cycle control device according to the present invention is applied to a vehicle air conditioner. The air conditioner includes an air duct 10, and in this air duct 10, from upstream to downstream, a blower 20, an evaporator 30, an air mix damper 40, and a heater core 5 are installed.
0 are arranged sequentially. Blower 20 is air duct) 10
An air flow is introduced into the interior of the vehicle and is blown out through the evaporator 30, air mix damper 40, and heater core 50 into the passenger compartment of the vehicle. The evaporator 30 cools the airflow from the blower 20 in response to the evaporation action of its incoming refrigerant.

冷凍サイクル制御装置は、当該車両のエンジン60にベ
ルト機構70及び電磁クラッチ80を介し連結したコン
プレッサ90を備えており、ベルト機構70は、エンジ
ン60の出力軸61に軸支したVプーリ71と、コンプ
レッサ90のハウジング内に偏心して回転可能に軸支し
たロータの回転軸91に軸支してなるVプーリ72と、
両■プーリ71.72に巻回したVベルト73とにより
構成されている。電磁クラッチ80は、コンブレフす9
0の回転軸91及びVプーリ72に同軸的に組付けられ
ており、この電磁クラッチ80は、その電磁コイルの励
磁により係合して■プーリ72をコンプレッサ90の回
転軸91に動力伝達可能に連結し、またその電磁コイル
の消磁により解離して■ブーIJ72を回転軸91から
遮断する。
The refrigeration cycle control device includes a compressor 90 connected to the engine 60 of the vehicle via a belt mechanism 70 and an electromagnetic clutch 80, and the belt mechanism 70 includes a V-pulley 71 pivotally supported on the output shaft 61 of the engine 60, a V-pulley 72 pivotally supported on a rotation shaft 91 of a rotor eccentrically and rotatably supported within the housing of the compressor 90;
It is composed of a V-belt 73 wound around both pulleys 71 and 72. The electromagnetic clutch 80 is a combination lever 9
The electromagnetic clutch 80 is assembled coaxially with the rotating shaft 91 of the compressor 90 and the V-pulley 72, and this electromagnetic clutch 80 is engaged by the excitation of its electromagnetic coil so that the pulley 72 can transmit power to the rotating shaft 91 of the compressor 90. They are connected and then separated by demagnetization of the electromagnetic coil to cut off the IJ72 from the rotating shaft 91.

コンプレッサ90は、電磁クラッチ80の係合下にて、
エンジン60からベルト機構70を介し動力を伝達され
て回転し、エバポレータ30から配管P1を通し冷媒を
吸入し、この吸入冷媒を圧縮し高温高圧の圧縮冷媒とし
て配管P2内に吐出する。蒸発圧力制御弁30aは、エ
バポレータ30の冷媒出口近傍にて配管Pl内に介装さ
れているもので、この蒸発圧力制御弁30aは、エバポ
レータ30の温度の所定値以下への低下を防止すべく、
同エバポレータ30の冷媒出口近傍の配管P1内の冷媒
の圧力を所定圧以上に維持するようになっている。
The compressor 90 is operated under the engagement of the electromagnetic clutch 80.
It rotates as power is transmitted from the engine 60 via the belt mechanism 70, sucks refrigerant from the evaporator 30 through the pipe P1, compresses the sucked refrigerant, and discharges it as a high-temperature, high-pressure compressed refrigerant into the pipe P2. The evaporation pressure control valve 30a is installed in the pipe Pl near the refrigerant outlet of the evaporator 30, and is designed to prevent the temperature of the evaporator 30 from falling below a predetermined value. ,
The pressure of the refrigerant in the pipe P1 near the refrigerant outlet of the evaporator 30 is maintained at a predetermined pressure or higher.

コンデンサ100は、冷却ファン100aによる放熱作
用のもとに、配管P2内の圧縮冷媒を凝縮し凝縮冷媒と
して配管P3内に流入させる。気液分離器110は、配
管P3内の凝縮冷媒を受けて気相成分とし液相成分に分
離し、この液相成分を配管P4内に流入させる。電気式
膨張弁120は、その現実の開度に応じ、配管P4から
の冷媒を膨張させて低温低圧の冷媒として配管P5を通
しエバポレータ30内に流入させる。但し、膨張弁12
0の現実の開度は、その最小開度以上において、同膨張
弁120に内蔵のリニアアクチエエータからなる弁体の
変位量に比例する。
The condenser 100 condenses the compressed refrigerant in the pipe P2 under the heat dissipation effect of the cooling fan 100a, and causes the condensed refrigerant to flow into the pipe P3. The gas-liquid separator 110 receives the condensed refrigerant in the pipe P3, separates it into a gas phase component and a liquid phase component, and causes this liquid phase component to flow into the pipe P4. The electric expansion valve 120 expands the refrigerant from the pipe P4 according to its actual opening degree, and causes the refrigerant to flow into the evaporator 30 through the pipe P5 as a low-temperature, low-pressure refrigerant. However, the expansion valve 12
The actual opening degree of 0 is proportional to the amount of displacement of the valve body, which is a linear actuator built into the expansion valve 120, above the minimum opening degree.

次に、冷凍サイクル制御装置の電気回路構成について説
明すると、温度センサ130aは、蒸発圧力制御弁30
aの後流にて配管Pl内の冷媒の現実の温度を検出し冷
媒温検出信号として発生する。圧力センサ130bは、
蒸発圧力制御弁30aの後流にて配管Pl内の冷媒の現
実の圧力を検出し圧力検出信号として発生する0回転速
度センサ140はエンジン60の出力軸61の現実の回
転速度をヰ★出しこの検出結果に比例する周波数にて一
連のパルス信号を発生する。操作スイッチSWは、空気
稠和装置を作動させるにあたり、操作されて操作信号を
生じる。A−D変換器150は、温度センサ130aか
らの冷媒温検出信号及び圧力センサ130bからの圧力
検出信号を冷媒温ディジタル信号及び圧力ディジタル信
号にそれぞれディジクル変換する。波形整形器160は
回転速度センサ140からの各パルス信号を波形整形し
整形信号として順次発生する。
Next, to explain the electric circuit configuration of the refrigeration cycle control device, the temperature sensor 130a is connected to the evaporation pressure control valve 30.
The actual temperature of the refrigerant in the pipe Pl is detected downstream of a and generated as a refrigerant temperature detection signal. The pressure sensor 130b is
The zero rotation speed sensor 140 detects the actual pressure of the refrigerant in the pipe Pl downstream of the evaporation pressure control valve 30a and generates a pressure detection signal, and outputs the actual rotation speed of the output shaft 61 of the engine 60. Generates a series of pulse signals at a frequency proportional to the detection result. The operation switch SW is operated to generate an operation signal when operating the air mixing device. The AD converter 150 digitally converts the refrigerant temperature detection signal from the temperature sensor 130a and the pressure detection signal from the pressure sensor 130b into a refrigerant temperature digital signal and a pressure digital signal, respectively. The waveform shaper 160 shapes the waveform of each pulse signal from the rotational speed sensor 140 and sequentially generates a shaped signal.

マイクロコンピュータ170は、操作スイッチSW、A
−D変換器150及び波形整形器160との協働により
、第3図に示すフローチャートに従いコンビエータプロ
グラムを実行し、この実行中において、電磁クラッチ8
0の電磁コイル及び膨張弁120のリニアアクチエエー
タにそれぞれ接続した各駆動回路180.190の制御
に必要な演算処理を行う。但し、上述のコンピュータプ
ログラムはマイクロコンビエータ170のROMに予め
記憶されている。なお、マイクロコンピュータ170は
、当該車両のイグニッションスイッチICを介しバッテ
リBから給電されて作動する。
The microcomputer 170 has operation switches SW and A.
- In cooperation with the D converter 150 and the waveform shaper 160, the combiator program is executed according to the flowchart shown in FIG. 3, and during this execution, the electromagnetic clutch 8
The calculation processing necessary for controlling each of the drive circuits 180 and 190 connected to the electromagnetic coil 0 and the linear actuator of the expansion valve 120 is performed. However, the above-mentioned computer program is stored in the ROM of the micro combinator 170 in advance. Note that the microcomputer 170 operates by being supplied with power from the battery B via the ignition switch IC of the vehicle.

以上のように構成した本実施例において、イグニッショ
ンスイッチIGの閉成によりエンジン60を作動させて
当該車両を発進させるとともにマイクロコンピュータ1
70を作動させれば、マイクロコンピュータ170が、
ステップ200にて、第3図のフローチャートに従いコ
ンピュータプログラムの実行を開始し、ステップ210
にて、操作スイッチSWからの操作信号の発生に基づき
「N0」と判別し、ステ・ノブ210aにて、電磁クラ
ッチ80の電磁コイルを励磁するためのコイル励磁信号
を消滅のままにし、ステップ210に戻る。
In this embodiment configured as described above, when the ignition switch IG is closed, the engine 60 is operated to start the vehicle, and the microcomputer 1
70, the microcomputer 170 will
At step 200, execution of the computer program is started according to the flowchart of FIG. 3, and at step 210
At step 210, it is determined that it is "N0" based on the generation of the operation signal from the operation switch SW, and the coil excitation signal for exciting the electromagnetic coil of the electromagnetic clutch 80 remains extinguished using the steering knob 210a. Return to

このような段階で、操作スイッチSWから操作信号を発
生させると、マイクロコンピュータ170が、ステップ
210にてrYESJと判別し、ステップ210bにて
、A−D変換器150からの圧力ディジクル信号及び冷
媒温ディジタル信号の各値を冷媒圧Ps及び冷媒温Tr
として入力され、ステップ210Cにおいて、波形整形
器160からの各整形信号に基づきエンジン60の回転
速度Neを演算する。しかして、冷媒圧力psが所定圧
力Pso(マイクロコンピュータ170のROMに予め
記憶済み)よりも高ければ、マイクロコンピュータ17
0がステップ230にてrYES」と判別し、ステップ
230aにてコイル励磁信号を発生する。すると、駆動
回路170がマイクロコンピュータ170からのコイル
励磁信号に応答して電磁クラッチ80の電磁コイルを励
磁し、電磁クラッチ80が係合してエンジン60の動力
をベル]・機構70を介しコンプレッサ90に伝達しこ
れを作動させる。このとき、ブロワ20、ヒータコア5
0及び冷却ファン110aは共に作動しているものとす
る。
When an operation signal is generated from the operation switch SW at such a stage, the microcomputer 170 determines rYESJ in step 210, and in step 210b, the pressure digital signal and refrigerant temperature from the A-D converter 150 are output. Each value of the digital signal is converted into refrigerant pressure Ps and refrigerant temperature Tr.
In step 210C, the rotational speed Ne of the engine 60 is calculated based on each shaping signal from the waveform shaper 160. Therefore, if the refrigerant pressure ps is higher than the predetermined pressure Pso (previously stored in the ROM of the microcomputer 170), the microcomputer 17
0 is determined as "rYES" in step 230, and a coil excitation signal is generated in step 230a. Then, the drive circuit 170 excites the electromagnetic coil of the electromagnetic clutch 80 in response to the coil excitation signal from the microcomputer 170, and the electromagnetic clutch 80 engages to transmit the power of the engine 60 to the compressor 90 via the mechanism 70. and activate it. At this time, the blower 20, heater core 5
0 and the cooling fan 110a are both operating.

しかして、コンプレッサ90が、蒸発圧力制御弁30a
を介しエバポレータ30から配管P1を通し冷媒を吸入
して圧縮し高温高圧の圧縮冷媒として配管P2内に吐出
し、コンデンサ100が冷却ファン100aの放熱作用
のもとに配管P2からの圧縮冷媒を凝縮し凝縮冷媒とし
て配管P3内に流入させ、気液分離器110が配管P3
からの凝縮冷媒中の液相成分を冷媒として配管P4内に
流入させ、膨張弁120が、その現実の開度のもとに配
管P4からの冷媒を膨張させて配管P5を通しエバポレ
ータ30に流入させる。このため、ブロワ20によりエ
アダクト10内に導入される空気流が、エバポレータ3
0によりその流入冷媒に応じ冷却され、エアミックスダ
ンパ40の現実の開度に応じヒータコア50により加熱
されて当該車両の車室内に吹出す。°なお、エバポレー
タ30に流入した冷媒は、配管P1を通り蒸発圧力制御
弁3Qaを介しコンプレッサ90により吸入される。
Thus, the compressor 90
The refrigerant is sucked in from the evaporator 30 through the pipe P1, compressed, and discharged as a high-temperature, high-pressure compressed refrigerant into the pipe P2, and the condenser 100 condenses the compressed refrigerant from the pipe P2 under the heat dissipation action of the cooling fan 100a. The gas-liquid separator 110 flows into the pipe P3 as a condensed refrigerant.
The liquid phase component in the condensed refrigerant from the pipe is caused to flow into the pipe P4 as a refrigerant, and the expansion valve 120 expands the refrigerant from the pipe P4 based on its actual opening degree and flows into the evaporator 30 through the pipe P5. let Therefore, the air flow introduced into the air duct 10 by the blower 20 is
0, the refrigerant is cooled according to the inflowing refrigerant, heated by the heater core 50 according to the actual opening degree of the air mix damper 40, and blown out into the passenger compartment of the vehicle. Note that the refrigerant that has flowed into the evaporator 30 passes through the pipe P1 and is sucked into the compressor 90 via the evaporation pressure control valve 3Qa.

コンピュータプログラムがステップ240に進むと、マ
イクロコンピュータ170が、複数の特性曲線L1.・
・・L E +  ・・・、Ln(第4図参照)を表わ
す所定データに基づき冷媒圧ps及び回転速度Neに応
じ過熱度目標値SHoを決定する。かかる場合、過熱度
目標値S Hoは蒸発圧力制御弁30aの後流における
配管Pl内の冷媒の過熱度の目標値である。また、各特
性曲線L1〜Lnは、第4図に示すように、回転速度p
Jeをパラメータとする過熱度目標値SHoと冷媒圧P
sとの間の所定の関係をそれぞれ表わし、前記所定のデ
ータとしてマイクロコンピュータ170のROMに予め
記憶されている。
When the computer program proceeds to step 240, the microcomputer 170 generates a plurality of characteristic curves L1.・
. . L E + . . . Based on predetermined data representing Ln (see FIG. 4), a superheat degree target value SHo is determined according to the refrigerant pressure ps and the rotational speed Ne. In this case, the superheat degree target value S Ho is the target value of the superheat degree of the refrigerant in the pipe Pl downstream of the evaporation pressure control valve 30a. Moreover, each of the characteristic curves L1 to Ln has a rotational speed p as shown in FIG.
Superheat degree target value SHo and refrigerant pressure P with Je as a parameter
s, and are stored in advance in the ROM of the microcomputer 170 as the predetermined data.

本実施例において、各特性曲線L1〜Lnが、第4図の
ごとく、定められているのは以下の理由による。
In this embodiment, the characteristic curves L1 to Ln are determined as shown in FIG. 4 for the following reasons.

(1)エンジン60の回転速度N e、 I!l]チコ
77”l/ツサ90の回転速度が低い場合 コンプレッサ90の吸入圧、即ち冷媒圧P3が高い場合
は、高負荷条件の成立に相当するので、過熱度目標値S
Hoを減少させることによりエバポレータ30の高冷却
能力を確保する。一方、冷媒圧Psが低い場合には、低
負荷条件の成立に相当するので、過熱度目標値SHoを
増大させることにより省動力を確保する。
(1) Rotational speed N e, I of the engine 60! l] Chico 77"l/When the rotational speed of the shaft 90 is low. If the suction pressure of the compressor 90, that is, the refrigerant pressure P3 is high, this corresponds to the establishment of a high load condition, so the superheat degree target value S
By reducing Ho, a high cooling capacity of the evaporator 30 is ensured. On the other hand, when the refrigerant pressure Ps is low, this corresponds to the establishment of a low load condition, so power saving is ensured by increasing the superheat degree target value SHo.

(2)コンプレフサ90の回転速度が高い場合冷媒圧P
sが高い場合は、高負荷条件の成立に相当し、コンプレ
ッサ90の冷媒の吐出温度が高くなるために、過熱度目
標値S Hoを減少させることにより前記吐出温度の上
昇を抑制しつつエバポレータ30の高冷却能力を確保す
る。一方、冷媒圧Psが低い場合には、低負荷条件の成
立に相当するが、前記吐出温度の上昇を抑制しつつ省動
力化を確保させる程度に、過熱度目標値S Hoを増大
させる。なお、第4図にて、符号S Ho aは、コン
プレッサ90への冷媒の液戻り(液バツク)の未発生領
域における8口0の最小値を表わす。
(2) When the rotation speed of the compressor 90 is high, the refrigerant pressure P
If s is high, this corresponds to the establishment of a high load condition, and the discharge temperature of the refrigerant from the compressor 90 becomes high. Therefore, by reducing the superheat degree target value S Ho, the increase in the discharge temperature is suppressed and the evaporator 30 is Ensure high cooling capacity. On the other hand, when the refrigerant pressure Ps is low, which corresponds to the establishment of a low load condition, the superheat degree target value S Ho is increased to such an extent that power saving is ensured while suppressing the rise in the discharge temperature. In FIG. 4, the symbol S Ho a represents the minimum value of 8 ports 0 in the region where liquid return (liquid back) of the refrigerant to the compressor 90 does not occur.

ステップ240における演算処理後、マイクロコンピュ
ータ170が、次の各ステップ250〜270において
、過熱度偏差En−1を過熱度偏差En−ユとセントし
、過熱度偏差Enを過熱度偏差E n−1とセットし、
かつデユーティ比DTnをデエーティD T n−+と
セットする。ここにおいて、過熱度偏差Enは次の式(
11により表わされる。
After the arithmetic processing in step 240, the microcomputer 170 converts the superheating degree deviation En-1 into the superheating degree deviation En-u in each of the following steps 250 to 270, and converts the superheating degree deviation En into the superheating degree deviation En-1. and set
And the duty ratio DTn is set to the duty ratio DTn-+. Here, the superheat degree deviation En is calculated using the following formula (
11.

En−Tr−Ts−5Ho ・・11)また、この式(
1)において、符号TSは、配管Pl内の冷媒の圧力に
対応する同冷媒の蒸発温度を表わしており、この蒸発温
度Tsは次の式(2)により表わされる。
En-Tr-Ts-5Ho...11) Also, this formula (
In 1), the symbol TS represents the evaporation temperature of the refrigerant corresponding to the pressure of the refrigerant in the pipe Pl, and this evaporation temperature Ts is expressed by the following equation (2).

’l’5=f(PS)  ・・・(2)また、デユーテ
ィ比DTnは次の式(3)(PID制びθは、それぞれ
比例ゲイン、積分時間 1分時間及びサンプリング時間
を表わす、また、各過熱度偏差E n−I及びEn−ユ
は、それぞれ、各過熱度偏差En及びE n−1に先行
する各過熱度偏差を表わす。なお、各式(i)〜(3)
はマイクロコンビエータ170のROMに予め記憶され
ている。
'l'5=f(PS)...(2) Also, the duty ratio DTn is calculated using the following formula (3) (PID control θ represents the proportional gain, integration time 1 minute time, and sampling time, respectively. , each superheat degree deviation E n-I and En-U represent each superheat degree deviation preceding each superheat degree deviation En and E n-1, respectively. In addition, each of equations (i) to (3)
is stored in the ROM of the micro combinator 170 in advance.

また、上述のような各ステップ250〜270における
演算処理にあたっては、En−1,En及びDTnが演
算されていないため、マイクロコンピュータ170のR
OMに予め記憶してなる各初期偏差E−1,EO及び初
期デユーティ比DToが、En−コ、En−1及びDT
n−1としてそれぞれセットされる。然る後、マイクロ
コンピュータ170が、ステップ280において、式(
2)に基づきステップ210bにおける冷媒圧Psに応
じ蒸発温度TSを決定し、式(1)に基づき、同蒸発温
度Ts、ステップ240における過熱度目標値SHo及
び冷媒温Trに応じ過熱度偏差Enを決定し、かつ式(
3)に基づき、同過熱度偏差En並びに各ステップ25
0.260,270における各過熱度偏差En−ユ。
In addition, in the arithmetic processing in each step 250 to 270 as described above, since En-1, En and DTn are not calculated, the R of the microcomputer 170 is
Each initial deviation E-1, EO and initial duty ratio DTo stored in advance in OM are En-co, En-1 and DT.
n-1, respectively. Thereafter, in step 280, the microcomputer 170 calculates the formula (
2), the evaporation temperature TS is determined according to the refrigerant pressure Ps in step 210b, and the superheat degree deviation En is determined according to the evaporation temperature Ts, the superheat degree target value SHo and the refrigerant temperature Tr in step 240, based on equation (1). determine, and the expression (
Based on 3), the superheat degree deviation En and each step 25
Each superheat degree deviation En-yu at 0.260 and 270.

En−1及びデユーティ比D T n−1に応じデユー
ティ比DTnを決定する。これにより、過熱度偏差En
を零にするように、換言すれば、冷媒の過熱度を過熱度
目標値SHoにするように、デユーティ比DTnが決定
されたことになる。
The duty ratio DTn is determined according to En-1 and the duty ratio DTn-1. As a result, the superheat degree deviation En
In other words, the duty ratio DTn is determined so that the degree of superheat of the refrigerant becomes the target value SHo of the degree of superheat.

このようにデユーティ比DTnが決定されると、マイク
ロコンピュータ170が、ステップ290にて、同デエ
ーテイ比DTnをデエーテイ出力信号として発生し、こ
れに応答して駆動回路190が膨張弁120のリニアア
クチュエータを決定デユーティ比DTnに相当する量だ
け変位させる。
When the duty ratio DTn is determined in this way, the microcomputer 170 generates the same duty ratio DTn as a duty output signal in step 290, and in response, the drive circuit 190 operates the linear actuator of the expansion valve 120. It is displaced by an amount corresponding to the determined duty ratio DTn.

現段階においては、エバポレーク30の負荷が低く (
即ち、冷媒圧Psが低く)かつ回転速度Neが低いもの
とすれば、過熱度偏差En、即ちデユーティ比DTnは
小さいので、膨張弁120の開度の増大量は少ない。従
って、配管P4内の冷媒は膨張弁120によりその小開
度に基づき大きく絞られてエバポレータ30に流入する
。これにより、エバポレータ30がその流入冷媒に応じ
ブロワ20からの空気流を冷却する。また、エバポレー
タ30から蒸発圧力制御弁30aを介しその後流に位置
する配管Pl内の部分に流入する冷媒の過熱度は、ステ
ップ240における半熱度目標値SHOになるように制
御される。かかる場合、上述のように負荷が低く回転速
度Neが低いため、上記過熱度が、特性曲線L1 によ
り特定される最大値に近ずくように制御される。従って
、デユーティ比DTn、即ち膨張弁120の開度が小さ
いため、エバポレータ30の冷却能力の発揮にあたり、
冷媒が完全気化されるように利用されて省動力化に役立
つ。
At the current stage, the load on the evaporative lake 30 is low (
That is, if the refrigerant pressure Ps is low) and the rotational speed Ne is low, the superheat degree deviation En, that is, the duty ratio DTn is small, so the amount of increase in the opening degree of the expansion valve 120 is small. Therefore, the refrigerant in the pipe P4 is greatly throttled by the expansion valve 120 based on its small opening and flows into the evaporator 30. Thereby, the evaporator 30 cools the air flow from the blower 20 in response to the inflowing refrigerant. Further, the degree of superheat of the refrigerant flowing from the evaporator 30 through the evaporation pressure control valve 30a into the portion of the pipe Pl located downstream thereof is controlled to be the half-heat degree target value SHO in step 240. In this case, since the load is low and the rotational speed Ne is low as described above, the degree of superheating is controlled so as to approach the maximum value specified by the characteristic curve L1. Therefore, since the duty ratio DTn, that is, the opening degree of the expansion valve 120 is small, in exerting the cooling capacity of the evaporator 30,
The refrigerant is used to completely vaporize, which helps save power.

然る後、コンピュータプログラムの各ステップ210 
b、 210 c、 230.240〜290を通る演
算の繰返し過程において、ステップ210bにおける冷
媒圧P3及び冷媒温Trがステップ210Cにおける低
回転速度Neのもとに増大すると、エバポレータ30の
高負荷成立となり、ステップ240における過熱度目標
値S Hoが、第4図の所定データの一特性曲線L(N
eで決まる)との関連で冷媒圧Psに応じ減少し、ステ
ップ280における過熱度偏差Enが増大してデユーテ
ィ比DTnを増大させる。このようにデューティ比DT
nが増大すると、膨張弁120の開度が増大し、エバポ
レータ30に流入する冷媒に対する膨張弁120の絞り
度合が減少するので、配管P1内に流入する冷媒過熱度
目標値SHoの軽減のもとにエバポレータ30の高冷却
能力化を図り得る。
Thereafter, each step 210 of the computer program
b, 210 c, and 230. In the process of repeating the calculations from 240 to 290, when the refrigerant pressure P3 and the refrigerant temperature Tr in step 210b increase under the low rotational speed Ne in step 210C, a high load on the evaporator 30 is established. , the superheat target value S Ho in step 240 is one characteristic curve L(N
(determined by e), the superheat degree deviation En increases in step 280, and the duty ratio DTn increases. In this way, the duty ratio DT
As n increases, the degree of opening of the expansion valve 120 increases, and the degree of restriction of the expansion valve 120 to the refrigerant flowing into the evaporator 30 decreases, which reduces the target value SHo of the degree of superheating of the refrigerant flowing into the pipe P1. Therefore, the cooling capacity of the evaporator 30 can be increased.

また、上述のようにステップ210bにおける冷媒圧P
s及び冷媒温Trが増大するとき、ステップ210Cに
おける回転速度Neも増大すると、コンプレッサ90の
吐出冷媒の温度が不必要に高くなる可能性ありとの前提
のもとに、ステップ240における過熱度目標値SHo
が第4図の所定データとの関連で冷媒圧Ps及び回転速
度Neに応じ減少する。かかる場合、Neが高い程、前
記所定のデータの各特性曲線りのうち第4図にてより下
方に位置する特性曲線によってSHoが決定されるため
、この5)(oは、Neの低いときに比べて更に増大す
る。従って、ステップ280における過熱度偏差En及
びデユーティ比DTnが更に増大し、膨張弁120の開
度が更に増大するものの、配管Pl内に流入する冷媒の
過熱度目標値SHoのより一層の軽減のもとに、エバポ
レータ30の高冷却能力を確保しつつコンプレッサ90
の吐出冷媒の温度上昇抑制を実現できる。
Further, as described above, the refrigerant pressure P in step 210b
s and the refrigerant temperature Tr increase, the superheat degree target in step 240 is set based on the premise that if the rotation speed Ne in step 210C also increases, the temperature of the refrigerant discharged from the compressor 90 may become unnecessarily high. Value SHo
decreases depending on the refrigerant pressure Ps and the rotational speed Ne in relation to the predetermined data shown in FIG. In such a case, the higher Ne is, the SHo is determined by the characteristic curve located lower in FIG. 4 among the characteristic curves of the predetermined data. Therefore, although the superheat degree deviation En and the duty ratio DTn in step 280 further increase, and the opening degree of the expansion valve 120 further increases, the superheat degree target value SHo of the refrigerant flowing into the pipe Pl The compressor 90 is designed to further reduce the
It is possible to suppress the temperature rise of the discharged refrigerant.

また、上述のようにステップ210cにおける回転速度
Neの増大時に、上述とは異なり、ステップ210bに
おける冷媒圧Psが低いままの場合には、エバポレータ
30の負荷は低いものと判断しステップ240における
過熱度目標値S H。
Further, as described above, when the rotation speed Ne increases in step 210c, unlike the above, if the refrigerant pressure Ps in step 210b remains low, the load on the evaporator 30 is determined to be low, and the superheat degree in step 240 is determined. Target value SH.

が、第4図の所定のデータとの関連で冷媒圧Psに応じ
大きく決定される。従って、上述と同様に膨張弁120
の開度が小さいため、エバポレーク30の冷却能力の発
揮にあたり、冷媒の気化が促進されて省動力を確保でき
る。
is largely determined depending on the refrigerant pressure Ps in relation to the predetermined data shown in FIG. Therefore, similarly to the above, the expansion valve 120
Since the degree of opening is small, vaporization of the refrigerant is promoted when the evaporative lake 30 exerts its cooling ability, thereby ensuring power saving.

また、上述のような作用説明においては、蒸発圧力制御
弁30aが、エバポレータ30からの流出冷媒の圧力を
一定に維持するように制御するので、エバポレータ30
が凍結したりすることはない。なお、ステップ230に
おける判別が「NO」となったときは、マイクロコンピ
ュータ170がコンピュータプログラムをステップ21
0a以後に進める。
In addition, in the above explanation of the operation, since the evaporation pressure control valve 30a controls the pressure of the refrigerant flowing out from the evaporator 30 to be maintained constant, the evaporation pressure control valve 30a
never freezes. Note that when the determination in step 230 is "NO", the microcomputer 170 executes the computer program in step 21.
Proceed after 0a.

なお、本発明の実施にあたっては、車両用空気開用装置
に限らず、各種の空気調和装置、冷蔵装置、冷凍装置等
にも本発明を通用して実施してもよい。
In addition, in carrying out the present invention, the present invention may be applied not only to a vehicle air opening device but also to various air conditioning devices, refrigeration devices, refrigeration devices, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特許請求の範囲に記載の発明の構成に対する対
応図、第2図は本発明の一実施例を示すブロック図、第
3図は第2図におけるマイクロコンピュータの作用を示
すフローチャート、及び君4図は、エンジンの回転速度
をパラメータとした冷媒圧と過熱度目標値との関係を示
すグラフである。 符号の説明 30・・・エバポレータ、90・・・コンプレッサ、1
00・・・コンデンサ、120・・・膨張弁、130a
・・・温度センサ、130b・・・圧力センサ、170
・・・マイクロコンピュータ。
FIG. 1 is a diagram corresponding to the configuration of the invention described in the claims, FIG. 2 is a block diagram showing an embodiment of the invention, FIG. 3 is a flowchart showing the operation of the microcomputer in FIG. Figure 4 is a graph showing the relationship between refrigerant pressure and superheat degree target value using engine rotational speed as a parameter. Explanation of symbols 30... Evaporator, 90... Compressor, 1
00... Capacitor, 120... Expansion valve, 130a
...Temperature sensor, 130b...Pressure sensor, 170
...Microcomputer.

Claims (1)

【特許請求の範囲】[Claims]  流入冷媒の蒸発との関連により流入空気流を冷却する
蒸発手段と、この蒸発手段からの蒸発冷媒を圧縮する圧
縮手段と、前記蒸発冷媒の圧力を前記蒸発手段側におい
て一定値以下とならないように制御する蒸発圧力制御手
段と、前記圧縮冷媒を凝縮する凝縮手段と、前記凝縮冷
媒を開度に応じて膨張させ、前記蒸発圧力制御手段から
前記圧縮手段への冷媒の過熱度を目標値にするように制
御しつつ前記蒸発手段に流入させる電気式膨張弁手段と
を備えた冷凍サイクル制御装置において、前記蒸発圧力
制御手段から前記圧縮手段への冷媒の温度を検出する温
度検出手段と、前記蒸発圧力制御手段から前記圧縮手段
への冷媒の圧力を検出する圧力検出手段と、前記圧縮手
段の回転速度を検出する回転速度検出手段と、前記検出
温度及び検出圧力に基づき前記冷媒の過熱度を決定する
過熱度決定手段と、前記過熱度の目標値を、前記検出回
転速度及び検出圧力の双方の増大(又は減少)に応じ減
少(又は増大)するように決定する目標値決定手段と、
前記決定過熱度を前記決定目標値に一致させるように前
記膨張弁手段の開度を制御する制御手段とを設けるよう
にしたことを特徴とする冷凍サイクル制御装置。
evaporation means for cooling the incoming air flow in connection with the evaporation of the inflowing refrigerant; compression means for compressing the evaporative refrigerant from the evaporation means; an evaporation pressure control means for controlling, a condensation means for condensing the compressed refrigerant, and an expansion means for the condensed refrigerant according to the degree of opening, so that the degree of superheating of the refrigerant from the evaporation pressure control means to the compression means is set to a target value. In the refrigeration cycle control device, the refrigeration cycle control device includes an electric expansion valve means for causing the refrigerant to flow into the evaporation means while controlling the refrigerant to flow into the evaporation means. pressure detection means for detecting the pressure of the refrigerant from the pressure control means to the compression means; rotation speed detection means for detecting the rotation speed of the compression means; and determining the degree of superheating of the refrigerant based on the detected temperature and the detected pressure. a target value determining means for determining the target value of the degree of superheat to decrease (or increase) in accordance with an increase (or decrease) in both the detected rotational speed and the detected pressure;
A refrigeration cycle control device comprising: control means for controlling the opening degree of the expansion valve means so that the determined degree of superheat matches the determined target value.
JP9778888A 1988-04-20 1988-04-20 Refrigeration cycle controller Pending JPH01269863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9778888A JPH01269863A (en) 1988-04-20 1988-04-20 Refrigeration cycle controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9778888A JPH01269863A (en) 1988-04-20 1988-04-20 Refrigeration cycle controller

Publications (1)

Publication Number Publication Date
JPH01269863A true JPH01269863A (en) 1989-10-27

Family

ID=14201551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9778888A Pending JPH01269863A (en) 1988-04-20 1988-04-20 Refrigeration cycle controller

Country Status (1)

Country Link
JP (1) JPH01269863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220042A (en) * 2011-04-04 2012-11-12 Mitsubishi Electric Corp Air conditioning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220042A (en) * 2011-04-04 2012-11-12 Mitsubishi Electric Corp Air conditioning apparatus

Similar Documents

Publication Publication Date Title
CN100467299C (en) Refrigerant cycle device and control system for vehicle
JP3854119B2 (en) Compressor control device
US7891204B2 (en) Refrigeration cycle device for vehicle
JPH11170858A (en) Air conditioner for vehicle
US20040009073A1 (en) Hybrid compressor and control device
US6823687B2 (en) Vehicle air conditioner with variable displacement compressor
JPH0198858A (en) Controller for refrigeration cycle
JPH0914780A (en) Air conditioner
JP2000111125A (en) Control device for air-conditioner refrigeration cycle
JPH01269863A (en) Refrigeration cycle controller
JP3992046B2 (en) Refrigeration equipment
JP3817328B2 (en) Variable capacity compressor controller
JP3961108B2 (en) Clutch control device for externally controlled variable displacement compressor
JP2002081825A (en) Refrigerator-freezer
JPH01269864A (en) Refrigeration cycle controller
JP2004218893A (en) Multi-stage turbo refrigerator
JP2003341336A (en) Air-conditioning device for vehicle
JP2000335232A (en) Refrigerating cycle device for vehicle
JPH11201560A (en) Supercritical refrigerating cycle
JP3817329B2 (en) Variable capacity compressor controller
JPH01131858A (en) Refrigeration cycle controller for car
JPH11291751A (en) Torque estimating device for externally controlled variable capacity compressor and automobile engine control device using therewith
JPH028657A (en) Freezing cycle controlling device
JP2005247191A (en) Vehicular air-conditioner
JP2004232491A (en) Engine controller